
Chapter 6

Propositional Tautologies, Logical
Equivalences, Definability of

Connectives and Equivalence of
Languages

Propositional Tautologies for Implication

Modus Ponens known to the Stoics (3rd cen-

tury B.C)

|= ((A ∩ (A⇒ B))⇒ B)

Detachment

|= ((A ∩ (A⇔ B))⇒ B)

|= ((B ∩ (A⇔ B))⇒ A)

1

Sufficient Given an implication

(A⇒ B),

A is called a sufficient condition for B to

hold.

Necessary Given an implication

(A⇒ B),

B is called a necessary condition for A to

hold.

2

Implication Names

Simple (A ⇒ B) is called a simple impli-

cation.

Converse (B ⇒ A) is called a converse

implication to (A⇒ B).

Opposite (¬B ⇒ ¬A) is called an opposite

implication to (A⇒ B).

Contrary (¬A ⇒ ¬B) is called a contrary

implication to (A⇒ B).

3

Laws of contraposition

|= ((A⇒ B)⇔ (¬B ⇒ ¬A)),

|= ((B ⇒ A)⇔ (¬A⇒ ¬B)).

The laws of contraposition make it possible

to replace, in any deductive argument, a

sentence of the form (A⇒ B) by

¬B ⇒ ¬A), and conversely.

4

Necessary and sufficient :

We read (A⇔ B) as

B is necessary and sufficient for A

because of the following tautology.

|= ((A⇔ B))⇔ ((A⇒ B) ∩ (B ⇒ A))).

5

Hypothetical syllogism (Stoics, 3rd century

B.C.)

|= (((A⇒ B) ∩ (B ⇒ C))⇒ (A⇒ C)),

|= ((A⇒ B)⇒ ((B ⇒ C)⇒ (A⇒ C))),

|= ((B ⇒ C)⇒ ((A⇒ B)⇒ (A⇒ C))).

Modus Tollendo Ponens (Stoics, 3rd century

B.C.)

|= (((A ∪B) ∩ ¬A)⇒ B),

|= (((A ∪B) ∩ ¬B)⇒ A)

6

Duns Scotus (12/13 century)

|= (¬A⇒ (A⇒ B))

Clavius (16th century)

|= ((¬A⇒ A)⇒ A)

Frege (1879, first formulation of the classi-

cal propositional logic as a formalized ax-

iomatic system)

|= (((A⇒ (B ⇒ C))∩(A⇒ B))⇒ (A⇒ C)),

|= ((A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C)))

7

Apagogic Proofs : means proofs by reduc-

tio ad absurdum.

Reductio ad absurdum : to prove A to be

true, we assume ¬A.

If we get a contradiction, means we have

proved A to be true.

|= ((¬A⇒ (B ∩ ¬B))⇒ A)

8

Implication form : we want to prove (A⇒ B)

by reductio ad absurdum. Correctness of

reasoning is based on the following tautolo-

gies.

|= (((¬(A⇒ B)⇒ (C ∩ ¬C))⇒ (A⇒ B)),

We use the equivalence: ¬(A⇒ B) ≡ (A∩¬B)

and get

|= (((A ∩ ¬B)⇒ (C ∩ ¬C))⇒ (A⇒ B)).

|= (((A ∩ ¬B)⇒ ¬A)⇒ (A⇒ B)).

|= (((A ∩ ¬B)⇒ B)⇒ (A⇒ B)).

9

Logical equivalence : For any formulas A,B,

A ≡ B iff |= (A⇔ B).

Property:

A ≡ B iff |= (A⇒ B) and |= (B ⇒ A).

Laws of contraposition

(A⇒ B) ≡ (¬B ⇒ ¬A),

(B ⇒ A) ≡ (¬A⇒ ¬B),

(¬A⇒ B) ≡ (¬B ⇒ A),

(A⇒ ¬B) ≡ (B ⇒ ¬A).

