Chapter 6

Propositional Tautologies, Logical
Equivalences, Definability of
Connectives and Equivalence of
Languages

Propositional Tautologies for Implication

Modus Ponens known to the Stoics (3rd cen-
tury B.C)

= ((ANn(A= B))= B)

Detachment

= ((ANn(A <« B)) = B)

= ((BN(A« B)) = A)



Sufficient Given an implication

(A= B),

A is called a sufficient condition for B to
hold.

Necessary Given an implication

(A= B),

B is called a necessary condition for A to
hold.



Implication Names

Simple (A = B) is called a simple impli-
cation.
Converse (B = A) is called a converse

implication to (A = B).

Opposite (=B = —A) is called an opposite
implication to (A = B).

Contrary (-A = —B) is called a contrary
implication to (A = B).



Laws of contraposition

= ((A= B) & (=B = —-A)),

= ((B= A) & (-A = -B)).

The laws of contraposition make it possible
to replace, in any deductive argument, a
sentence of the form (A = B) by
—-B = —=A), and conversely.



Necessary and sufficient :

We read (A< B) as

B is necessary and sufficient for A

because of the following tautology.

= (A B) < (A= B)Nn(B= A))).



Hypothetical syllogism (Stoics, 3rd century
B.C.)

= ({((A=B)Nn(B=0))=A=C0)),

= (A= B)=(B=C)= (A= 0))),
= (B=C)= (A= B)= (A= 0))).

Modus Tollendo Ponens (Stoics, 3rd century
B.C.)

= (((AuB)Nn-A) = B),

= (((AUB)N—-B) = A)



Duns Scotus (12/13 century)

= (A= (A= B))

Clavius (16th century)

= ((mA= A) = A)

Frege (1879, first formulation of the classi-
cal propositional logic as a formalized ax-
iomatic system )

= (A= (B=0))N(A=DB))=(A=0)),

= (A= (B=C)=(A=B)=(A=0)))



Apagogic Proofs : means proofs by reduc-
tio ad absurdum.

Reductio ad absurdum : to prove A to be
true, we assume —A.

If we get a contradiction, means we have
proved A to be true.

= (A= (BNn-B))=A)



Implication form : we want to prove (A = B)
by reductio ad absurdum. Correctness of
reasoning is based on the following tautolo-
gies.

= ((m(A=B) = (CN=0)) = (A= B)),

We use the equivalence: =(A = B) = (AN—B)
and get

= (((An-B)= (Cn-C)) = (A= B)).

= (((AN=B) = -A) = (A= B)).

= (((AN=-B) = B) = (A= B)).



Logical equivalence : For any formulas A, B,

A=B iff E(A< B).

Property:

A=B iff E((A=B) and = (B = A).

Laws of contraposition
(A= B)=(—B = —-A),
(B= A) =(-A= —-B),
(A= B)=(—-B=A),

(A= —-B) =(B=-A).
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Theorem Let By be obtained from A7 by sub-
stitution of a formula B for one or more oc-
currences of a sub-formula A of A;, what
we denote as

B1 = A1(A/B).
Then the following holds.

If A=B, then A1 = Bj,

Definability of Connectives

(A= B) = (AU B)

Transform a formula with implication into a
logically equivalent formula without impli-
cation.
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We transform (via our Theorem) a formula

(C = -B) = (BUC))

into its logically equivalent form not con-
taining = as follows.

((C = —-B) = (BUC)) = (~(C = -B)U(BUC)))

= (=(-CUB)U(BUCQ))).

We get

((C = —-B) = (BUC)) = (—~(-CuUB)U(BUC))).
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Substitution Theorem Let By be obtained from
A1 by substitution of a formula B for one
or more occurrences of a sub-formula A of
A1,

We denote it as

By = A{(A/B).

Then the following holds.

If A=B, then A1 = Bj,
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The next set of equivalences, or correspond-
ing tautologies, deals with what is called a
definability of connectives in classical se-
mantics.

