
Chapter 9
Completeness Theorem Proofs

We consider a sound proof system (under clas-

sical semantics)

S = ( L{⇒,¬}, AL, MP ),

such that the formulas listed below are prov-

able in S.

1. (A⇒ (B ⇒ A)),

2. ((A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))),

3. ((¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B)),
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4. (A⇒ A),

5. (B ⇒ ¬¬B),

6. (¬A⇒ (A⇒ B)),

7. (A⇒ (¬B ⇒ ¬(A⇒ B))),

8. ((A⇒ B)⇒ ((¬A⇒ B)⇒ B)),

9. ((¬A⇒ A)⇒ A),

We present here two proofs of the following

theorem.
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Completeness Theorem For any formula A

of S,

|= A if and only if `S A.

OBSERVATION 1 All the above formulas have
proofs in the system H2 and the system
H2 is sound, hence the Completeness The-
orem for the system S implies the com-
pleteness of the system H2.

OBSERVATION 2 We have assumed that
the system S is sound, i.e. that the follow-
ing theorem holds for S.

Soundness Theorem

For any formula A of S,

if `S A, then |= A.
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It means that in order to prove the Com-

pleteness Theorem we need to prove only

the following implication.

For any formula A of S,

If |= A, then `S A.

Both proofs of the Completeness Theorem re-

lay strongly of the Deduction Theorem, as

discussed and proved in the previous chap-

ter.
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Deduction theorem was proved for the sys-

tem H1 that is different that S, but all for-

mulas that were used in its proof are prov-

able in S, so it is valid for S as well, as it

was for the system H2, i.e. the following

theorem holds.

Deduction Theorem for S

For any formulas A, B of S and Γ be any

subset of formulas of S,

Γ, A `S B if and only if Γ `S (A⇒ B).
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It is possible to prove the Completeness The-
orem independently from the Deduction The-
orem and we will present two of such a
proof in later chapters.

The first proof presented here is similar in its
structure to the proof of the deduction the-
orem and is due to Kalmar, 1935.

It shows how one can use the assumption
that a formula A is a tautology in order
to construct its formal proof. It is hence
called a proof - construction method.

The second proof is a proof of the equiva-
lent opposite implication to the Complete-
ness part, i.e. we show how one can deduce
that a formula A is not a tautology from
the fact that it does not have a proof. It is
hence called a counter-model construc-
tion method.
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Completeness Theorem

A Proof - Construction Method

We first present one definition and prove one

lemma.

We write ` A instead of `S A, as the sys-

tem S is fixed.

Definition Let A be a formula and b1, b2, ..., bn

be all propositional variables that occur in

A.

Let v be variable assignment v : V AR −→
{T, F}.
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DEFINITION 1

We define, for A, b1, b2, ..., bn and v a corre-

sponding formulas A′, B1, B2, ..., Bn as fol-

lows:

A′ =

{
A if v∗(A) = T
¬A if v∗(A) = F

Bi =

{
bi if v(bi) = T
¬bi if v(bi) = F

for i = 1,2, ..., n.
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Example 1: let A be a formula (a⇒ ¬b).

Let v be such that

v(a) = T, v(b) = F.

In this case: b1 = a, b2 = b, and v∗(A) =

v∗(a⇒ ¬b) = v(a)⇒ ¬v(b)= T ⇒ ¬F = T.

The corresponding A′, B1, B2 are:

A′ = A (as v∗(A) = T ),

B1 = a (as v(a) = T ),

B2 = ¬b (as v(b) = F ).
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Example 2

Let A be a formula

((¬a⇒ ¬b)⇒ c)

and let v be such that

v(a) = T, v(b) = F, v(c) = F.

Evaluate A′, B1, ...Bn as defined by the defi-

nition 1.
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In this case n = 3 and

b1 = a, b2 = b, b3 = c,

and we evaluate

v∗(A) = v∗((¬a⇒ ¬b)⇒ c) =

((¬v(a)⇒ ¬v(b))⇒ v(c)) =

((¬T ⇒ ¬F )⇒ F ) = (T ⇒ F ) = F.
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The corresponding A′, B1, B2, B2 are:

A′ = ¬A = ¬((¬a⇒ ¬b)⇒ c)

as v∗(A) = F ,

B1 = a (as v(a) = T ),

B2 = ¬b (as v(b) = F ).

B3 = ¬c (as v(c) = F ).
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The lemma stated below describes a method

of transforming a semantic notion of a tau-

tology into a syntactic notion of provability.

It defines, for any formula A and a variable

assignment v a corresponding deducibility

relation.

