
Chapter 8
Hilbert Systems, Deduction

Theorem

Hilbert Systems The Hilbert proof systems

are based on a language with implication

and contain a Modus Ponens rule as a rule

of inference.

Modus Ponens is the oldest of all known rules

of inference as it was already known to the

Stoics (3rd century B.C.).

It is also considered as the most ”natural”

to our intuitive thinking and the proof sys-

tems containing it as the inference rule play

a special role in logic.
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Hilbert System H1 :

H1 = ( L{⇒}, F , {A1, A2}, MP )

A1 (A⇒ (B ⇒ A)),

A2 ((A⇒ (B ⇒ C))

⇒ ((A⇒ B)⇒ (A⇒ C))),

MP

(MP )
A ; (A⇒ B)

B
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Finding formal proofs in this system requires

some ingenuity.

The formal proof of (A ⇒ A) in H1 is

a sequence

B1, B2, B3, B4, B5

as defined below.

B1 = ((A⇒ ((A⇒ A)⇒ A))⇒ ((A⇒ (A⇒ A))⇒ (A⇒ A))),
axiom A2 for A = A, B = (A⇒ A), and C = A

B2 = (A⇒ ((A⇒ A)⇒ A)),
axiom A1 for A = A, B = (A⇒ A)

B3 = ((A⇒ (A⇒ A))⇒ (A⇒ A))),
MP application to B1 and B2

B4 = (A⇒ (A⇒ A)),
axiom A1 for A = A, B = A

B5 = (A⇒ A)
MP application to B3 and B4
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A general procedure for searching for proofs

in a proof system S can be stated is as

follows.

Given an expression B of the system S. If it

has a proof, it must be conclusion of the

inference rule. Let’s say it is a rule r.

We find its premisses, with B being the con-

clusion, i.e. we evaluate r−1(B).

If all premisses are axioms, the proof is found.

Otherwise we repeat the procedure for any

non-axiom premiss.
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Search for proof by the means of MP The

MP rule says: given two formulas A and

(A⇒ B) we can conclude a formula B.

Assume now that we have a formula B and

want to find its proof.

If B is an axiom, we have the proof: the for-

mula itself.

If it is not an axiom, it had to be obtained

by the application of the Modus Ponens

rule, to certain two formulas A and (A ⇒
B).

But there is infinitely many of formulas A and

(A ⇒ B). I.e. for any B, the inverse im-

age of B under the rule MP , MP−1(B) is

countably infinite.

5



The proof system H1 is not syntactically de-
cidable.

Semantic Link 1 System H1 is sound under
classical semantics and is not sound under
 L semantics.

Soundness Theorem of H1 For any A ∈ F
of H1,

If `H1
A, then |= A.

Semantic Link 2 The system H1 is not com-

plete under classical semantics.

Not all classical tautologies have a proof in
H1.

|= (¬¬A⇒ A) and 6 `H1
(¬¬A⇒ A).
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Exercise: show that

(A⇒ B), (B ⇒ C) `H1
(A⇒ C).

We construct a formal proof

B1, B2, .....B7,

as follows.
B1 = (B ⇒ C), B2 = (A⇒ B),

hypothesis hypothesis
B3 = ((A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))),
axiom A2

B4 = ((B ⇒ C)⇒ (A⇒ (B ⇒ C))),
axiom A1 for A = (B ⇒ C), B = A

B5 = (A⇒ (B ⇒ C)),
B1 and B4 and MP

B6 = ((A⇒ B)⇒ (A⇒ C)), B7 = (A⇒ C)
B3 and B5 and MP B2, B6 and MP

7



In mathematical arguments, one often a state-

ment B on the assumption (hypothesis)

of some other statement A and then con-

cludes that we have proved the implication

”if A, then B”.

This reasoning is justified by the following the-

orem, called a Deduction Theorem.

Notation: Γ, A ` B for Γ ∪ {A} ` B,

In general: Γ, A1, A2, ..., An ` B

for Γ ∪ {A1, A2, ..., An} ` B.
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Deduction Theorem for H1

Γ, A `H1
B iff Γ `H1

(A⇒ B).

