
Chapter 12:
Gentzen Sequent Calculus for

Intuitionistic Logic

Part 1: LI System

The proof system LI was published by Gentzen

in 1935 as a particular case of his proof

system LK for the classical logic.

We discussed a version of the original Gentzen’s

system LK in the previous chapter.

We present now the proof system LI and then

we show how it can be extended to the

original Gentzen system LK.

1



Language of LI

We consider the set of all Gentzen sequents
built out of the formulas of our language L
and the additional symbol −→, as defined
in the previous section:

SEQ = { Γ −→∆ : Γ,∆ ∈ F∗ }.

In the intuitionistic logic we deal only with
sequents of the form

Γ −→ ∆,

where ∆ consists of at most one formula.

The intuitionistic sequents are elements of
a following subset IS of the set SEQ of all
sequents.

ISEQ = {Γ −→ ∆ : ∆ consists of at
most one formula }.

2



Axioms of LI consists of any sequent from the

set ISEQ which contains a formula that

appears on both sides of the sequent ar-

row −→, i.e any sequent of the form

Γ1, A,Γ2 −→ A.

Inference rules of LI

The set inference rules is divided into two

groups: the structural rules and the log-

ical rules.

3



Structural Rules of LI

Weakening

(→ weakening)
Γ −→

Γ −→ A

A is called the weakening formula.

4



Contraction

(contr →)
A,A,Γ −→ ∆

A,Γ −→ ∆

A is called the contraction formula.

∆ contains at most one formula.

Exchange

(exchange→)
Γ1, A,B,Γ2 −→ ∆

Γ1, B,A,Γ2 −→ ∆
,

∆ contains at most one formula.

5



Logical Rules of LI

Conjunction rules

(∩ →)
A,B,Γ −→ ∆

(A ∩B),Γ −→ ∆
,

(→ ∩)
Γ −→ A ; Γ −→ B

Γ −→ (A ∩B)
,

Disjunction rules

(→ ∪)1
Γ −→ A

Γ −→ (A ∪B)
,

(→ ∪)1
Γ −→ B

Γ −→ (A ∪B)
,

(∪ →)
A,Γ −→ ∆ ; B,Γ −→ ∆

(A ∪B),Γ −→ ∆
,

∆ contains at most one formula.

6



Implication rules

(→⇒)
A,Γ −→ B

Γ −→ (A⇒ B)
,

(⇒→)
Γ −→ A ; B,Γ −→ ∆

(A⇒ B),Γ −→ ∆
,

∆ contains at most one formula.

Negation rules

(¬ →)
Γ −→ A

¬A,Γ −→
,

(→ ¬)
A,Γ −→
Γ −→ ¬A

.

We define

LI = (L, ISEQ, AL, Structural rules, Log-

ical rules }).

7



LK - Original Gentzen system for the clas-

sical propositional logic.

Language of LK: L = L{¬,∩,∪,⇒}, and E =

SEQ, for

SEQ = {Γ −→∆ : Γ,∆ ∈ F∗}.

Axioms of LK: any sequent of the form

Γ1, A,Γ2 −→ Γ3, A,Γ4.

8



Rules of inference of LK

1. We adopt all rules of LI with no intuition-

istic restriction that the sequence ∆ in the

succedent of the sequence is at most one

formula.

2. We add two structural rules to the system

LI.

We add one more contraction rule:

(→ contr)
Γ −→ ∆, A,A,

Γ −→ ∆, A
,

We add one more exchange rule:

(→ exchange)
∆ −→ Γ1, A,B,Γ2

∆ −→ Γ1, B,A,Γ2
.

9



Observe that they both become obsolete in

LI .

The rules of inference of LK are hence as

follows.

Structural Rules of LK

Weakening

(weakening →)
Γ −→ ∆

A,Γ −→ ∆
,

(→ weakening)
Γ −→

Γ −→ ∆, A
.

A is called the weakening formula.

10



Contraction

(contr →)
A,A,Γ −→ ∆

A,Γ −→ ∆
,

(→ contr)
Γ −→ ∆, A,A,

Γ −→ ∆, A
,

A is called the contraction formula.

