Course Description

• “IBM Watson is a computer system capable of answering rich natural language questions and estimating its confidence in those answers at a level of the best humans at the task. On Feb 14-16, in an televised event, Watson triumphed over the best human players of all time on the American quiz show, Jeopardy!. In this course we will discuss the main principles of natural language processing, computer representation of knowledge and discuss how Watson solved some of its answers (right and wrong).”

• Prerequisites: some experience in a programming language.
 • No background in NLP or KR is necessary
Course Focus

- Unstructured Information Managing Architecture UIMA (in Java)
- Natural Language Processing (NLP)
- Knowledge Representation (KR)
Instructor Information

- Dr. Paul Fodor
 1437 Computer Science Building

- Office hours: We 12:00-2:00PM and Th 1:00-2:00PM
 - I am also available by appointment

- Email: pfodor (at) cs (dot) stonybrook (dot) edu

- TAs: TBD

- Please include “CSE 392” in the email subject and your name in your email correspondence
General Information

• Meeting Information:
 • Lectures: TuTh 9:50-11:10am, CS 2114
 • Course Web page: http://www.cs.stonybrook.edu/~cse392
 • Blackboard will be used for assignments, grades and course material
 • I also use Blackboard to send email to the class, so make sure that your email address in Blackboard is up-to-date.
Textbook

- No textbook is required

- Necessary Software:
 - Java 1.5 or higher: download from http://www.oracle.com/technetwork/java/javase/downloads
 - Eclipse IDE: http://www.eclipse.org

- Important Dates
 - Final Exam: Wed. Dec 14, 11:15am-1:45pm, class
 - http://www.stonybrook.edu/registrar-finals.shtml
Coursework

- **Grading Schema**
 - Homework = 50%
 - Programming homework assignments
 - Midterm exams (2) = 30% (15% each)
 - Final exam = 20%
Assignment Submission

- All assignments should be submitted electronically
 - Blackboard
Academic Integrity

- You can discuss general assignment concepts with other students
- You MAY NOT share assignments, source code or other answers
 - Assignments are subject to manual and automated similarity checking
- If you cheat, you MAY be brought up on academic dishonesty charges without warning - we follow the university policy:
 - http://www.stonybrook.edu/uaa/academicjudiciary
Please

- Please be on time
- Please show respect for your classmates
- Please turn off (or use vibrate for) your cellphones
- On-topic questions are welcome
Real Language is Real Hard

• Chess
 • A finite, mathematically well-defined search space
 • Limited number of moves and states
 • Grounded in explicit, unambiguous mathematical rules

• Human Language
 • Ambiguous, contextual and implicit
 • Grounded only in human cognition
 • Seemingly infinite number of ways to express the same meaning
The Best Human Performance: *Our Analysis Reveals the Winner’s Cloud*

Each dot represents an actual historical human Jeopardy! game.

Top human players are remarkably good.

Computers?

Winning Human Performance

Grand Champion Human Performance

2007 QA Computer System

More Confident

% Answered

Less Confident

Now Playing in the Winners Cloud

Precision

% Answered
DeepQA: The Technology Behind Watson

Massively Parallel Probabilistic Evidence-Based Architecture

Generates and scores many hypotheses using a combination of 1000’s **Natural Language Processing**, **Information Retrieval**, **Machine Learning** and **Reasoning Algorithms**. These gather, evaluate, weigh and balance different types of evidence to deliver the answer with the best support it can find.
IN 1698, THIS COMET DISCOVERER TOOK A SHIP CALLED THE PARAMOUR PINK ON THE FIRST PURELY SCIENTIFIC SEA VOYAGE.
Apache UIMA

- Open-source framework and tools for building NLP applications
- Key Concepts
 - *Common Analysis Structure (CAS)*: Container for Data Structures in user-defined data model (which can be defined in UML)
 - *Annotator*: Pluggable component (Java or C++, among others) that reads and writes a CAS
 - *Aggregate Analysis Engine*: Collection of Annotators

(c) P.Fodor (CS Stony Brook)
Aggregate Analysis Engine:

- Tokenizer
- NED
- Deep Parser
- Predicate Argument Structure
- Shallow SRD
- Focus and LAT Detection
- Anaphora Resolution
- Decomposition and Classification
- Deep SRD

CAS
Parse, PAS, Focus, Answer Type, Relations, ...