MAIN LEMMA For any formula A and a vari-

able assignment v, if A
′
, B1 , B2, ..., Bn are

corresponding formulas defined by our def-

inition, then

B1, B2, ..., Bn ` A′.
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Example 3 Let A, v be as defined by the Ex-

ample 1, then the Lemma asserts that

a,¬b ` (a⇒ ¬b).

Example 4 Let A, v be as defined in Example

2, then the lemma asserts that

a,¬b,¬c ` ¬((¬a⇒ ¬b)⇒ c)
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Proof of the MAIN LEMMA The proof is

by induction on the degree of A i.e. a num-

ber n of logical connectives in A.

Case: n = 0

In the case that n = 0 A is atomic and so

consists of a single propositional variable,

say a.

Clearly, if v∗(A) = T then we A′ = A = a,

B1 = a.

We obtain that

a ` a

by the Deduction Theorem and the fact

that ` (A⇒ A), i.e. also ` (a⇒ a).
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In case when v∗(A) = F we have that

A′ = ¬A = ¬a,

B1 = ¬a, .

We obtain that

¬a ` ¬a

also by the Deduction Theorem and as-

sumption ` (A⇒ A) in S.

This proves that Lemma holds for n = 0
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Now assume that the lemma holds for any A

with j < n connectives.

Prove: lemma holds for A with n connectives.

There are several subcases to deal with.
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Case: A is ¬A1

If A is of the form ¬A1 then A1 has less

then n connectives.

By the inductive assumption we have the for-

mulas

A
′
1, B1, B2, ..., Bn

corresponding to the A1 and the proposi-

tional variables b1, b2, ..., bn in A1, such that

B1, B2, ..., Bn ` A
′
1

Observe, that the formulas A and ¬A1 have

the same propositional variables.

So the corresponding formulas B1 , B2, ...,

Bn are the same for both of them.
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We are going to show that the inductive as-

sumption allows us to prove that the lemma

holds for A, ie. that

B1, B2, ..., Bn ` A
′
.

There two cases to consider.

Case: v∗(A1) = T

If v∗(A1) = T then by definition

A
′
1 = A1

and by the inductive assumption

B1, B2, ..., Bn ` A1

.
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In this case: v∗(A) = v∗(¬A1) = ¬v∗(A1) =

¬T = F

So we have that A
′
= ¬A = ¬¬A1.

Since we have assumed about S that

` (A1 ⇒ ¬¬A1)

we obtain by the monotonicity that also

B1, B2, ..., Bn ` (A1 ⇒ ¬¬A1).
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By inductive assumption and Modus Ponens
we have that also

B1, B2, ..., Bn ` ¬¬A1,

and as A
′
= ¬A = ¬¬A1 we get

B1, B2, ..., Bn ` ¬A,

B1, B2, ..., Bn ` A
′
.

Case: v∗(A1) = F

If v∗(A1) = F then A
′
1 = ¬A1 and v∗(A) = T

so A
′
= A.

Therefore by the inductive assumption we have
that

B1, B2, ..., Bn ` ¬A1

that is (as A = ¬A1 and A
′
= A)

B1, B2, ..., Bn ` A
′
.
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Case: A is (A1 ⇒ A2)

If A is (A1 ⇒ A2) then A1 and A2 have less

than n connectives.

By the inductive assumption and monotonic-

ity we have

B1, B2, ..., Bn ` A1
′

and

B1, B2, ..., Bn ` A2
′
,

where B1, B2, ..., Bn are formulas correspond-

ing to the propositional variables in A.

Now we have the following subcases to con-

sider.
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Case: v∗(A1) = v∗(A2) = T

If v∗(A1) = T then A1
′

is A1 and if v∗(A2) = T

then A2
′

is A2.

We also have v∗(A1 ⇒ A2) = T and so A
′

is (A1 ⇒ A2).

By the above and the inductive assumption,

B1, B2, ..., Bn ` A2 and since we have as-

sumed about S that ` (A2 ⇒ (A1 ⇒ A2)),

we have by monotonicity and Modus Ponens,

that B1, B2, ..., Bn ` (A1 ⇒ A2), that is

B1, B2, ..., Bn ` A
′
.
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Case: v∗(A1) = T, v∗(A2) = F

If v∗(A1) = T then A1
′
= A1 and

if v∗(A2) = F then A2
′
= ¬A2.

Also we have in this case v∗(A1 ⇒ A2) = F

and so A
′
= ¬(A1 ⇒ A2).