Exchange

(exchange→)
Γ1, A,B,Γ2 −→ ∆

Γ1, B,A,Γ2 −→ ∆
,

(→ exchange)
∆ −→ Γ1, A,B,Γ2

∆ −→ Γ1, B,A,Γ2
.

11



Logical Rules of LK

Conjunction rules

(∩ →)
A,B,Γ −→ ∆

(A ∩B),Γ −→ ∆
,

(→ ∩)
Γ −→∆, A ; Γ −→∆, B∆

Γ −→ ∆, (A ∩B)
.

Disjunction rules

(→ ∪)
Γ −→ ∆, A,B

Γ −→ ∆, (A ∪B)
,

(∪ →)
A,Γ −→ ∆ ; B,Γ −→ ∆

(A ∪B),Γ −→ ∆
.

12



Implication rules

(−→⇒)
A,Γ −→ ∆, B

Γ −→ ∆, (A⇒ B)
,

(⇒−→)
Γ −→ ∆, A ; B,Γ −→ ∆

(A⇒ B),Γ −→ ∆
.

Negation rules

(¬ −→)
Γ −→ ∆, A

¬A,Γ −→ ∆
,

(−→ ¬)
A,Γ −→ ∆

Γ −→ ∆,¬A
.

We define formally LK = (L, , SEQ, AL, Struc-

tural rules, Logical rules ).

13



PART 2: Examples of proof search decom-

position trees in LI

Search for proofs in LI is a much more com-

plicated process then the one in classical

logic systems RS or GL.

Proof search procedure consists of building

the decomposition trees.

Remark 1: in RS the decomposition tree TA

of any formula A is always unique.

14



Remark 2: in GL the ”blind search” defines,
for any formula A a finite number of de-
composition trees, but it can be proved
that the search can be reduced to examin-
ing only one of them, due to the absence
of structural rules.

Remark 3: In LI the structural rules play a vi-
tal role in the proof construction and hence,
in the proof search.

The fact that a given decomposition tree ends
with an axiom leaf does not always imply
that the proof does not exist. It might
only imply that our search strategy was not
good.

The problem of deciding whether a given for-
mula A does, or does not have a proof in
LI becomes more complex then in the case
of Gentzen system for classical logic.

15



Example 1

Determine whether

`LI −→ A

for A = ((¬A ∩ ¬B)⇒ ¬(A ∪B)).

If we find a decomposition tree such that all

its leaves are axiom, we have a proof.

If all possible decomposition trees have a non-

axiom leaf, proof of A in LI does not exist.

16



Consider the following decomposition tree

T1A

−→ ((¬A ∩ ¬B)⇒ (¬(A ∪B))

| (−→⇒)

(¬A ∩ ¬B) −→ ¬(A ∪B)

| (−→ ¬)

(A ∪B), (¬A ∩ ¬B) −→
| (exch −→)

(¬A ∩ ¬B), (A ∪B) −→
| (∩ −→)

¬A,¬B, (A ∪B) −→
| (¬ −→)

¬B, (A ∪B) −→ A

| (−→ weak)

¬B(A ∪B) −→
| (¬ −→)

(A ∪B) −→ B∧
(∪ −→)

A −→ B

non− axiom

B −→ B

axiom

17



The tree T1A has a non-axiom leaf, so it

does not constitute a proof in LI.

Observe that the decomposition tree in LI is

not always unique.

Hence this fact does not yet prove that proof

doesn’t exist.

18



Let’s consider now the following tree

T2A

−→ ((¬A ∩ ¬B)⇒ (¬(A ∪B))

| (−→⇒)

(¬A ∩ ¬B) −→ ¬(A ∪B)

| (−→ ¬)

(A ∪B), (¬A ∩ ¬B) −→

| (exch −→)

(¬A ∩ ¬B), (A ∪B) −→

| (∩ −→)

¬A,¬B, (A ∪B) −→

| (exch −→)

¬A, (A ∪B),¬B −→

| (exch −→)

(A ∪B),¬A,¬B −→∧
(∪ −→)

19



A,¬A,¬B −→

| (exch −→)

¬A,A,¬B −→

| (¬ −→)

A,¬B −→ A

axiom

B,¬A,¬B −→

| (exch −→)

B,¬B,¬A −→

| (exch −→)

¬B,B,¬A −→

| (¬ −→)

B,¬A −→ B

axiom

All leaves of T2A are axioms, what proves

that T2A is a proof of A.