In particular ,

A `H1
B iff `H1

(A⇒ B).
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Lemma :

(a) (A⇒ B), (B ⇒ C) `H1
(A⇒ C),

(b) (A⇒ (B ⇒ C)), B `H1
(A⇒ C).

First we construct a formal proof for part (a):

B1, B2, B3, B4, B5

as follows.

B1 = (A⇒ B), B2 = (B ⇒ C), B3 = A
hypothesis hypothesis hypothesis

B4 = B B5 = C
B1, B3 and MP B2, B4 and MP

Thus we proved :

(A⇒ B), (B ⇒ C), A `H1
C.

By Deduction Theorem, we get

(A⇒ B), (B ⇒ C) `H1
(A⇒ C).
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Proof Of The Deduction Theorem

DEDUCTION THEOREM (Herbrand, 1930)

For any formulas A,B,

if A ` B, then ` (A⇒ B).

General case for H1:

Γ, A ` B iff Γ ` (A⇒ B).

Proof:

Part 1. We first prove:

If Γ, A ` B then Γ ` (A⇒ B).

11



Assume that

Γ, A `B,

i.e. that we have a formal proof

B1, B2, ..., Bn

of B from the set of formulas Γ ∪ {A}, we

have to show that

Γ ` (A⇒ B).

12



In order to prove that

Γ ` (A⇒ B)

follows from Γ, A ` B, we prove that a

stronger statement, namely that

Γ ` (A⇒ Bi)

for any Bi (1 ≤ i ≤ n) in the formal proof

B1, B2, ..., Bn of B also follows from Γ, A ` B.

Hence in particular case, when i = n, we will

obtain that

Γ ` (A⇒ B)

follows from Γ, A ` B, and that will end

the proof of Part 1.
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The proof of Part 1 is conducted by induction

on i for 1 ≤ i ≤ n.

Step i = 1 (base step).

Observe that when i = 1, it means that the

formal proof

B1, B2, ..., Bn

contains only one element B1.
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By the definition of the formal proof from Γ∪
{A}, we have that

(1) B1 is a logical axiom, or B1 ∈ Γ, or

(2) B1 = A.

This means that B1 ∈ {A1, A2} ∪ Γ ∪ {A}.
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Now we have two cases to consider.

Case 1: B1 ∈ {A1, A2} ∪ Γ.

Observe that

(B1 ⇒ (A⇒ B1))

is the axiom A1 and by assumption

B1 ∈ {A1, A2} ∪ Γ.

We get the required proof of (A ⇒ B1) from

Γ by the following application of the Modus

Ponens rule

(MP )
B1 ; (B1 ⇒ (A⇒ B1))

(A⇒ B1)
.
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Case 2: B1 = A

When B1 = A then to prove Γ ` (A ⇒ B)

means to prove

Γ ` (A⇒ A),

what holds by the monotonicity of the con-

sequence and the fact that we have shown

that

`(A⇒ A).

The above cases conclude the proof of

Γ ` (A⇒ Bi)

for i = 1.
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INDUCTIVE STEP

Assume that

Γ `(A⇒ Bk)

for all k < i (strong induction),

we will show that using this fact we can con-

clude that also

Γ `(A⇒ Bi).

Consider a formula Bi in the formal proof

B1, B2, ..., Bn
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By the definition of the formal proof we have
to show the following:

Case 1 Bi ∈ {A1, A2} ∪ Γ ∪ {A} or

Case 2: Bi follows by MP from certain Bj, Bm

such that j < m < i.

We have to consider these cases.

Case 1:

Bi ∈ {A1, A2} ∪ Γ ∪ {A}.

The proof of (A⇒ Bi) from Γ in this case is
obtained from the proof of the Step i = 1
by replacement B1 by Bi and will be omit-
ted here as a straightforward repetition.
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Case 2:

Bi is a conclusion of MP.