For example, a tautology

= ((A= B) < (-AUB))

makes it possible to define implication in
terms of disjunction and negation.

We state it in a form of logical equivalence
as follows.

Definability of Implication in terms of nega-
tion and disjunction:

(A= B) = (—AU B)

14



We use logical equivalence notion, instead of
the tautology notion, as it makes the ma-
nipulation of formulas much easier.

Definability of Implication equivalence allows
us, by the force of Substitution Theo-
rem to replace any formula of the form
(A = B) placed anywhere in another for-
mula by a formula (=AU B).

Hence we transform a given formula contain-
ing implication into an logically equivalent
formula that does contain implication (but
contains negation and disjunction).
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Example 1 We transform (via Substitution
Theorem) a formula

((C = -B) = (BUCQ))

into its logically equivalent form not con-
taining = as follows.

((C = -B) = (BUCQ))
= (~(C = -B)u (BUCQ)))

= (~(~CUB)U(BUQ))).

We get

((C = -B) = (BUQ))

= (~(~CUB)U(BUQ))).
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It means that that we can, by the Substitu-
tion Theorem transform a language

,Cl — ’C{—l,ﬂ,:>}

into a language

£2 — ;c{_umju}

with all its formulas being logically equiva-
lent.

We write it as the following condition.
C1: for any formula A of £, there is a formula

B of L5, such that A = B.
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Example 2 : Let A be a formula

(AU (mAU-B))

We use the definability of implication equiva-
lence to eliminate disjunction as follows

(AU (mAU-B)) = (-AU(A = —-B))
= (A= (A= -B)).
Observe, that we can’t always use the equiv-

alence (A = B) = (mAUB) to eliminate any
disjunction.

For example, we can’t use it for a formula
A= ((aUb) N—a).
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In order to be able to transform any formula
of a language containing disjunction (and
some other connectives) into a language
with negation and implication (and some
other connectives), but without disjunc-
tion we need the following logical equiva-
lence.

Definability of Disjunction in terms of nega-
tion and implication:

(AUB) = (-A = B)
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Example 3 Consider a formula A

(aUb) N —a).

We transform A into its logically equivalent
form not containing U as follows.

((aUb)N—a) = ((—a = b)) N—a).

In general, we transform the language L, =
Li nuytothelanguage L1 = Ly .y with
all its formulas being logically equivalent.
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We write it as the following condition.

C1: for any formula C of L5, there is a formula
D of L4, such that C = D.

The languages £1 and L, for which we the
conditions C1, C2 hold are called logically
equivalent.

We denote it by

,Cl = ,CQ.

A general, formal definition goes as follows.
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Definition of Equivalence of Languages

Given two languages: L3 = Loon,
and Lo = £C’ON27 for CON1 #= CON>.

We say that they are logically equivalent, i.e.

ﬁlE[,Q

if and only if the following conditions C1,
C2 hold.

C1l: For every formula A of L4, there is a
formula B of L5, such that

A =B,

C2: For every formula C' of L£», there is a
formula D of £4, such that

C = D.
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Example 4 To prove the logical equivalence
of the languages

Limur =L}
we need two definability equivalences:

implication in terms of disjunction and nega-
tion,

disjunction in terms of implication and nega-
tion, and the Substitution Theorem.
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Example 5 To prove the logical equivalence
of the languages

£{_',H,U,:>} = £{_|,H,U}

we need only the definability of implication equiv-
alence.

It proves, by Substitution Theorem that for
any formula A of

Limnu=}
there is B of Ly ~ ) that equivalent to A,
l.e.
A=1B

and condition C1 holds.

Observe, that any formula A of language

K’{—|,H7U}
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IS also a formula of
Lianu=1
and of course
A=A,

so C2 also holds.