By the above and the inductive assumption,

therefore, B1, B2, ..., Bn ` ¬A2. Since we

have assumed ` (A1 ⇒ (¬A2 ⇒ ¬(A1 ⇒
A2))) , we have by monotonicity and Modus

Ponens twice, that B1, B2, ..., Bn ` ¬(A1 ⇒
A2), that is

B1, B2, ..., Bn ` A
′
.
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Case: v∗(A1) = F

If v∗(A1) = F then A1
′

= ¬A1 and, whatever

value v gives A2, we have that v∗(A1 ⇒
A2) = T and so A

′
= (A1 ⇒ A2).

Therefore,

B1, B2, ..., Bn ` ¬A1

and since ` (¬A1 ⇒ (A1 ⇒ A2)), by mono-

tonicity and Modus Ponens we get that

B1, B2, ..., Bn ` (A1 ⇒ A2),

that is

B1, B2, ..., Bn ` A
′
.
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With that we have covered all cases and, by

induction on n, the proof of the lemma is

complete.

Proof of the Completeness Theorem

Assume that |= A.

Let b1, b2, ..., bn be all propositional variables

that occur in A, i.e. A = A(b1, b2, ..., bn).

By the lemma we know that, for any variable

assignment v, the corresponding formulas

A
′
, B1 , B2, ..., Bn can be found such that

B1, B2, ..., Bn ` A
′

.
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Note here that A
′

of the definition is A for
any v since |= A.

Hence, if v is such that v(bn) = T , then Bn

is bn and

B1, B2, ..., bn ` A.

If w is such that w(bn) = F , then Bn is ¬bn
and by the lemma

B1, B2, ...,¬bn ` A.

So, by the Deduction Theorem, we have

B1, B2, ..., Bn−1 ` (bn ⇒ A)

and

B1, B2, ..., Bn−1 ` (¬bn ⇒ A).
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By monotonicity and assumed formula 9

`S ((A⇒ B)⇒ ((¬A⇒ B)⇒ B))

we have that
B1, B2, ..., Bn−1 ` ((bn ⇒ A) ⇒ ((¬bn ⇒
A)⇒ A)).

Applying Modus Ponens twice we get that
B1, B2, ..., Bn−1 ` A.

Similarly, v∗(Bn−1) may be T or F, and,
again applying Deduction Theorem, mono-
tonicity, and `S ((A⇒ B)⇒ ((¬A⇒ B)⇒
B)) , and Modus Ponens twice we can elim-
inate Bn−1 just as we eliminated Bn.

After n steps, we finally obtain proof of A in
S, i.e. we have that

` A.
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Observe that our proof of the fact that ` A

is a constructive one. Moreover, we have

used in it only Main Lemma and Deduction

Theorem which both have a constructive

proofs.

We can hence reconstruct proofs in each case

when we apply these theorems back to the

original axioms A1 − A3 of H2. The same

applies to the proofs in H2 of all formulas

1 -9 of the system S.

It means that for any A, such that |= A, each

v restricted to A provides us the method of

a construction of the formal proof of A in

H2, or in any system S in which formulas

1 -9 are provable.
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EXAMPLE As an example of how the Com-
pleteness Theorem proof works, we con-
sider the case in which A is a tautology

(a⇒ (¬a⇒ b))

and show how the construction described
in the Proof 1 works; i.e how we construct
the proof of A.

Step 1. We apply Main Lemma to all differ-
ent variable assignments for A. We have 4
cases to consider. As |= A in all cases we
have that A

′
= A.

Case 1: v(a) = T, v(b) = T .
In this case B1 = a,B2 = b and, as in all
cases A

′
= A.

By the Main Lemma,

a, b ` (a⇒ (¬a⇒ b)).
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Case 2: v(a) = T, v(b) = F .

In this case B1 = a,B2 = ¬b, A
′

= A and

by the Main Lemma,

a,¬b ` (a⇒ (¬a⇒ b)).

Case 3: v(a) = F, v(b) = T .

In this case B1 = ¬a,B2 = b, A
′

= A and

by the Main Lemma,

¬a, b ` (a⇒ (¬a⇒ b)).

Case 4: v(a) = F, v(b) = F .

In this case B1 = ¬a,B2 = ¬b, A
′

= A and

by the Main Lemma,

¬a,¬b ` (a⇒ (¬a⇒ b)).
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We apply Deduction Theorem on formulas

b,¬b to all the cases 1-4. This is the case

of Bn elimination in the Proof 1.