Watson Top-Level Aggregate Analysis Engine:

- Question/Topic Analysis
- Question Decomposition
- Hypothesis Generation
- Hypothesis and Evidence Scoring
- Synthesis
- Final Merging & Ranking

(c) P. Fodor (CS Stony Brook)
Natural Language Processing In Watson

Text (Question or Evidence) → Tokenization → Deep Parsing → Predicate Argument Structure → Named Entity Recognition

Predicate Argument Structure Graph

Rule-Based and Statistical Pattern Matching

Relations
Co-Reference Resolution
Question Focus
Lexical Answer Types (LATs)
Question Classification

(c) P.Fodor (CS Stony Brook)
POETS & POETRY: He was a bank clerk in the Yukon before he published "Songs of a Sourdough" in 1907.
Songs of a Sourdough is a poetry book by Robert W. Service.
Unstructured Information Management Architecture (UIMA)

- Platform independent standard for interoperable text and multi-modal analytics

UIMA Annotation

Document text:
“…seminar in **GN-K35** on **October 24, 2007**”

(c) P.Fodor (CS Stony Brook)
My work in IBM Watson - UIMA CAS Prolog Interface Architecture

QPare 2 Analysis Engine

Focus, Answer-type, Modifier Annotation Types

Focus

Modifiers

Answer-type Rules

Prolog

CAS Facts

UIMA CAS Focus&Answer-type Annotator

Passage Search, Selection, Answer Extraction, Ranking

(c) P. Fodor (CS Stony Brook)
Focus Computation rules

• The focus is the “node“ that refers to the unspecified answer
 • “What is the name of the airport in Dallas?”
 • Focus = “airport“
 • “What is the population of Iceland?”
 • Focus = “population”
• The focus abstracts different syntactical constructs:
 1) What X …
 2) What is the X that…
 3) Which of the X …
 4) What is the name of the X that…
 5) Name the X that…
 …
• Applications:
 • Answer-type detection
 • Logical form answer-selection

(c) P.Fodor (CS Stony Brook)
Example QParse2 Focus Detection Rules

- “How much/many” rule:
 - Pattern: HOW_MANY/MUCH X VERB …?
 - Examples:
 - “How many hexagons are on a soccer ball?”
 - “How much does the capitol dome weigh?”
 - “How much folic acid should an expectant mother get daily?”

focus(QuestionRoot, [Determiner]):-
 getDescendantNodes(QuestionRoot,Determiner),
 lemmaForm(Determiner,DeterminerString),
 howMuchMany(DeterminerString),! . % "how much/many", "this much", …
Example QParse2 Focus Detection Rules

- “What is X ...” rule:
 - Pattern: WHAT IS X ...?
 - Example:
 - “What is the democratic party symbol?”
 - “What is the longest river in the world?”

```
focus(QuestionRoot, [Pred]):-
    getDescendantNodes(QuestionRoot,Verb),
    lemmaForm(Verb,"be"),
    subj(Verb,Subj),
    lemmaForm(Subj,SubjString),
    whatWord(SubjString), % e.g., "what","which" ("this","these")
    pred(Verb,Pred),!.
```

(c) P.Fodor (CS Stony Brook)
Answer-type Computation Rules

- Computes the type of the answer - heuristics

Focus lexicalization (R2 annotations and lexical chains using Prolog WordNet followed by a mapping to our taxonomy):

<table>
<thead>
<tr>
<th>Question</th>
<th>QParse 2 AnswerType</th>
</tr>
</thead>
<tbody>
<tr>
<td>What American revolutionary general turned over West Point to the British?</td>
<td>[com.ibm.hutt.MilitaryLeader]</td>
</tr>
</tbody>
</table>

Table lookup for the verb:

<table>
<thead>
<tr>
<th>Question</th>
<th>QParse 2 AnswerType</th>
</tr>
</thead>
</table>

Table lookup for the focus:

<table>
<thead>
<tr>
<th>Question</th>
<th>QParse 2 AnswerType</th>
</tr>
</thead>
<tbody>
<tr>
<td>How far is it from the pitcher's mound to home plate?</td>
<td>[com.ibm.hutt.Length]</td>
</tr>
<tr>
<td>When was Lyndon B Johnson president?</td>
<td>[com.ibm.hutt.Year]</td>
</tr>
</tbody>
</table>

Table lookup for the focus (noun) + the verb:

<table>
<thead>
<tr>
<th>Question</th>
<th>QParse 2 AnswerType</th>
</tr>
</thead>
<tbody>
<tr>
<td>What instrument measures radioactivity?</td>
<td>[com.ibm.hutt.Tool]</td>
</tr>
</tbody>
</table>

(c) P. Fodor (CS Stony Brook)
Answer-type Computation Rules

- **Heuristics**
 - cascading rules in order of generality
 - first rule that fires returns the most specific answer-type for the question

Look at the focus + verb:

<table>
<thead>
<tr>
<th>Question</th>
<th>QParse 2 AnswerType</th>
</tr>
</thead>
<tbody>
<tr>
<td>How much did Marilyn Monroe weigh?</td>
<td>[com.ibm.hutt.Weight]</td>
</tr>
<tr>
<td>How much did the first Barbie cost?</td>
<td>[com.ibm.hutt.Money]</td>
</tr>
</tbody>
</table>

Look at the focus + noun:

<table>
<thead>
<tr>
<th>Question</th>
<th>QParse 2 AnswerType</th>
</tr>
</thead>
<tbody>
<tr>
<td>How many Earth days does it take for Mars to orbit the sun?</td>
<td>[com.ibm.hutt.Duration]</td>
</tr>
</tbody>
</table>

Look at the focus:

<table>
<thead>
<tr>
<th>Question</th>
<th>QParse 2 AnswerType</th>
</tr>
</thead>
<tbody>
<tr>
<td>How many moons does Venus have?</td>
<td>[com.ibm.hutt.WholeNumber]</td>
</tr>
<tr>
<td>How much calcium is in broccoli?</td>
<td>[com.ibm.hutt.Number]</td>
</tr>
</tbody>
</table>

(c) P.Fodor (CS Stony Brook)
Example QParse 2 Answer-type Detection Rules

- Time rule (e.g. when, then):
 Pattern: WHEN VERB OBJ; OBJ VERB THEN
 Example: *When* was the US capitol *built*?

 answerType => ["com.ibm.hutt.Year"]

answerType(_QuestionRoot,FocusList,timeAnswerType,ATList):-
 member(Mod,FocusList),
 lemmaForm(Mod,ModString),
 wh_time(ModString), % "when", "then"
 whadv(Verb,Mod),
 lemmaForm(Verb,VerbString),
 timeTableLookup(VerbString,ATList),!.

(c) P.Fodor (CS Stony Brook)
Example QParse Answer-type Detection Rules

- “How … VERB” rule:
 Pattern: How … VERB?
 Example: “How did Virginia Woolf die?”

answerType(_QuestionRoot,FocusList,howVerb1,ATList):-
 member(Mod,FocusList),
 lemmaForm(Mod,"how"),
 whadv(Verb,Mod),
 lemmaForm(Verb,VerbString),
 howVerbTableLookup(VerbString,ATList), !.
QParse2 Evaluation

- 370 correct matches with the standard (89.5%)
- 343 exact answer-type (83%):

<table>
<thead>
<tr>
<th>Question</th>
<th>QParse 2 AnswerType</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who created the literary character Phineas Fogg?</td>
<td>[com.ibm.hutt.ContentCreator]</td>
</tr>
<tr>
<td>What is the name of the airport in Dallas Ft Worth?</td>
<td>[com.ibm.hutt.Facility]</td>
</tr>
<tr>
<td>What city is Disneyland in?</td>
<td>[com.ibm.hutt.City]</td>
</tr>
<tr>
<td>What color belt is first in karate?</td>
<td>[com.ibm.hutt.Color]</td>
</tr>
</tbody>
</table>

27 of the correct matches were NounPhrase (6.5%):
- one cannot determine the type (unless he already knows the answer of the question)

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>What did Peter Minuit buy for the equivalent of 2400?</td>
</tr>
<tr>
<td>What is the gift for the 20th anniversary?</td>
</tr>
<tr>
<td>What did Ozzy Osbourne bite the head off of?</td>
</tr>
<tr>
<td>What is a word spelled the same backward and forward called?</td>
</tr>
</tbody>
</table>

(c) P.Fodor (CS Stony Brook)
QParse2 Evaluation

- 3 results had a subset of the manually annotated answer types

<table>
<thead>
<tr>
<th>Question</th>
<th>Standard Answer Type</th>
<th>QParse 2 AnswerType</th>
</tr>
</thead>
</table>

- 17 results had extra types than the manually annotated answer types

- 11 results had a superset of the manually annotated answer types

<table>
<thead>
<tr>
<th>Question</th>
<th>Standard Answer Type</th>
<th>QParse 2 AnswerType</th>
</tr>
</thead>
<tbody>
<tr>
<td>How long before bankruptcy is removed from a credit report?</td>
<td>[com.ibm.hutt.Duration]</td>
<td>[com.ibm.hutt.Duration, com.ibm.hutt.Length]</td>
</tr>
<tr>
<td>How long is a quarter in an NBA game?</td>
<td>[com.ibm.hutt.Duration]</td>
<td>[com.ibm.hutt.Duration, com.ibm.hutt.Length]</td>
</tr>
</tbody>
</table>

- 6 results had a super-type of the manually annotated answer types

<table>
<thead>
<tr>
<th>Question</th>
<th>Standard Answer Type</th>
<th>QParse 2 AnswerType</th>
</tr>
</thead>
<tbody>
<tr>
<td>When did International Volunteers Day begin?</td>
<td>[com.ibm.hutt.Year]</td>
<td>[com.ibm.hutt.Date.Time]</td>
</tr>
</tbody>
</table>
QParse2 Evaluation

- 23 results different than the standard:
 - Need for more answer-type detection rules

<table>
<thead>
<tr>
<th>Question</th>
<th>Standard Answer Type</th>
<th>QParse 2 AnswerType</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>com.ibm.hutt.Translation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>com.ibm.hutt.VerbPhrase</td>
<td></td>
</tr>
</tbody>
</table>

- WordNet word sense disambiguation algorithm

- Wrong Parse

<table>
<thead>
<tr>
<th>Question</th>
<th>Standard Answer Type</th>
<th>QParse 2 AnswerType</th>
</tr>
</thead>
<tbody>
<tr>
<td>What 20th century American president died at Warm Springs, Georgia?</td>
<td>[com.ibm.hutt.President]</td>
<td>[com.ibm.hutt.Date]</td>
</tr>
</tbody>
</table>
Results!