
Chapter 7: Proof Systems:
Soundness and Completeness

Proof systems are built to prove statements.

Proof systems are an inference machine with

special statements, called provable state-

ments being its final products.

The starting points of the inference are called

axioms of the system.

We distinguish two kinds of axioms: logi-

calAL and specific SP .

1

Semantical link : we usually build a proof

system for a given language and its seman-

tics i.e. for a logic defined semantically.

First step : we choose as a set of logical ax-

ioms AL some subset of tautologies, i.e.

statements always true.

A proof system with only logical axioms AL

is called a logic proof system.

Building a proof system for which there is no

known semantics we think about the logi-

cal axioms as statements universally true.

2

We choose as axioms a finite set the state-

ments we for sure want to be universally

true, and whatever semantics follows they

must be tautologies with respect to it.

Logical axioms are hence not only tautolo-

gies under an established semantics, but

they also guide us how to establish a se-

mantics, when it is yet unknown.

The specific axioms SP are these formulas

of the language that describe our knowl-

edge of a universe we want to prove facts

about.

Specific axioms are not universally true, they

are true only in the universe we are inter-

ested to describe and investigate.

3

A proof system with logical axioms AL and

specific axioms SP is called a formal the-

ory.

The inference machine is defined by a finite

set of rules, called inference rules.

The inference rules describe the way we are

allowed to transform the information within

the system with axioms as a starting point.

The transformation process is called a for-

mal proof and can be depicted as follows:

AXIOMS

↓ ↓ ↓

RULES applied to AXIOMS

↓ ↓ ↓

Provable formulas

↓ ↓ ↓

RULES applied to above expressions

↓ ↓ ↓

NEW Provable formulas

↓ ↓ ↓

. etc.

The provable formulas are those for which

we have a formal proof are called con-

sequences of the axioms.

4

Semantical link : the rules have to preserve

the truthfulness of what we are proving.

Rules with this property are called sound rules

and the system a sound proof system.

Soundness Theorem : for any formula A of

the language of the system S,

If a formula A is provable in a logic proof

system S, then A is a tautology.

Formal theory with specific axioms SP , based

on a logic defined by the axioms AL is a

proof system S with logical axioms AL and

specific axioms SP .

Notation : THS(SP).

5

Soundness Theorem for formal theory says:

for any formula A of the language of the

theory THS(SP),

If a formula A is provable in the theory

THS(SP), then A is true in any model of

the set of specific axioms SP .

We discuss here only logic proof systems and

call them proof systems for different logics.

Any proof system can be sound under one

semantics, and not sound under the other.

For example a set of axioms and rules sound

under classical logic semantics might not

be sound under L logic semantics, or K

logic semantics, or others.

6

In general there are many proof systems that

are sound under a given semantics, i.e. many

sound proof systems for a given logic.

Given a logic system S with logical axioms

AL that is sound under a given semantics

M . Let TM be a set of all tautologies de-

fined by the semantics M , i.e.

TM = {A : |=M A}.

A natural questions arises : are all tautolo-

gies defined by the semantics M , provable

in the system S that is sound under the

semantics M .

The positive answer to this question is called

completeness property of the system S.

7

Completeness Theorem for a logic system

S, under a semantics M . For any A (of the

language of S),

A is provable in S iff A is a tautology

under the semantics M .

Symbolically :

`S A iff |=M A.

Completeness Theorem is composed from two

parts: the Soundness Theorem and the

completeness part that proves the com-

pleteness property of a sound system.

8

Proving the Soundness Theorem of S un-

der a semantics M is usually a straightfor-

ward and not a very difficult task.

We first prove that all logical axioms are tau-

tologies, and then that all inference rules

of the system preserve the notion of the

truth (model).

9

Proving the completeness part of the Com-

pleteness Theorem is always a very diffi-

cult, and a crucial task.

We will study two proofs of the Complete-

ness Theorem for classical propositional Hilbert

style proof system in the next chapter, and

a constructive proofs for automated theo-

rem proving systems for classical logic the

the following chapter.

Predicate Logics case will be discussed in the

second part of the book.