D1 (Cases 1 and 2)

a ` (b⇒ (a⇒ (¬a⇒ b))),

a ` (¬b⇒ (a⇒ (¬a⇒ b))),

D2 (Cases 3 and 4)

¬a ` (b⇒ (a⇒ (¬a⇒ b))),

¬a ` (¬b⇒ (a⇒ (¬a⇒ b))).
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By the monotonicity and proper substitution

of the formula 8 we have that

a ` ((b⇒ (a⇒ (¬a⇒ b)))

⇒ ((¬b ⇒ (a ⇒ (¬a ⇒ b))) ⇒ (a ⇒ (¬a ⇒
b))),

¬a ` ((b⇒ (a⇒ (¬a⇒ b)))

⇒ ((¬b ⇒ (a ⇒ (¬a ⇒ b))) ⇒ (a ⇒ (¬a ⇒
b))).

Applying Modus Ponens twice to D1, D2 and

these above, respectively, gives us

a ` (a⇒ (¬a⇒ b)) and

¬a ` (a⇒ (¬a⇒ b)).
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Applying the Deduction Theorem to the above

we obtain

D3 ` (a⇒ (a⇒ (¬a⇒ b))) and

D4 ` (¬a⇒ (a⇒ (¬a⇒ b))).

Applying Modus Ponens twice to D3 and D4

and the following form of formula 8,

` ((a⇒ (a⇒ (¬a⇒ b)))

⇒ ((¬a ⇒ (a ⇒ (¬a ⇒ b))) ⇒ (a ⇒ (¬a ⇒
b))))

we get finally that

` (a⇒ (¬a⇒ b)).
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Completeness Theorem: Proof 2
A Counter- Model Existence

Method

We prove now the Completeness Theorem by
proving the opposite implication:

If 6` A, then 6|= A

We will show now how one can define of a
counter-model for A from the fact that A

is not provable.

This means that we deduce that a formula
A is not a tautology from the fact that it
does not have a proof.

We hence call it a a counter-model exis-
tence method.
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The construction of a counter-model for any

non-provable A is much more general (and

less constructive) then in the case of our

first proof.

It can be generalized to the case of predi-

cate logic, and many of non-classical log-

ics; propositional and predicate.

It is hence a much more general method then

the first one and this is the reason we present

it here.
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We remind that 6|= A means that there is

a variable assignment v : V AR −→ {T, F},
such that v∗(A) 6= T , i.e. in classical se-

mantics that v∗(A) = F . a Such v is called

a counter-model for A, hence the proof

provides a counter-model construction method.

Since we assume that A does not have a proof

in S ( 6` A) the method uses this informa-

tion in order to show that A is not a tautol-

ogy, i.e. to define v such that v∗(A) = F .

We also have to prove that all steps in that

method are correct. This is done in the

following steps.
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Step 1: Definition of ∆∗

We use the information 6` A to define a spe-

cial set ∆∗, such that ¬A ∈∆∗.

Step 2: Counter - model definition

We define the variable assignment v : V AR −→
{T, F} as follows:

v(a) =

{
T if ∆∗ ` a
F if ∆∗ ` ¬a.
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Step 3: Prove that v is a counter-model

We first prove a more general property, namely

we prove that the set ∆∗ and v defined in

the steps 1 and 2, respectively, are such

that for every formula B ∈ F,

v∗(B) =

{
T if ∆∗ ` B
F if ∆∗ ` ¬B.

Then we use the Step 1 to prove that

v∗(A) = F .

The definition and the properties of the set

∆∗, and hence the Step 1, are the most

essential for the proof.

The other steps have only technical character.
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The main notions involved in this step are:

consistent set, complete set and a con-

sistent complete extension of a set.

We are going now to introduce them and to

prove some essential facts about them.

Consistent and Inconsistent Sets

There exist two definitions of consistency; se-

mantical and syntactical.
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Semantical definition uses the notion of a model

and says:

a set is consistent if it has a model.

Syntactical definition uses the notion of prov-

ability and says:

a set is consistent if one can’t prove a

contradiction from it.

In our proof of the Completeness Theorem

we use assumption that a given formula A

does not have a proof to deduce that A is

not a tautology.

We hence use the following syntactical defi-

nition of consistency.
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Consistent set

We say that a set ∆ ⊆ F of formulas is con-

sistent if and only if there is no a formula

A ∈ F such that

∆ ` A and ∆ ` ¬A.

Inconsistent set

A set ∆ ⊆ F is inconsistent if and only if

there is a formula A ∈ F such that ∆ ` A

and ∆ ` ¬A.

The notion of consistency, as defined above,

is characterized by the following lemma.
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LEMMA: Consistency Condition

For every set ∆ ⊆ F of formulas, the following

conditions are equivalent:

(i) ∆ is consistent,

(ii) there is a formula A ∈ F such that ∆ 6` A.
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Proof: The implications:

(i) ∆ is consistent, implies

(ii) there is a formula A ∈ F such that ∆ 6` A

and vice-versa are proved by showing the

corresponding opposite implications.