T he logical equalities below

Definability of Conjunction in terms of im-
plication and negation

(AN B) = —(A = —B),

Definability of Implication in terms of con-
junction and negation

(A= B) = (AN -B),

and the Substitution Theorem prove that

E{ﬂﬂ} = ,C{_|’:>}.
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Exercise 1

(a) Prove that
L{m7_|} p— E{U,ﬂ}'
(b) Transform a formula A = —(—=(—an—-b)Na)

of E{mﬁ} into a logically equivalent formula
B of ﬁ{U,—'}‘

(c) Transform a formula
A= (((maU=-b)Ua)U(aU—c)) of Ly-y into
a formula B of £{mﬁ}, such that A = B.

(d) Prove/disaprove: = —(—(—an-b)Na).
(e) Prove/disaprove:

= (((maU—-b)Ua) U (aU—c)).

26



Solution (a) True due to the Substitution The-
orem and two definability of connectives
equivalences:

(ANB) = -(-AU-B), (AUB) = —~(—-AN—-B).
Solution (b)
—(=(=anN-=b)Na)
= (== (—=—aU—-=b)Na)
= —((aUb)Na)

=(=(aUb) U=—a).

The formula B of L, _y equivalent to A is

B = —-(=(aUb) U —a).
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Solution (¢)

(((maU=b)Ua) U (aU-c))
=((=(=—anN—-=b)Ua) U=(-anN-—c))
= ((=(anNb)Ua)U—=(-anc))
= (=(==(anb)N—-a)U—-(-anc))
= (=((and)N=a)U—-(-anc))
= (= ((anbd)N—a) N—==(-anNc))

== (((anb)N=-a)N(—anc))
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There are two formulas B of Ly _y, such that
A=B.

B =B1=—-(=((anbd)N=-a)N-—=(-anc)),

B=B==(((anb)nN=—-a)N(—-anc)).
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Solution (d)

7= —(~(-an-b)Na)

Our formula A islogically equivalent, as proved
in (c) with the formula
B = —(=(aUb) U —a).

Consider any truth assignment v, such that
v(a) = F , then
(=(aUb)UT) =T,
and hence v*(B) = F.
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Solution (e)

= (((maU—=b) Ua) U (aU—c))

because it was proved in (c) that
(((mraU=b)Ua)U (aU—c))
=-(((anb)N—-a)N(—anc))
and obviously the formula

(((anb)N—-a)N(—-anc))

IS a contradiction.

Hence its negation is a tautology.
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Exercise 2 Prove by transformation, using proper
logical equivalences that

(A< B)=((AN=-B)U (=ANB)),

((BN—=C) = (=AU B))

= ((B=C)U(A= B)).
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Solution 1.

~(A < B)
=1/~((A= B)n (B = A))
=de Morgan(~(A = B)U~(B = A))
=negd mpl((AN-B)U(BN-A4))

=commut((An-B)U(-ANB)).

Solution 2.

((BN=C) = (AU B))
=mpPl(~(BN-C) U (-AU B))
=de Morgan((_ B —~-C) U (=AU B))
="9((-BUC)U (AU B))
="mPl((B = C)U (A = B)).
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SOME PROBLEMS: chapters 5,6

Reminder: We define H semantics operations
U and N as follows

aUb= max{a, b}, aNb= min{a,b}.

The Truth Tables for Implication and Nega-
tion are:

H-Implication

= |F 1L T
F|T T T
1 |F T T
T|F L1 T
H Negation
- F L T
T F F
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QUESTION 1 We know that
v:VAR — {F, 1, T}

IS such that

v*((and) = (a=c)) =L

under H semantics.
evaluate:

v*(((b=a) = (a = —¢c))U(a=0)).
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Solution : v*((anNb) = (a = ¢)) =1 under H
semantics if and only if (we use shorthand
notation) (anb) = T and (a = ¢) =L if
and only ifa=T,b=T and (T = ¢) =L if
and only i fe=1. I.e. we have that

v*((anb) = (a=¢c)) =L iff a=T,b=T,c=1

Now we can we evaluate v*(((b = a) =
(a = —¢)) U (a = b)) as follows (in short-
hand notation).

v*(((b=a)=(a= —c))U(a=0Db)) =
((T=T)=T=-1L)u(T=T) =
(T'=T=F)uT)=T.
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We define a 4 valued t 4 logic semantics as
follows. The language is £ = /L{ﬁéju,m}.