10

Formal Definitions : In this section we for-

mulate a general definition of a proof sys-

tem, formal proof, set of consequences and

give simple examples of different proof sys-

tems.

Language L of S

Usually, as in the propositional case, the

language L consists of its alphabet A and

a set of formulas, denoted here by F, i.e.

L = (A,F).

We assume that the both sets A and F are

enumerable, i.e. we will deal here with enu-

merable languages only.

11

Expressions Given a set F of well formed for-

mulas, of the language L, we often extend

this set (and hence the language L to some

set E of expressions build out of the lan-

guage L.

For example sometimes we consider the set

of all finite sequences of formulas, or sets

of formulas, or other expressions, called

Gentzen sequents, or sets of clauses in the

case of the resolution based systems as the

basic expressions of our proof system S un-

der consideration.

12

Expressions E

We assume that E is enumerable and prim-

itively recursive i.e. that there is an ef-

fective procedure to determine whether a

given expression is in E.

Semantical Equivalency We always have to

prove prove a semantic equivalency of E
and the set of all formulas F of L.

It means that we prove that for a given se-

mantics M under which we build our proof

system S. This is also called an extension

of the semantics M for L to the set of ex-

pressions E.

13

Example In automated theorem proving sys-

tem RS we study later, our basic expres-

sions are finite sequences of formulas of

L = L¬,∩,∪,⇒.

We extend our classical semantics for L to

the set F∗ of all finite sequences of formu-

las as follows:

For any v : V AR −→ {F, T} and any ∆ ∈ F∗,
∆ = A1, A2, ..An,

v∗(∆) = v∗(A1, A2, ..An)

= v∗(A1) ∪ v∗(A2) ∪ ∪ v∗(An)

i.e.

∆ ≡ (A1 ∪A2 ∪ ... ∪An).

14

Axioms AL of S

We assume that the axioms AL of S form a

proper, non-empty subset of the set E of

expressions of our language.

The set AL is primitively recursive i.e. there

is an effective procedure to determine whether

a given expression A ∈ E is in AX or not.

Axioms AL called logical axioms of S.

Semantical link : For a given semantics M

for L and E, AL is always a subset of ex-

pressions that are tautologies of under the

semantics M .

15

Rules of inference R We assume that a proof

system contains only a finite number of in-

ference rules.

Each rule has a finite number of premisses

and one conclusion.

We also assume that one can effectively de-

cide, for any rule, whether a given string

of expressions form its premisses and con-

clusion or not, i.e. that

All relations r ∈ R are primitively recursive.

16

Formally : each r ∈ R is a relation defined in

Em with values in E, i.e.

r ⊆ Em × E

All r ∈ R are primitively recursive relations.

We write the inference rules in a following con-

venient way.

One premiss rule :

(r)
A

B
,

Two premisses rule :

(r)
P1 ; P2

A
,

17

Three premisses rule :

(r)
P1 ; P2 ; P3

A
,

m-premisses rule :

(r)
P1 ; P2 ; ; Pm

A
.

Semantical link : For a given semantic M

for L, and E, we chose for S rules which

preserve truthfulness under the semantics

M , i.e. we prove that the rules of the sys-

tem S are sound.

18

Proof system S

By a (logic) proof system we understand a

triple

S = (L, E, AL,R),

Language : L = {A,F} is a formal language,

called the language of S with a set F of

formulas.

Expressions : E is a set of expressions of L.

Logical Axioms : AL is a non-empty, proper,

primitively recursive subset of the set of

expressions E.

Rules of inference : R is a finite set of rules

of inference and all r ∈ R are primitively

recursive relations.

19

Provable expressions of a system S are final

product of single or multiple use of the in-

ference rules, with axioms taken as a start-

ing point.

A single use of an inference rule is called a

direct consequence.

A multiple application of rules of inference is

called a proof.

Formal definitions follow.

20

Direct consequence For any rule of inference

r ∈ R, if

(P1, ...Pn, A) ∈ r,

then A is called a direct consequence of

P1, ...Pn by virtue of r.