I.e. to establish the equivalence of (i) and

(ii), we first show that

Case 1: not (ii) implies not (i), and then

that

Case 2: not (i) implies not (ii).
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Case 1

Assume that not (ii).

It means that for all formulas A ∈ F we

have that ∆ ` A.

In particular it is true for a certain A = B

and A = ¬B and hence it proves that ∆ is

inconsistent,

i.e. not (i) holds.
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Case 2

Assume that not (i), i.e that ∆ is inconsis-

tent.

Then there is a formula A such that ∆ ` A

and ∆ ` ¬A.

Let B be any formula. Since (¬A⇒ (A⇒ B))

is provable in S (formula 6),

hence by monotonicity and applying Modus

Ponens twice and by detaching from it ¬A
first, and A next, we obtain a formal proof

of B from the set ∆.

This proves that ∆ ` B for any formula B.

Thus not (ii).
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The inconsistent sets are hence characterized

by the following fact.

LEMMA: Inconsistency Condition

For every set ∆ ⊆ F of formulas, the following

conditions are equivalent:

(i) ∆ is inconsistent,

(ii) for all formulas A ∈ F, ∆ ` A.
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We remind here the property of the finiteness

of the consequence operation.

LEMMA: Finite Consequence

For every set ∆ of formulas and for every

formula A ∈ F,

∆ ` A if and only if there is a finite subset

∆0 ⊆∆ such that ∆0 ` A.

Proof:

If ∆0 ` A for a certain ∆0 ⊆∆,
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then by the monotonicity of the consequence,

also ∆ ` A.

Assume now that ∆ ` A and let

A1, A2, ..., An

be a formal proof of A from ∆.

Let ∆0 = {A1, A2, ..., An} ∩∆.

Obviously, ∆0 is finite and A1, A2, ..., An is a

formal proof of A from ∆0.
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The following theorem is a simply corollary of

the above Finite Consequence Lemma.

Finite Inconsistency THEOREM

1. If a set ∆ is inconsistent, then there is a

finite subset ∆0 ⊆∆ which is inconsistent.

It follows therefore from that

2. if every finite subset of a set ∆ is consistent,

then the set ∆ is also consistent.

Proof:

If ∆ is inconsistent, then for some formula A,

∆ ` A and ∆ ` ¬A.
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By the Finite Consequence Lemma , there are

finite subsets ∆1 and ∆2 of ∆ such that

∆1 ` A and ∆2 ` ¬A.

By monotonicity, the union ∆1 ∪∆2 is a

finite subset of ∆, such that

∆1 ∪∆2 ` A and ∆1 ∪∆2 ` ¬A.

Hence ∆1 ∪ ∆2 is a finite inconsistent

subset of ∆.

The second implication is the opposite to the

one just proved and hence also holds.
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The following lemma links the notion of non-

provability and consistency.

It will be used as an important step in our

proof of the Completeness Theorem.

LEMMA

For any formula A ∈ F,

if 6` A, then the set {¬A} is consistent.

Proof: If {¬A} is inconsistent, then by the

Inconsistency Condition Lemma we have

{¬A} ` A.
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{¬A} ` A and the Deduction Theorem imply

` (¬A⇒ A).

Applying the Modus Ponens rule to (¬A⇒ A)

and assumed provable formula 9

((¬A⇒ A)⇒ A),

we get that ` A, contrary to the assumption

of the lemma.
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Complete and Incomplete Sets

Another important notion, is that of a com-

plete set of formulas. Complete sets, as

defined here are sometimes called maxi-

mal, but we use the first name for them.

They are defined as follows.

Complete set

A set ∆ of formulas is called complete if

for every formula A ∈ F,

∆ ` A or ∆ ` ¬A.

The complete sets are characterized by the

following fact.
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Complete Set Condition Lemma

For every set ∆ ⊆ F of formulas, the fol-
lowing conditions are equivalent:

(i) ∆ is complete,

(ii) for every formula A ∈ F, if

∆ 6` A,

then the set

∆ ∪ {A}

is inconsistent.

Proof: We consider two cases.

Case 1 We show that (i) implies (ii) and

Case 2 we show that (ii) implies (i).
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Proof of Case 1:

Assume that (i) and that for every formula

A ∈ F, ∆ 6` A.

We have to show that in this case ∆ ∪ {A} is

inconsistent.