Hence we proved that

((¬A ∩ ¬B)⇒ ¬(A ∪B)).



Example 2: Proof that

Part 1

`LI −→ (A⇒ ¬¬A),

Part 2

6 `LI −→ (¬¬A⇒ A).

Solution of Part 1: We construct some, or

all decomposition trees of

−→ (A⇒ ¬¬A).

The tree that ends with all axioms leaves is

a proof of (A⇒ ¬¬A) in LI.

20



Consider the following decomposition tree of

−→ A, for A = (A⇒ ¬¬A)..

TA

−→ (A⇒ ¬¬A).

| (−→⇒)

A −→ ¬¬A

| (−→ ¬)

¬A,A −→

| (¬ −→)

A −→ A

axiom

All leaves of TA are axioms what proves that

TA is a proof of −→ (A⇒ ¬¬A).

We don’t need to construct other decom-

position trees.

21



Solution of Part 2: in order to prove that

6 `LI −→ (¬¬A⇒ A)

we have to construct all decomposition trees

of

(−→ A⇒ ¬¬A)

and show that each of them has an non-

axiom leaf.

22



Decomposition trees construction is as fol-

lows.

T1A

−→ (¬¬A⇒ A)

| (−→⇒)

one of 2 choices

¬¬A −→ A

| (−→ weak)

one of 2 choices

¬¬A −→

| (¬ −→)

one of 2 choices

−→ ¬A

| (−→ ¬)

one of 2 choices

A −→

non− axiom

23



Another tree is:

T2A

−→ (¬¬A⇒ A)

| (−→⇒)

one of 2 choices

¬¬A −→ A
]

| (contr −→)

second of 2 choices

¬¬A,¬¬A −→ A

| (−→ weak)

first of 2 choices

¬¬A,¬¬A −→
| (¬ −→)

first of 2 choices

¬¬A −→ ¬A
| (−→ ¬)

the only choice

A,¬¬A −→
| (exch −→)

the only choice

¬¬A,A −→

24



| (−→ ¬)

the only choice

A −→ ¬A

| (−→ ¬)

first of 2 choices

A,A −→

non− axiom



We can see from the above decomposition trees

that the ”blind” construction of all possi-

ble trees only leads to more complicated

trees.

This is due to the presence of structural rules.

Observe that the ”blind” application of the

rule (contr →) gives an infinite number of

decomposition trees.

In order to decide that none of them will pro-

duce a proof we need some extra knowl-

edge about patterns of their construction,

or just simply about the number useful of

application of structural rules within the

proofs.

25



In this case we can just make an ”external”

observation that the our first tree T1A is

in a sense a minimal one; that all other

trees would only complicate this one in an

inessential way, i.e. we will never produce

a tree with all axioms leaves.

One can formulate a deterministic procedure

giving a finite number of trees, but the

proof of its correctness require some extra

knowledge.

Within the scope of this book we accept the

”external” explanation as a sufficient solu-

tion, provided it is correct.

26



As we can see from the above examples struc-

tural rules and especially the (contr −→)

rule complicates the proof searching task.

Both Gentzen type proof systems RS and

GL from the previous chapter don’t con-

tain the structural rules.

They also are complete with respect to clas-

sical semantics.

The original Gentzen system LK which does

contain the structural rules is also com-

plete.

27



Hence, all three classical proof system RS,

GL, LK are equivalent.

This proves that the structural rules can be

eliminated from the system LK.

A natural question of elimination of structural

rules from the intutionistic Gentzen system

LI arizes.

The following example illustrates the nega-

tive answer.

28



Example 3 We know, by the theorem about

the connection between classical and in-

tuitionistic logic and corresponding Com-

pleteness Theorems that

For any formula A ∈ F,

|= A if and only if `I ¬¬A,

|= A means that A is a classical tautology,

`I means that A is intutionistically provable,

i.e. is provable in any intuitionistically com-

plete proof system.

The system LI is intuitionistically complete,

so we have that for any formula A,

|= A if and only if `LI ¬¬A.

29



Obviously |= (¬¬A⇒ A), so we know that

¬¬(¬¬A⇒ A)

must have a proof in LI.