If Bi is a conclusion of MP, then we must have

two formulas Bj, Bm in the formal proof

B1, B2, ..., Bn such that j < m < i and

(MP )
Bj ; Bm

Bi
.
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By the inductive assumption,

the formulas Bj, Bm are such that

Γ ` (A⇒ Bj)

and

Γ ` (A⇒ Bm).
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Moreover, by the definition of Modus Ponens

rule, the formula Bm has to have a form

(Bj ⇒ Bi),

i.e.

Bm = (Bj ⇒ Bi),

and the inductive assumption can be re-

written as follows.

Γ ` (A⇒ (Bj ⇒ Bi))

, for j < i.

Observe now that the formula

((A⇒ (Bj ⇒ Bi))⇒ ((A⇒ Bj)⇒ (A⇒ Bi)))

is a substitution of the axiom A2 and hence

has a proof in our system.
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By the monotonicity of the consequence, it

also has a proof from the set Γ, i.e.



We know that

Γ ` ((A⇒ (Bj ⇒ Bi))⇒ ((A⇒ Bj)⇒ (A⇒ Bi))).

Applying the rule MP i.e. performing the fol-
lowing
(A⇒ (Bj ⇒ Bi)) ; ((A⇒ (Bj ⇒ Bi))⇒ ((A⇒ Bj)⇒ (A⇒ Bi)))

((A⇒ Bj)⇒ (A⇒ Bi))

we get that also

Γ `((A⇒ Bj)⇒ (A⇒ Bi)).
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Applying again the rule MP i.e. performing
the following

(A⇒ Bj) ; ((A⇒ Bj)⇒ (A⇒ Bi))

(A⇒ Bi)
)

we get that

Γ `(A⇒ Bi)

what ends the proof of the inductive step.
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By the mathematical induction principle, we

hence have proved that

Γ `(A⇒ Bi)

for all i such that 1 ≤ i ≤ n.

In particular it is true for i = n, what means

for Bn = B .

This ends the proof of the fact that

if Γ, A `B, then Γ ` (A⇒ B).
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The proof of the inverse implication:

IfΓ `H1
(A⇒ B), then Γ, A `H1

B

is straightforward and goes as follows.

Assume that

Γ ` (A⇒ B).

By the monotonicity of the consequence we
have also that

Γ, A ` (A⇒ B).

Obviously

Γ, A ` A.
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Applying Modus Ponens to the above, we

get the proof of B from {Γ, A} i.e.

we have proved that

Γ, A ` B.

THIS ENDS the proof of the deduction the-

orem for any set Γ ⊆ F and any formulas

A,B ∈ F.

The particular case of the theorem is obtained

from the above by assuming that the set Γ

is empty.
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System H2 and Formal Proofs

Hilbert System H2

The system H1 is sound and strong enough

to prove the Deduction Theorem, but it is

not complete.

We extend now its set of logical axioms to a

complete set of axioms, i.e. we define a

system H2 that is complete with respect

to classical semantics.

The proof of completeness will be presented

in the next chapter.
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Hilbert System H2 = ( L{⇒,¬}, A1, A2, A3, MP )

A1 (Law of simplification)

(A⇒ (B ⇒ A)),

A2 (Frege’s Law)

((A⇒ (B ⇒ C))

⇒ ((A⇒ B)⇒ (A⇒ C))),

A3 ((¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B)))

MP (Rule of inference)

(MP )
A ; (A⇒ B)

B
,

and A,B,C are any formulas of the propo-

sitional language L{⇒,¬}.
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We write :

`H2
A

to denote that a formula A has a formal

proof in H2 (from the set of logical axioms

A1, A2, A3), and

Γ `H2
A

to denote that a formula A has a formal

proof in H2 from a set of formulas Γ (and

the set of logical axioms A1, A2, A3.
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Observe that system H2 was obtained by adding

axiom A3 to the system H1. Hence the De-

duction Theorem holds for system H2 as

well. I.e the following theorem holds.

Deduction Theorem for H2: For any sub-

set Γ of the set of formulas F of H2 and

for any formulas A,B ∈ F,

Γ, A `H2
B if and only if Γ `H2

(A⇒ B).