We define the logical connectives =, =, U, N
of .4 as the following operations in the set
{F, 11,15, T}, where {F < 11 <1lo<T}.

Negation —: {F,J_]_,J_Q,T} — {F,J_l,J_Q,T},
such that

-l =14, "do=1op, F=T, T =F.

Conjunction N:{F, 11,1, T}x{F, 11,105, T} —
1F, 11, 15,,T}

such that for any a,b € {F, 11, 15, T},

aNb=min{a,b}.
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Disjunction U :{F, 11, 1o, T}x{F, 11,15, T} —
{F,11,12,T}

such that for any a,b € {F, 11, 15, T},

aUb=mazx{a,b}.

Implication = {F,J_l,J_Q,T}X{F,J_l,J_Q,T} —
{F,11,12,T},

such that for any a,be {F, L1, 15, T},

Ly [ maub ifa>b
a T otherwise
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QUESTION 2

Part 1 Write all Tables for 1.4

Solution :

1., Negation

—l‘F J—l J_Q T
‘T 11 1o F

., Conjunction

Nn | F 17 1o T
F | F F F F
14 /F 17 11 14
1o | F 17 1o 1o
T |F 19 1o T
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1t , Disjunction

U F

F|F
19|11
1o | 1o
T T

=

|_

N
-~

t s-Implication

= F J—l 1o T
F | T T T T
111y T T T
1o | 1o 1o T T
T F 17 1o T
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Part 2 Verify whether

=t ,((a=1b) = (maUDb))

Solution : Let v be a truth assignment such
that v(a) = v(b) = L4.

We evaluate v*((a = b) = (maUDb)) =
(L1= 11) = (CL1Uly) =T = (L1V
L) =T = 11)=11.
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This proves that v is a counter-model for our
formula and

=t ,((a=b) = (naUD)).

Observe that a v such that v(a) = v(b) =
15 is also a counter model, as v*((a = b) =
(raUb)) = (Lo = 1o) = (LU lp)) =
(T = (J_Q U J_Q)) = (T = J_Q) = 1o.
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QUESTION 3 Prove using proper logical equiv-
alences (list them at each step) that

1. (A<= B) = ((ANn-B)U(=AN B)),

Solution: -(4 < B)=%/-((A = B)n (B =
A))=deMorgan((A = B) U—~(B = A))
=negimpl((AN-B) U (BN-A))=Commut((An
-B)U(-ANB)).

2. (BN-C)=(-AUB)=(B=C)Uu(A=>
B)).
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Solution: ((BN-C) = (~AU B))=""\(-(B N
—|C)U(—IAUB))EdeMorgan((—lBU—'—lC)U(—lAU
B))
=dneg((=BUC)U(=AUB))="Pl((B = C)U
(A= B)).
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QUESTION 4 We definean EQUIVALENCE
of LANGUAGES as follows:

Given two languages:

L1 = £C’ON1 and Lo, = ‘E’CONQ' for CON1 #
CON>.

We say that they are logically equivalent,
i.e.

ﬁlE[Q

if and only if the following conditions C1,
C2 hold.

Cl: For every formula A of L4, there is
a formula B of L5, such that

A = B,

C2: For every formula C of Lo, there is
a formula D of L4, such that

C = D.
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Prove that ﬁ{_l’ﬂ} = E{—l,:>}’

Solution: The equivalence of languages holds
due to two definability of connectives equiv-
alences:

(ANB) = ~(A = —B), (A= B)=—(AN-B).
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