We are going to prove the structural rule

(contr −→)

is essential to the existence of its proof.

The formula ¬¬(¬¬A⇒ A) is not provable in

LI without the rule (contr −→).

The following decomposition tree is a proof

of A = ¬¬(¬¬A⇒ A) in LI.

30



TA

−→ ¬¬(¬¬A⇒ A)

| (−→ ¬)

one of 2 choices

¬(¬¬A⇒ A) −→

| (contr −→)

one of 2 choices

¬(¬¬A⇒ A),¬(¬¬A⇒ A) −→

| (¬ −→)

one of 2 choices

¬(¬¬A⇒ A) −→ (¬¬A⇒ A)

| (−→⇒)

one of 3 choices

¬(¬¬A⇒ A),¬¬A −→ A

| (−→ weak)

one of 2 choices

¬(¬¬A⇒ A),¬¬A −→

| (exch −→)

one of 3 choices

¬¬A,¬(¬¬A⇒ A) −→

| (¬ −→)

31



one of 3 choices

¬(¬¬A⇒ A) −→ ¬A

| (−→ ¬)

one of 3 choices

A,¬(¬¬A⇒ A) −→

| (exch −→)

one of 2 choices

¬(¬¬A⇒ A), A −→

| (¬ −→)

one of 3 choices

A −→ (¬¬A⇒ A)

| (−→⇒)

one of 3 choices

¬¬A,A −→ A

axiom



Assume now that the rule (contr −→) is not

available.

All possible decomposition trees are as fol-

lows.

T1A

−→ ¬¬(¬¬A⇒ A)

| (−→ ¬)

one of 2 choices

¬(¬¬A⇒ A) −→
| (¬ −→)

only one choice

−→ (¬¬A⇒ A)

| (−→⇒)

one of 2 choices

¬¬A −→ A

| (−→ weak)

only one choice

¬¬A −→
| (¬ −→)

32



only one choice

−→ ¬A

| (−→ ¬)

one of 2 choices

A −→

non− axiom



Next one is

T2A

−→ ¬¬(¬¬A⇒ A)

| (−→ weak)

second of 2 choices

−→

non− axiom

33



And the next is

T3A

−→ ¬¬(¬¬A⇒ A)

| (−→ ¬)

¬(¬¬A⇒ A) −→

| (¬ −→)

−→ (¬¬A⇒ A)

| (−→ weak)

second of 2 choices

−→

non− axiom

34



And the last one is

T4A

−→ ¬¬(¬¬A⇒ A)

| (−→ ¬)

¬(¬¬A⇒ A) −→
| (¬ −→)

−→ (¬¬A⇒ A)

| (−→⇒)
]

¬¬A −→ A

| (−→ weak)

only one choice

¬¬A −→
| (¬ −→)

only one choice

−→ ¬A
| (−→ weak)

second of 2 choices

−→
non− axiom

This proves that the formula ¬¬(¬¬A ⇒ A)
is not provable in LI without (contr −→)
rule, i.e. that this rule can’t be eliminated.

35



PART 3: Proof Search Heuristics

Before we define a heuristic method of search-

ing for proof in LI let’s make some obser-

vations.

Observation 1 : the logical rules of LI are

similar to those in Gentzen type classical

formalizations we examined in previous chap-

ters in a sense that each of them introduces

a logical connective.

Observation 2 : The process of searching for

a proof is hence a decomposition process

in which we use the inverse of logical and

structural rules as decomposition rules.

36



For example the implication rule:

(→⇒)
A,Γ −→ B

Γ −→ (A⇒ B)

becomes an implication decomposition rule

(we use the same name (→⇒) in both cases)

(→⇒)
Γ −→ (A⇒ B)

A,Γ −→ B
.

Observation 3 : we write our proofs in a form

of trees, instead of sequences of expres-

sions, so the proof search process is a pro-

cess of building a decomposition tree.

37



To facilitate the process we write the decom-

position rules in a ”tree ” form. For exam-

ple the the above implication decomposi-

tion rule is written as follows

Γ −→ (A⇒ B)

| (→⇒)

A,Γ −→ B.