In particular,

A `H2
B if and only if `H2

(A⇒ B).
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Soundness Theorem for H2:

For every formula A ∈ F,

if `H2
A, then |= A.
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The soundness theorem proves that the sys-

tem ”produces” only tautologies. We show,

in the next chapter, that our proof sys-

tem H2 ”produces” not only tautologies,

but that all tautologies are provable in it.

This is called a completeness theorem

for classical logic.

Completeness Theorem for H2

For every A ∈ F,

`H2
A, if and only if |= A.
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The proof of completeness theorem (for a

given semantics) is always a main point in

any logic creation.

There are many ways (techniques) to prove

it, depending on the proof system, and on

the semantics we define for it.

We present in the next chapter two proofs of

the completeness theorem for our system

H2.

The proofs use very different techniques, hence

the reason of presenting both of them.

In fact the proofs are valid for any proof sys-

tem for classical propositional logic in which

one can prove all formulas proved in the

next section.
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FORMAL PROOFS IN H2
Examples and Exercises

We present here some examples of formal proofs
in H2. There are two reasons for present-
ing them.

First reason is that all formulas we prove here
to be provable play a crucial role in the
proof of Completeness Theorem for H2, or
are needed to find formal proofs of those
needed.

The second reason is that they provide a ”train-
ing” ground for a reader to learn how to
develop formal proofs.

For this reason we write some proofs in a full
detail and we leave some for the reader to
complete in a way explained in the follow-
ing example.
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We write ` instead of `H2
for the sake of sim-

plicity.

Reminder In the construction of the formal

proofs we very often use Deduction The-

orem and the following Lemma (proved in

previous section)

Lemma 1 :

(a) (A⇒ B), (B ⇒ C) `H1
(A⇒ C),

(b) (A⇒ (B ⇒ C)) `H1
((B ⇒ (A⇒ C)).
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EXAMPLE 1

Here are consecutive steps

B1, ..., B5, B6

of the proof (in H2) of (¬¬B ⇒ B).

B1 = ((¬B ⇒ ¬¬B)⇒ ((¬B ⇒ ¬B)⇒ B))

B2 = ((¬B ⇒ ¬B)⇒ ((¬B ⇒ ¬¬B)⇒ B))

B3 = (¬B ⇒ ¬B)

B4 = ((¬B ⇒ ¬¬B)⇒ B)

B5 = (¬¬B ⇒ (¬B ⇒ ¬¬B))

B6 = (¬¬B ⇒ B).
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EXERCISE 1

Complete the proof presented in the example

1 by providing comments how each step of

the proof was obtained.

ATTENTION The solution presented here shows

you how you will have to write details of

YOUR solutions on the TESTS.

Solutions of other problems presented later

are less detailed. Use them as exercises to

write a detailed, complete solution.
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Solution

The comments that complete the proof are

as follows.

B1 = ((¬B ⇒ ¬¬B)⇒ ((¬B ⇒ ¬B)⇒ B))

Axiom A3 for A = ¬B,B = B

B2 = ((¬B ⇒ ¬B)⇒ ((¬B ⇒ ¬¬B)⇒ B))

B1 and lemma 1 b for A = (¬B ⇒ ¬¬B), B =

(¬B ⇒ ¬B), C = B, i.e.

((¬B ⇒ ¬¬B) ⇒ ((¬B ⇒ ¬B) ⇒ B)) `
((¬B ⇒ ¬B)⇒ ((¬B ⇒ ¬¬B)⇒ B))
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B3 = (¬B ⇒ ¬B)

We proved for H1 and hence for H2 that

` (A⇒ A) and we substitute A = ¬B

B4 = ((¬B ⇒ ¬¬B)⇒ B)

B2, B3 and MP

B5 = (¬¬B ⇒ (¬B ⇒ ¬¬B))

Axiom A1 for A = ¬¬B,B = ¬B

B6 = (¬¬B ⇒ B)

B4, B5 and Lemma 1 a for A = ¬¬B,B =

(¬B ⇒ ¬¬B), C = B; i.e.