10

Theorem Let B1 be obtained from A1 by sub-

stitution of a formula B for one or more oc-

currences of a sub-formula A of A1, what

we denote as

B1 = A1(A/B).

Then the following holds.

If A ≡ B, then A1 ≡ B1,

Definability of Connectives

(A⇒ B) ≡ (¬A ∪B)

Transform a formula with implication into a

logically equivalent formula without impli-

cation.

11

We transform (via our Theorem) a formula

((C ⇒ ¬B)⇒ (B ∪ C))

into its logically equivalent form not con-

taining ⇒ as follows.

((C ⇒ ¬B)⇒ (B∪C)) ≡ (¬(C ⇒ ¬B)∪(B∪C)))

≡ (¬(¬C ∪B) ∪ (B ∪ C))).

We get

((C ⇒ ¬B)⇒ (B∪C)) ≡ (¬(¬C∪B)∪(B∪C))).

12

Substitution Theorem Let B1 be obtained from

A1 by substitution of a formula B for one

or more occurrences of a sub-formula A of

A1.

We denote it as

B1 = A1(A/B).

Then the following holds.

If A ≡ B, then A1 ≡ B1,

13

The next set of equivalences, or correspond-

ing tautologies, deals with what is called a

definability of connectives in classical se-

mantics.

For example, a tautology

|= ((A⇒ B)⇔ (¬A ∪B))

makes it possible to define implication in

terms of disjunction and negation.

We state it in a form of logical equivalence

as follows.

Definability of Implication in terms of nega-

tion and disjunction:

(A⇒ B) ≡ (¬A ∪B)

14

We use logical equivalence notion, instead of

the tautology notion, as it makes the ma-

nipulation of formulas much easier.

Definability of Implication equivalence allows

us, by the force of Substitution Theo-

rem to replace any formula of the form

(A ⇒ B) placed anywhere in another for-

mula by a formula (¬A ∪B).

Hence we transform a given formula contain-

ing implication into an logically equivalent

formula that does contain implication (but

contains negation and disjunction).

15

Example 1 We transform (via Substitution

Theorem) a formula

((C ⇒ ¬B)⇒ (B ∪ C))

into its logically equivalent form not con-

taining ⇒ as follows.

((C ⇒ ¬B)⇒ (B ∪ C))

≡ (¬(C ⇒ ¬B) ∪ (B ∪ C)))

≡ (¬(¬C ∪B) ∪ (B ∪ C))).

We get

((C ⇒ ¬B)⇒ (B ∪ C))

≡ (¬(¬C ∪B) ∪ (B ∪ C))).

16

It means that that we can, by the Substitu-

tion Theorem transform a language

L1 = L{¬,∩,⇒}
into a language

L2 = L{¬,∩,∪}
with all its formulas being logically equiva-

lent.

We write it as the following condition.

C1: for any formula A of L1, there is a formula

B of L2, such that A ≡ B.

17

Example 2 : Let A be a formula

(¬A ∪ (¬A ∪ ¬B))

.

We use the definability of implication equiva-

lence to eliminate disjunction as follows

(¬A ∪ (¬A ∪ ¬B)) ≡ (¬A ∪ (A⇒ ¬B))

≡ (A⇒ (A⇒ ¬B)).

Observe, that we can’t always use the equiv-

alence (A⇒ B) ≡ (¬A∪B) to eliminate any

disjunction.

For example, we can’t use it for a formula

A = ((a ∪ b) ∩ ¬a).

18

In order to be able to transform any formula

of a language containing disjunction (and

some other connectives) into a language

with negation and implication (and some

other connectives), but without disjunc-

tion we need the following logical equiva-

lence.

Definability of Disjunction in terms of nega-

tion and implication:

(A ∪B) ≡ (¬A⇒ B)

19

Example 3 Consider a formula A

(a ∪ b) ∩ ¬a).

We transform A into its logically equivalent

form not containing ∪ as follows.