The two premisses implication rule (⇒→) writ-

ten as the tree decomposition rule becomes

(A⇒ B),Γ −→∧
(⇒→)

Γ −→ A B,Γ −→

38



Observation 4 : we stop the decomposition

process when we obtain an axiom or inde-

composable leaf. The indecomposable leaf

is a sequent built from indecomposable for-

mulas only, i.e. formulas that do not con-

tain logical connectives (positive literals).

Observation 5 : Our goal while constructing

the decomposition tree is to obtain axiom

or indecomposable leaves. With respect

to this goal the use logical decomposition

rules has a priority over the use of the

structural rules and we use this information

while describing the proof search heuristic.

Observation 6 : all logical decomposition rules

(◦ →), where ◦ denotes any connective,

must have a formula we want to decom-

pose as the first formula at the decompo-

sition node.

39



When we decompose a formula ◦A, the node

must have a form ◦A,Γ −→ ∆. Some-

times it is necessary to decompose a for-

mula within the sequence Γ first in order

to find a proof.

For example, consider two nodes

n1 = ¬¬A, (A ∩B) −→ B

and

n2 = (A ∩B),¬¬A −→ B.

We are going to see that the results of de-

composing n1 and n2 differ dramatically.

40



We decompose the node n1.

Observe that the only way to be able to de-

compose the formula ¬¬A is to use the rule

(→ weak) first.

The two possible decomposition trees that

starts at the node n1 are as follows.

T1n1

¬¬A, (A ∩B) −→ B

| (→ weak)

¬¬A, (A ∩B) −→
| (¬ →)

(A ∩B) −→ ¬A
| (∩ →)

A,B −→ ¬A
| (→ ¬)

A,A,B −→
non− axiom

41



Next tree is

T2n1

¬¬A, (A ∩B) −→ B

| (→ weak)

¬¬A, (A ∩B) −→

| (¬ →)

(A ∩B) −→ ¬A

| (→ ¬)

A, (A ∩B) −→

| (∩ →)

A,A,B −→

non− axiom

Now we decompose the node n2.

Observe that following Observation 5 we start

by decomposing the formula (A∩B) by the

use of the rule (∩ →) first.

42



A decomposition tree that starts at the node

n2 is as follows.

Tn2

(A ∩B),¬¬A −→ B

| (∩ →)

A,B,¬¬A −→ B

axiom

This proves that the node n2 is provable in

LI, i.e.

`LI (A ∩B),¬¬A −→ B.

43



Of course, we have also that the node n1 is

also provable in LI, as one can obtain the

node n2 from it by the use of the rule

(exch→).

Observation 7: the use of structural rules are

important and necessary while we search

for proofs. Nevertheless we have to use

them on the ”must” basis and set up some

guidelines and priorities for their use.

For example, use of weakining rule discharges

the weakening formula, and hence an infor-

mation that may be essential to the proof.

We should use it only when it is absolutely

necessary for the next decomposition steps.

44



Hence, the use of weakining rule (→ weak)

can, and should be restricted to the cases

when it leads to possibility of the use of

the negation rule (¬ →).

In the case of the decomposition tree T1n1

we used it as an necessary step, but still

it discharged too much information and we

didn’t get a proof, when proof of the node

existed.

In fact, the first rule in our search should have

been the exchange rule, followed by the

conjunction rule (no information discharge!)

not the weakening (discharge of informa-

tion) followed by negation rule.

45



The full proof of the node n1 is the follow-

ing.

T3n1

¬¬A, (A ∩B) −→ B

| (exch −→)

T2A

(A ∩B),¬¬A −→ B

(A ∩B),¬¬A −→ B

| (∩ →)

A,B,¬¬A −→ B

axiom

As a result of the observations 1- 7 we adopt

the following heuristics for proof search in

LI.

46



Decomposition Tree Generation rules.

1. Use first logical decomposition rules where
applicable without the use of (→ weak).

2. Use (exch →) rule to decompose as many
formulas on the left side of −→ as possible.

3. Use (→ weak) only on a ”must” basis in
connection with (¬ →).

4. Use (contr →) rule as the last recourse and
only to formulas that contain ¬ or ⇒ as
connectives.

5. Within the process use (contr →) rule only a
finite number of times, no more times that
number of all sub-formulas of the formula
you are building the tree for.

47