Proof of A in S is a sequence

A1, ...An

of expressions from E, such that,

A1 ∈ AL, An = A

and for each i, 1 ≤ i ≤ n, either Ai is

an axiom of the system or Ai is a direct

consequence of some of the preceding ex-

pressions by virtue of one of the rules of

inference.

21

Notation :

`S A

denotes that A has a proof in S.

When the proof system S is fixed we write

` A.

Provable expressions of S

Any A ∈ E, such that

`S A

is called a provable expression of S.

The set of all provable expressions of S is

denoted by PRS, i.e.

PRS = {A ∈ E : `S A}.

22

While proving expressions we often use some

extra information available, besides the ax-

ioms of the proof system.

Proof of A from Γ in S is a proof where the

expressions from Γ are added to the set AL

of the axioms of the system.

Notation :

Γ `S A.

23

Hypothesis

If Γ `S A then the expressions of Γ are

called hypotheses of the proof of A from

Γ.

Finite Γ

If Γ is a finite set and Γ = {B1, B2, ..., Bn},
then we write

B1, B2, ..., Bn `S A

instead of {B1, B2, ..., Bn} `S A.

Empty Γ

The case of Γ = ∅ is a special one. By the

definition of a proof of A from Γ, ∅ ` A

means that in the proof of A only axioms

AL of S were used. We hence write

24

`S A

to denote that A has a proof from empty

Γ.

Consequence of Γ

If Γ `S A then A is called a consequence

of Γ in S.

Consequence operation in S is a function CnS

which to every set Γ ⊆ E, assigns a set of

all its consequences. I.e.

CnS : 2E −→ 2E

such that for every Γ ∈ 2E

CnS(Γ) = {A ∈ E : Γ `S A}

is called the consequence operation in S.

Properties of consequence operation CnS.

Monotonicity

For any sets Γ,∆ of expressions of S,

if Γ ⊆∆ then CnS(Γ) ⊆ CnS(∆).

25

Transitivity

For any sets Γ1,Γ2,Γ3 of expressions of S,

if Γ1 ⊆ CnS(Γ2) and Γ2 ⊆ CnS(Γ3), then

Γ1 ⊆ CnS(Γ3).

Finiteness

For any expression A ∈ F and any set

Γ ⊆ F,

A ∈ CnS(Γ) if and only if there is a finite

subset Γ0 of Γ such that A ∈ CnS(Γ0).

26

Decidable system is a proof system, for which
there is a mechanical method for determin-
ing, given any expression A of the system,
whether there is a proof of A; otherwise it
is called undecidable.

Observe that the above notion of decidability
of the system does not require to find a
proof, it requires only a mechanical proce-
dure of deciding whether there is a proof
of any expression of the system.

Example : A Hilbert style proof system for
classical propositional logic decidable, but
not syntactically, or automatically decid-
able proof system.

We conclude its decidability from the Com-
pleteness Theorem and the decidability of
the notion of classical tautology.

27

Syntactically decidable system is a proof

system S, for which there is a mechani-

cal method for determining, given any ex-

pression A of the system, not only whether

there is a proof of A, but which also gen-

erates a proof; otherwise S is not not syn-

tactically decidable.

Other names : automatically decidable, or an

automated system

Example : Gentzen proof system, the RS sys-

tem presented here later, and Resolution

style proof systems for classical proposi-

tional logic are both decidable and syntac-

tically decidable proof systems, and we call

them always automated proof systems.

28

The notion of a proof in a system S usually

carries a semantical meaning via the Sound-

ness Theorem but it is nevertheless purely

syntactical in its nature.

The rules of inference of a proof system de-

fine only how to transform strings of sym-

bols of our language into another string of

symbols.

The definition of a formal proof says that in

order to prove an expression A of a sys-

tem one has to construct of s sequence

of proper transformations, defined by the

rules of inference.

29

Example: System S1

S1 = (L{P,⇒}, F , AL = {(A⇒ A)},R = {(r)})

where A,B are any formulas of the propo-

sitional language L{P,⇒} and

(r)
B

PB

Observe that even the system S1 has only

one axiom, it represents an infinite number

of formulas.