But if ∆ 6` A, then from the definition of

complete set and assumption that ∆ is

complete set, we get that

∆ ` ¬A.
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By the monotonicity of the consequence we

have that

∆ ∪ {A} ` ¬A.

By formula 4 ` (A ⇒ A) and monotonicity

we get ∆ ` (A ⇒ A) and by Deduction

Theorem

∆ ∪ {A} ` A.

This proves that ∆∪{A} is inconsistent. Hence

(ii) holds.
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Case 2

Assume that (ii), i.e. for every formula

A ∈ F, if ∆ 6` A, then the set ∆ ∪ {A} is

inconsistent.

Let A be any formula. We want to show (i),

i.e. to show that the condition:

∆ ` A or∆ ` ¬A

is satisfied.

If

∆ ` ¬A,

then the condition is obviously satisfied.
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If, on other hand,

∆ 6` ¬A,

then we are going to show now that it must

be, under the assumption of (ii), that ∆ `
A, i.e. that (i) holds.

Assume that

∆ 6` ¬A,

then by (ii), the set ∆ ∪ {¬A} is inconsis-

tent.

It means, by the Consistency Condition Lemma,

that

∆ ∪ {¬A} ` A.
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By the Deduction Theorem, this implies that

∆ ` (¬A⇒ A).

Observe that

((¬A⇒ A)⇒ A)

is a provable formula 4 in S.

By monotonicity,

∆ ` ((¬A⇒ A)⇒ A).

Detaching (¬A⇒ A), we obtain that

∆ ` A.

This ends the proof that (i) holds.
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Incomplete set

A set ∆ of formulas is called incomplete if
it is not complete, i.e. if there exists a
formula A ∈ F such that

∆ 6` A and ∆ 6` ¬A

We get as a direct consequence of the Com-
plete Set Condition Lemma the following
characterization of incomplete sets.

Incomplete Set Condition Lemma

For every set ∆ ⊆ F of formulas, the fol-
lowing conditions are equivalent:

(i) ∆ is incomplete,

(ii) there is formula A ∈ F such that ∆ 6` A,
and the set ∆ ∪ {A} is consistent.
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Main Lemma: Complete Consistent Extension

Now we are going to prove a lemma that is
essential to the construction of the special
set ∆∗ mentioned in the Step 1 of the
proof of the Completeness Theorem, and
hence to the proof of the theorem itself.

Let’s first introduce one more notion.

Extension ∆∗ of the set ∆.

A set ∆∗ of formulas is called an exten-
sion of a set ∆ of formulas if the following
condition holds:

{A ∈ F : ∆ ` A} ⊆ {A ∈ F : ∆∗ ` A}.

In this case we say also that ∆ extends to
the set of formulas ∆∗.
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The Main Lemma states as follows.

Complete Consistent Extension Lemma

Every consistent set ∆ of formulas can be ex-

tended to a complete consistent set ∆∗ of

formulas.

Proof: Assume that the lemma does not hold,

i.e. that there is a consistent set ∆, such

that all its consistent extensions are not

complete.

In particular, as ∆ is an consistent extension

of itself, we have that ∆ is not complete.
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The proof consists of a construction of a par-

ticular set ∆∗ and proving that it forms a

complete consistent extension of ∆, con-

trary to the assumption that all its consis-

tent extensions are not complete.

CONSTRUCTION of ∆∗.

As we know, the set F of all formulas is enu-

merable. They can hence be put in an in-

finite sequence

F A1, A2, ...., An, .....

such that every formula of F occurs in that

sequence exactly once.
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We define, by mathematical induction, an

infinite sequence {∆n}n∈N of consistent

subsets of formulas together with a sequence

{Bn}n∈N of formulas as follows.

Initial Step

In this step we define the sets ∆1,∆2 and the

formula B1 and prove that ∆1 and ∆2 are

consistent, incomplete extensions of ∆.

We take as the first set, the set ∆, i.e. we

define

∆1 = ∆.
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By assumption the set ∆, and hence also ∆1

is not complete.

From the Incomplete Set Condition we get

that there is a formula B ∈ F such that

∆1 6` B and ∆1 ∪ {B} is consistent.

Let

B1

be the first formula with this property in

the sequence F of all formulas;
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We define

∆2 = ∆1 ∪ {B1}.

Observe that the set ∆2 is consistent and

∆1 = ∆ ⊆∆2,

so by the monotonicity, ∆2 is a consistent

extension of ∆.

Hence, as we assumed that all consistent ex-

tensions of ∆ are not complete, we get

that ∆2 cannot be complete, i.e.