(¬¬B ⇒ (¬B ⇒ ¬¬B)), ((¬B ⇒ ¬¬B) ⇒
B) ` (¬¬B ⇒ B).
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GENERAL REMARK

In step B2, B3, B5, B6 we call previously proved

facts and use their results as a part of

our proof. We can insert previously con-

structed formal proofs into our formal proof.

For example we adopt previously constructed

proof of (A ⇒ A) in H1 to the proof of

(¬B ⇒ ¬B) in H2 by replacing A by ¬B and

we insert the proof of (¬B ⇒ ¬B) after B2.

The ”old” step B3 becomes now B7, the ”old”

step B4 becomes now B8, etc.....
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B1 = ((¬B ⇒ ¬¬B)⇒ ((¬B ⇒ ¬B)⇒ B))

Axiom A3 for A = ¬B,B = B

B2 = ((¬B ⇒ ¬B)⇒ ((¬B ⇒ ¬¬B)⇒ B))

B1 and lemma 1 b for A = (¬B ⇒ ¬¬B), B =

(¬B ⇒ ¬B), C = B,

B3 = ((¬B ⇒ ((¬B ⇒ ¬B) ⇒ ¬B)) ⇒ ((¬B ⇒
(¬B ⇒ ¬B))⇒ (¬B ⇒ ¬B))),

axiom A2 for A = ¬B, B = (¬B ⇒ ¬B),

and C = ¬B

B4 = (¬B ⇒ ((¬B ⇒ ¬B)⇒ ¬B)),

axiom A1 for A = ¬B, B = (¬B ⇒ ¬B)

B5 = ((¬B ⇒ (¬B ⇒ ¬B))⇒ (¬B ⇒ ¬B))),

MP application to B4 and B3
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B6 = (¬B ⇒ (¬B ⇒ ¬B)),

axiom A1 for A = ¬B, B = ¬B

B7 = (”old” B3)(¬B ⇒ ¬B)

MP application to B5 and B4

B8 = (”old” B4) ((¬B ⇒ ¬¬B)⇒ B)

B2, B3 and MP

B9 = (”old B5) (¬¬B ⇒ (¬B ⇒ ¬¬B))

Axiom A1 for A = ¬¬B,B = ¬B

B10 = (”old B6) (¬¬B ⇒ B)

B8, B9 and Lemma 1 a for A = ¬¬B,B =

(¬B ⇒ ¬¬B), C = B

We repeat our procedure by replacing the step

B2 by its formal proof as defined in the



proof of the lemma 1 b, and continue the

process for all other steps which involved

application of lemma 1 until we get a full

formal proof from the axioms of H2 only.

Usually we don’t need to do it, but it is im-

portant to remember that it always can be

done, if we wished to take time and space

to do so.



EXAMPLE 2

Here are consecutive steps

B1, ..., B5 in a proof of (B ⇒ ¬¬B).

B1 = ((¬¬¬B ⇒ ¬B)⇒ ((¬¬¬B ⇒ B)⇒ ¬¬B))

B2 = (¬¬¬B ⇒ ¬B)

B3 = ((¬¬¬B ⇒ B)⇒ ¬¬B)

B4 = (B ⇒ (¬¬¬B ⇒ B))

B5 = (B ⇒ ¬¬B)
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EXERCISE 2

Complete the proof presented in Example 2

by providing detailed comments how each

step of the proof was obtained.

Solution

The comments that complete the proof are

as follows.

B1 = ((¬¬¬B ⇒ ¬B)⇒ ((¬¬¬B ⇒ B)⇒ ¬¬B))

Axiom A3 for A = B,B = ¬¬B

B2 = (¬¬¬B ⇒ ¬B)

Example 1 for B = ¬B

44



B3 = ((¬¬¬B ⇒ B)⇒ ¬¬B)

B1, B2 and MP, i.e.

(¬¬¬B⇒¬B);((¬¬¬B⇒¬B)⇒((¬¬¬B⇒B)⇒¬¬B))
((¬¬¬B⇒B)⇒¬¬B)

B4 = (B ⇒ (¬¬¬B ⇒ B))

Axiom A1 for A = B,B = ¬¬¬B

B5 = (B ⇒ ¬¬B)

B3, B4 and lemma 1a for A = B,B = (¬¬¬B ⇒
B), C = ¬¬B, i.e.