We call such an axiom axiom schema.

We write shortly the system S1 (and oth-

ers) as

S1 = (L{P,⇒}, F , (A⇒ A), (r)
B

PB
)

30

Example: System S2

S2 = (L{P,⇒}, F , (a⇒ a), (r)
B

PB
),

where a ∈ V AR and B is any formulas of

the propositional language L{P,⇒}.

Example proof :

((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c))) ∈ AL(S1)

And:

`S1
((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c)))

Proof : here is a formal proof (of length one!)

((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c))).

But is not an axiom of the system S2.

31

Formal proofs of SOME formulas in both sys-

tems of above formulas are identical and

are as follows.

Formal proof of P (a⇒ a) in S1 and S2 is:

(a⇒ a), P (a⇒ a).
axiom rule application

for B = (a⇒ a)

Formal proof of PP (a ⇒ a) in S1 and S2

is:

(a⇒ a), P (a⇒ a), PP (a⇒ a).
axiom rule application rule application

for B = (a⇒ a) for B = P (a⇒ a)

32

More formulas :

`S1
PPP ((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c))),

6`S2
PPP ((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c))).

Formal proof of

PPP ((Pa ⇒ (b ⇒ c)) ⇒ (Pa ⇒ (b ⇒ c)))

in S1 is:

((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c))),
axiom

P ((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c))),
rule r application

PP ((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c))),
rule r application

PPP ((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c))).
rule r application

33

Search for a proof of the formula

PPP ((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c)))

in S2.

Observe, that if it had the proof, the only

last step in this proof would be the appli-

cation of the rule r to the formula

PP ((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c))).

This formula, in turn, if it had the proof, the

only last step in its proof would be the ap-

plication of the rule r to the formula

P ((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c))).

34

And again, this one could be obtained only

from the formula

((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c)))

by the virtue of the rule r.

The search process stops here.

The formula :

((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c)))

isn’t an axiom of S2, what means that the

only possible way of finding the proof has

failed, i.e. we have proved that

6`S2
PPP ((Pa ⇒ (b ⇒ c)) ⇒ (Pa ⇒ (b ⇒

c)))

35

We easily generalize above procedure to any

formula of S1 or S2.

It is an effective, automatic procedure of search-

ing for a proof of our formula in both our

proof systems.

If the search ends with an axiom, we have

a proof.

If it doesn’t end with an axiom it means that

the proof does not exist. We have de-

scribed it, as an example, for one particular

formula. It can be easily extended to any

formula A of L{P,⇒} by the re-iteration of

the following steps.

36

We easily generalize above procedure to any
formula of S1 or S2 as follows.

Step : Check the main connective of A.

If main connective is P , it means that A was
obtained by the rule r.

Erase the main connective P .

Repeat until no P left.

If the main connective is ⇒,check if a for-
mula A is an axiom.

If it is an axiom , STOP and YES, we have
a proof.

If it is not an axiom , STOP and NO, proof
does not exist.

37

It is an effective, automatic procedure of search-

ing for a proof of our formula in both our

proof systems. This proves the following.

Fact Proof systems S1 and S2 are syntacti-

cally decidable.

38

General form of provable formulas:

PRS1
= {Pn(A⇒ A) : n ∈ N,A ∈ F},

PRS2
= {Pn(a⇒ a) : n ∈ N, a ∈ V AR}.

Fact :

PRS1
6= PRS2

, PRS2
⊆ PRS1

.

39

Semantical link : We haven’t defined a se-
mantics for the language L{⇒,P} of systems
S1, S2, so we can’t talk about the sound-
ness of these systems yet.

All known modal semantics extend the clas-
sical semantics,i.e. are the same as the
classical one on non-modal connectives so
the axiom in both cases would be a sound
axiom under standard modal logics seman-
tics.

To assure the soundness of both systems we
must have a modal semantics M such that
the rule

(r)
B

PB

is sound, i.e. such that

|=M (B ⇒ PB).

Otherwise they will not be sound.

40

Example: Systems S3 and S4.