∆2 is incomplete.
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Inductive Step

Suppose that we have defined a sequence

∆1,∆2, ...,∆n

of incomplete, consistent extensions of

∆, and a sequence

B1, B2, ...Bn−1

of formulas, for n ≥ 2.

Since ∆n is incomplete, it follows from the

Incomplete Set Condition that

there is a formula B ∈ F such that ∆n 6` B,

then and the set ∆n ∪ {B} is consistent.
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Let Bn be the first formula with this property

in the sequence F of all formulas.

We define:

∆n+1 = ∆n ∪ {Bn}.

By the definition,

∆ ⊆∆n ⊆∆n+1

and the set ∆n+1 is a consistent extension

od ∆.

Hence by our assumption that all all consis-

tent extensions of ∆ are incomplete we get

that ∆n+1 is an incomplete consistent

extension of ∆.
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By the principle of mathematical induction we

have defined an infinite sequence

D ∆ = ∆1 ⊆∆2 ⊆ ...,⊆∆n ⊆∆n+1 ⊆ ....

such that for all n ∈ N , ∆n is consistent,

and each ∆n an incomplete consistent

extension of ∆.
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Moreover, we have also defined a sequence

B B1, B2, ..., Bn, ....

of formulas, such that for all n ∈ N ,

∆n 6` Bn, and the set ∆n ∪ {Bn} is consis-

tent.

Observe that Bn ∈∆n+1 for all n ≥ 1.
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Now we are ready to define ∆∗.

Definition of ∆∗

∆∗ =
⋃

n∈N ∆n.

To complete the proof our theorem we have

now to prove that

∆∗ is a complete consistent extension of

∆.

Obviously, by the definition,

∆∗ is an extension of ∆.

72



Fact 1 ∆∗ is consistent.

proof: assume that ∆∗ is inconsistent. By

the Finite Inconsistency theorem there is

a finite subset ∆0 of ∆∗ that is inconsis-

tent, i.e.

∆0 = {C1, ..., Cn} ⊆
⋃

n∈N ∆n

and ∆0 is inconsistent.
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By the definition, Ci ∈ ∆ki for certain ∆ki in

the sequence D and 1 ≤ i ≥ n.

Hence ∆0 ⊆∆m for m = max{k1, k2, ..kn}.

But all sets of the sequence D are consistent.

This contradicts the fact that ∆m is incon-

sistent, as it contains an inconsistent sub-

set ∆0.

Hence ∆∗ must be consistent.
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Fact 2 ∆∗ is complete.

proof: assume that ∆∗ is not complete. By

the Incomplete Set Condition, there is a

formula B ∈ F such that

∆∗ 6` B,and the set ∆∗ ∪ {B} is consistent.

By definition D of the sequence ∆n, for every

n ∈ N , ∆n 6` B and the set ∆n ∪ {B} is

consistent.
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Since the formula B is one of the formulas of

the sequence B and it would have to be

one of the formulas of the sequence i.e.

B = Bj for certain j.

By definition, Bj ∈ ∆j+1, it proves that B ∈
∆∗ =

⋃
n∈N ∆n.

But this means that

∆∗ ` B,

contrary to the assumption.

This proves that ∆∗ is a complete consis-

tent extension of ∆ and completes the

proof out our lemma.

Now we are ready to prove the completeness

theorem for the system S.
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Proof of the Completeness
Theorem

As by assumption our system S is sound, we

have to prove only the Completeness part

of the Completeness Theorem, i.e for any

formula A,

If |= A, then ` A

We prove it by proving the opposite implica-

tion

If 6` A, then 6|= A.
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Reminder: 6|= A means that there is a variable

assignment v : V AR −→ {T, F}, such that

v∗(A) 6= T .

In classical case it means that v∗(A) = F ,

i.e. that there is a variable assignment

that falsifies A . Such v is also called a

counter-model for A.
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Assume that A doesn’t have a proof in S, we

want to define a counter-model for A.

But if 6` A, then by the Inconsistency Lemma

the set {¬A} is consistent.

By the Main Lemma there is a complete, con-

sistent extension of the set {¬A}, i.e. there

is a set set ∆∗ such that {¬A} ⊆∆∗, i.e.

E ¬A ∈∆∗.

Since ∆∗ is a consistent, complete set, it sat-

isfies the following form consistency condi-

tion, which says that for any A,

∆∗ 6` A or ∆∗ 6` ¬A.

79



It also satisfies the completeness condition,
which says that for any A,

∆∗ ` A or ∆∗ ` ¬A.

This means that for any A, exactly one of
the following conditions is satisfied:

(1) ∆∗ ` A, or

(2) ∆∗ ` ¬A.