(B ⇒ (¬¬¬B ⇒ B)), ((¬¬¬B ⇒ B)⇒ ¬¬B)`H2
(B ⇒

¬¬B)
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EXAMPLE 3

Here are consecutive steps B1, ..., B12 in a proof
of (¬A⇒ (A⇒ B)).

B1 = ¬A

B2 = A

B3 = (A⇒ (¬B ⇒ A))

B4 = (¬A⇒ (¬B ⇒ ¬A))

B5 = (¬B ⇒ A)

B6 = (¬B ⇒ ¬A)

B7 = ((¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B))
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B8 = ((¬B ⇒ A)⇒ B)

B9 = B

B10 = ¬A,A ` B

B11 = ¬A ` (A⇒ B)

B12 = (¬A⇒ (A⇒ B))

EXERCISE 3

1. Complete the proof from the example 3 by
providing comments how each step of the
proof was obtained.

2. Prove that ¬A,A ` B.
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EXAMPLE 4

Here are consecutive steps B1, ..., B7 in a proof
of ((¬B ⇒ ¬A)⇒ (A⇒ B)).

B1 = (¬B ⇒ ¬A)

B2 = ((¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B))

B3 = (A⇒ (¬B ⇒ A))

B4 = ((¬B ⇒ A)⇒ B)

B5 = (A⇒ B)

B6 = (¬B ⇒ ¬A) ` (A⇒ B)

B7 = ((¬B ⇒ ¬A)⇒ (A⇒ B))
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Exercise 4

Complete the proof from example 4 by provid-

ing comments how each step of the proof

was obtained.

EXAMPLE 5

Here are consecutive steps B1, ..., B9 in a proof

of ((A⇒ B)⇒ (¬B ⇒ ¬A)).

B1 = (A⇒ B)

B2 = (¬¬A⇒ A)

B3 = (¬¬A⇒ B)
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B4 = (B ⇒ ¬¬B)

B5 = (¬¬A⇒ ¬¬B)

B6 = ((¬¬A⇒ ¬¬B)⇒ (¬B ⇒ ¬A))

B7 = (¬B ⇒ ¬A)

B8 = (A⇒ B) ` (¬B ⇒ ¬A)

B9 = ((A⇒ B)⇒ (¬B ⇒ ¬A))



EXERCISE 5

Complete the proof of example 5 by providing
comments how each step of the proof was
obtained.

Solution

B1 = (A⇒ B)
Hypothesis

B2 = (¬¬A⇒ A)
Example 1 for B = A

B3 = (¬¬A⇒ B)
Lemma 1 a for A = ¬¬A,B = A,C = B

B4 = (B ⇒ ¬¬B)
Example 2
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B5 = (¬¬A⇒ ¬¬B)

Lemma 1 a for A = ¬¬A,B = B,C = ¬¬B

B6 = ((¬¬A⇒ ¬¬B)⇒ (¬B ⇒ ¬A))

Example 4 for B = ¬A,A = ¬B

B7 = (¬B ⇒ ¬A)

B5, B6 and MP

B8 = (A⇒ B) ` (¬B ⇒ ¬A)

B1 −B7

B9 = ((A⇒ B)⇒ (¬B ⇒ ¬A))

Deduction Theorem
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EXERCISE 6

Prove that ` (A⇒ (¬B ⇒ (¬(A⇒ B)))).

Solution Here are consecutive steps of build-
ing the formal proof.

B1 = A, (A⇒ B) ` B

by MP

B2 = A ` ((A⇒ B)⇒ B)
Deduction Theorem

B3 = ` (A⇒ ((A⇒ B)⇒ B))
Deduction Theorem

B4 = ` (((A ⇒ B) ⇒ B) ⇒ (¬B ⇒ ¬(A ⇒
B)))
Example 5 for A = (A⇒ B), B = B
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B5 = ` (A⇒ (¬B ⇒ (¬(A⇒ B)))

3. and 4. and lemma 2a for A = A,B =

((A⇒ B)⇒ B), C = (¬B ⇒ (¬(A⇒ B))



EXAMPLE 7

Here are consecutive steps B1, ..., B12 in a proof

of ((A⇒ B)⇒ ((¬A⇒ B)⇒ B)).