S3 = (L{∪,¬}, F , {(A ∪ ¬A)},

B

(B ∪ (A ∪ ¬A))
,

for any A, B ∈ F).

S4 = (L{∪,¬}, F , {(A ∪ ¬A)},

(A ∪ ¬A)

(B ∪ (A ∪ ¬A))
,

for any A,B ∈ F).

41

Question 1: describe the sets of provable for-

mulas of S3 and S4.

Question 2: do they produce the same sets

of provable formulas? I.e. is it true/ false

that

{A : `S3
A} = {A : `S4

A}.

If yes, prove it.

if not true, give a formula which is a theo-

rem of one system and is not a theorem of

other system.

Question 3: Are the systems S3 and S4 de-

cidable, syntactically decidable?

42

Answer Question 1: We first describe the set
of provable formulas of both systems.

System S3 Obviously, `S3
(A ∪ ¬A).

One application of the inference rule gives us
the proof of ((A ∪ ¬A) ∪ (A ∪ ¬A)).

The next application of the rule (to the al-
ready produced formula) will give us the
proof of (((A∪¬A)∪ (A∪¬A))∪ (A∪¬A)).

It is easy to see that all provable formulas of
S3 will be of the form of the disjunction of
the axiom of S3, i.e.

PRS3
= {

⋃
n

(A ∪ ¬A)n : n ∈ N,A ∈ F},

where
⋃
n(A∪¬A)n denotes a disjunction of

n formulas of the form (A ∪ ¬A).

43

System S4 Obviously, as before, `S4
(A∪¬A).

One application of the inference rule gives

us the proof of (B ∪ (A ∪ ¬A)), where B is

a certain formula from F.

Observe that The rule r can’t be, by its defi-

nition, applied to already produced formula

(except the axiom).

Multiple application of the rule means mul-

tiple application to the axiom and produc-

ing all possible formulas of the form (B ∪
(A ∪ ¬A)), where B’s are different for dif-

ferent applications.

44

Provable formulas of S4:

PRS4
= {(B ∪ (A ∪ ¬A)) : A,B ∈ F}

∪{(A ∪ ¬A) : A ∈ F}.

Provable formulas of S3 and S4. Obviously,

PRS3
⊆ PRS4

as we have, by definition,

that

⋃
n

(A∪¬A)n =
⋃

n−1
(A∪¬A)n−1∪(A∪¬A),

Denote:
⋃
n−1(A ∪ ¬A)n−1 = B

Provable formulas of S3 are axioms or have

a form

(B ∪ (A ∪ ¬A)),

for a certain B ∈ F.

45

Answer to Question 2:

`S4
((a ∪ ¬b) ∪ (a ∪ ¬a)),

but obviously

6 `S3
((a ∪ ¬b) ∪ (a ∪ ¬a)).

The above proves that

PRS3
⊆ PRS4

and PRS3
6= PRS4

.

46

Answer Question 3 It follows immediately form

the form of the sets PRS3
and PRS4

that

both systems are syntactically decidable.

The design of the proper proof searching

procedure is left to the reader as an exer-

cise.

Semantical link 1 : Both systems are sound

under classical semantics.

It follows from the fact that

|= (A ∪ ¬A),

and the rules

B

(B ∪ (A ∪ ¬A))
,

(A ∪ ¬A)

(B ∪ (A ∪ ¬A))

are sound because

|= (B ⇒ (A ∪B)).

47

Semantical link 2 : Both systems are not

sound under L, K, H, B semantics.

It follows from the fact that

6 |=M (A ∪ ¬A)

for M = L, K, H, B.

General Q1 Are all proof systems decidable?

Answer Q1 : No, not all the systems are de-

cidable. The most ”natural” and histori-

cally first developed proof system for clas-

sical predicate logic is not decidable.

48

General Q2 Can we give an example of a proof

system for a given logic which is not de-

cidable, but the logic does have (another)

syntactically decidable system?

Answer Q2 : Hilbert style proof system for

classical logic presented in the next chap-

ter is decidable, but not syntactically de-

cidable.

RS system for classical propositional logic, de-

scribed in chapter 9 is syntactically decid-

able.

49