In particular, for every propositional variable
a ∈ V AR exactly one of the following con-
ditions is satisfied:

(1) ∆∗ ` a, or

(2) ∆∗ ` ¬a.
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This justifies the correctness of the following

definition.

Definition of v

We define the variable assignment

v : V AR −→ {T, F}

as follows:

v(a) =

{
T if ∆∗ ` a
F if ∆∗ ` ¬a.

We show, as a separate lemma below, that

such defined variable assignment v has the

following property.
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Property of v Lemma

Let v be the variable assignment defined

above and v∗ its extension to the set F of

all formulas.

For every formula B ∈ F, the following is true

v∗(B) =

{
T if ∆∗ ` B
F if ∆∗ ` ¬B.

Given Property of v Lemma (still to be proved)

we now prove that the v is in fact, a counter

model for any formula A, such that 6` A.
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Let A be such that 6` A. By E ¬A ∈∆∗ and

obviously,

∆∗ ` ¬A.

Hence, by the property of v,

v∗(A) = F,

what proves that v is a counter-model for

A and hence ends the proof of the com-

pleteness theorem.

In order to really complete the proof we still

have to show the Property of v Lemma.
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Proof of the Lemma (Property of v lemma)

The proof is conducted by the induction on

the degree of the formula A.

Initial step If A is a propositional variable,

then the Lemma is true holds by definition

of v.

Inductive Step If A is not a propositional

variable, then A is of the form ¬C or (C ⇒
D), for certain formulas C,D.

By the inductive assumption the Lemma holds

for the formulas C and D.
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Case A = ¬C

We have to consider two possibilities:

1. ∆∗ ` A,

2. ∆∗ ` ¬A.

Consider case 1. i.e. assume

∆∗ ` A.

It means that ∆∗ ` ¬C.

Then from the fact that ∆∗ is consistent it

must be that

∆∗ 6` C.

85



By the inductive assumption we have that

v∗(C) = F , and accordingly

v∗(A) = v∗(¬C) = ¬v∗(C) = ¬F = T.



Consider case 2. i.e. assume that

∆∗ ` ¬A.

Then from the fact that ∆∗ is consistent

it must be that ∆∗ 6` A and

∆∗ 6` ¬C.

If so, then ∆∗ ` C, as the set ∆∗ is com-

plete.

By the inductive assumption, v∗(C) = T , and

accordingly

v∗(A) = v∗(¬C) = ¬v∗(C) = ¬T = F.

Thus A satisfies the v property Lemma.
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Case A = (C ⇒ D).

As in the previous case, we assume that the

Lemma holds for the formulas C,D and we

consider two possibilities:

1. ∆∗ ` A and

2. ∆∗ ` ¬A.

Case 1. Assume ∆∗ ` A. It means that

∆∗ ` (C ⇒ D).

If at the same time ∆∗ 6` C, then v∗(C) = F ,

and accordingly

v∗(A) = v∗(C ⇒ D) =

v∗(C)⇒ v∗(D) = F ⇒ v∗(D) = T.
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If at the same time ∆∗ ` C, then since ∆∗ `
(C ⇒ D), we infer, by Modus Ponens, that

∆∗ ` D.

If so, then

v∗(C) = v∗(D) = T,

and accordingly

v∗(A) = v∗(C ⇒ D) =

v∗(C)⇒ v∗(D) = T ⇒ T = T.

Thus, if ∆∗ ` A, then v∗(A) = T .
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Case 2. Assume now, as before, that

∆∗ ` ¬A.

Then from the fact that ∆∗ is consistent it
must be that ∆∗ 6` A, i.e.,

∆∗ 6` (C ⇒ D).

It follows from this that

∆∗ 6` D,

for if ∆∗ ` D, then, as (D ⇒ (C ⇒ D))
is provable formula 1 in S, by monotonicity
also

∆∗ ` (D ⇒ (C ⇒ D)).

Applying Modus Ponens we obtain

∆∗ ` (C ⇒ D),

which is contrary to the assumption.
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Also we must have

∆∗ ` C,

for otherwise, as ∆∗ is complete we would

have ∆∗ ` ¬C.

But this is impossible, since the formula (¬C ⇒
(C ⇒ D)) is assumed to be provable for-

mula 9 in S and by monotonicity

∆∗ ` (¬C ⇒ (C ⇒ D)).

Applying Modus Ponens we would get

∆∗ ` (C ⇒ D),

which is contrary to the assumption.

This ends the proof of the lemma and com-

pletes the counter- model existence proof

of the Completeness Theorem.
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