B1 = (A⇒ B)

B2 = (¬A⇒ B)

B3 = ((A⇒ B)⇒ (¬B ⇒ ¬A))

B4 = (¬B ⇒ ¬A)

53



B5 = ((¬A⇒ B)⇒ (¬B ⇒ ¬¬A))

B6 = (¬B ⇒ ¬¬A)

B7 = ((¬B ⇒ ¬¬A)⇒ ((¬B ⇒ ¬A)⇒ B)))

B8 = ((¬B ⇒ ¬A)⇒ B)

B9 = B

B10 = (A⇒ B), (¬A⇒ B) ` B

B11 = (A⇒ B) ` ((¬A⇒ B)⇒ B)

B12 = ((A⇒ B)⇒ ((¬A⇒ B)⇒ B))
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EXERCISE 7

Complete the proof in example 7 by providing
comments how each step of the proof was
obtained.

Solution

B1 = (A⇒ B)
Hypothesis

B2 = (¬A⇒ B)
Hypothesis

B3 = ((A⇒ B)⇒ (¬B ⇒ ¬A))
Example 5

B4 = (¬B ⇒ ¬A)
B1, B3 and MP
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B5 = ((¬A⇒ B)⇒ (¬B ⇒ ¬¬A))

Example 5 for A = ¬A,B = B

B6 = (¬B ⇒ ¬¬A)

B2, B5 and MP

B7 = ((¬B ⇒ ¬¬A) ⇒ ((¬B ⇒ ¬A) ⇒ B)))

Axiom A3 for B = B,A = ¬A
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B8 = ((¬B ⇒ ¬A)⇒ B)

B6, B7 and MP

B9 = B

B4, B8 and MP

B10 = (A⇒ B), (¬A⇒ B) ` B

B1−B9

B11 = (A⇒ B) ` ((¬A⇒ B)⇒ B)

Deduction Theorem

B12 = ((A ⇒ B) ⇒ ((¬A ⇒ B) ⇒ B)) Deduc-

tion Theorem
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EXAMPLE 8

Here are consecutive steps B1, ..., B3 in a proof

of ((¬A⇒ A)⇒ A).

B1 = ((¬A⇒ ¬A)⇒ ((¬A⇒ A)⇒ A)))

B2 = (¬A⇒ ¬A)

B3 = ((¬A⇒ A)⇒ A))

EXERCISE 8

Complete the proof of example 8 by providing

comments how each step of the proof was

obtained.
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Solution

B1 = ((¬A⇒ ¬A)⇒ ((¬A⇒ A)⇒ A)))

Axiom A3 for B = A

B2 = (¬A⇒ ¬A)

Proved (A⇒ A) for A = ¬A

B3 = ((¬A⇒ A)⇒ A))

B1, B2 and MP

Examples 1 - 8, and the example 1 of previ-

ous section provide a proof of the following

lemma.
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LEMMA 2 For any formulas A,B,C of the

system H2,

1. `H2
(A⇒ A)

2. `H2
(¬¬B ⇒ B)

3. `H2
(B ⇒ ¬¬B)

4. `H2
(¬A⇒ (A⇒ B))

5. `H2
((¬B ⇒ ¬A)⇒ (A⇒ B))
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6. `H2
((A⇒ B)⇒ (¬B ⇒ ¬A))

7. `H2
(A⇒ (¬B ⇒ (¬(A⇒ B)))

8. `H2
((A⇒ B)⇒ ((¬A⇒ B)⇒ B))

9. `H2
((¬A⇒ A)⇒ A

The set of provable formulas from the above

lemma 2 includes a set of provable formulas

(formulas 1, 3, 4, and 7-9) needed, with

H2 axioms to execute two proofs of the

Completeness Theorem for H2.

We present these proofs in the next chap-

ter. They represent two diametrally differ-

ent methods of proving Completeness The-

orem.
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