((a ∪ b) ∩ ¬a) ≡ ((¬a⇒ b) ∩ ¬a).

In general, we transform the language L2 =

L{¬,∩,∪} to the language L1 = L{¬,∩,⇒} with

all its formulas being logically equivalent.

20

We write it as the following condition.

C1: for any formula C of L2, there is a formula

D of L1, such that C ≡ D.

The languages L1 and L2 for which we the

conditions C1, C2 hold are called logically

equivalent.

We denote it by

L1 ≡ L2.

A general, formal definition goes as follows.

21

Definition of Equivalence of Languages

Given two languages: L1 = LCON1

and L2 = LCON2
, for CON1 6= CON2.

We say that they are logically equivalent, i.e.

L1 ≡ L2

if and only if the following conditions C1,

C2 hold.

C1: For every formula A of L1, there is a

formula B of L2, such that

A ≡ B,

C2: For every formula C of L2, there is a

formula D of L1, such that

C ≡ D.

22

Example 4 To prove the logical equivalence

of the languages

L{¬,∪} ≡ L{¬,⇒}
we need two definability equivalences:

implication in terms of disjunction and nega-

tion,

disjunction in terms of implication and nega-

tion, and the Substitution Theorem.

23

Example 5 To prove the logical equivalence

of the languages

L{¬,∩,∪,⇒} ≡ L{¬,∩,∪}

we need only the definability of implication equiv-

alence.

It proves, by Substitution Theorem that for

any formula A of

L{¬,∩,∪,⇒}
there is B of L{¬,∩,∪} that equivalent to A,

i.e.

A ≡ B

and condition C1 holds.

Observe, that any formula A of language

L{¬,∩,∪}
24

is also a formula of

L{¬,∩,∪,⇒}
and of course

A ≡ A,

so C2 also holds.

The logical equalities below

Definability of Conjunction in terms of im-

plication and negation

(A ∩B) ≡ ¬(A⇒ ¬B),

Definability of Implication in terms of con-

junction and negation

(A⇒ B) ≡ ¬(A ∩ ¬B),

and the Substitution Theorem prove that

L{¬,∩} ≡ L{¬,⇒}.

25

Exercise 1

(a) Prove that

L{∩,¬} ≡ L{∪,¬}.

(b) Transform a formula A = ¬(¬(¬a∩¬b)∩a)

of L{∩,¬} into a logically equivalent formula

B of L{∪,¬}.

(c) Transform a formula

A = (((¬a∪¬b)∪a)∪(a∪¬c)) of L{∪,¬} into

a formula B of L{∩,¬}, such that A ≡ B.

(d) Prove/disaprove: |= ¬(¬(¬a ∩ ¬b) ∩ a).

(e) Prove/disaprove:

|= (((¬a ∪ ¬b) ∪ a) ∪ (a ∪ ¬c)).

26

Solution (a) True due to the Substitution The-

orem and two definability of connectives

equivalences:

(A∩B) ≡ ¬(¬A∪¬B), (A∪B) ≡ ¬(¬A∩¬B).

Solution (b)

¬(¬(¬a ∩ ¬b) ∩ a)

≡ ¬(¬¬(¬¬a ∪ ¬¬b) ∩ a)

≡ ¬((a ∪ b) ∩ a)

≡ ¬(¬(a ∪ b) ∪ ¬a).

The formula B of L{∪,¬} equivalent to A is

B = ¬(¬(a ∪ b) ∪ ¬a).

27

Solution (c)

(((¬a ∪ ¬b) ∪ a) ∪ (a ∪ ¬c))

≡((¬(¬¬a ∩ ¬¬b) ∪ a) ∪ ¬(¬a ∩ ¬¬c))

≡ ((¬(a ∩ b) ∪ a) ∪ ¬(¬a ∩ c))

≡ (¬(¬¬(a ∩ b) ∩ ¬a) ∪ ¬(¬a ∩ c))

≡ (¬((a ∩ b) ∩ ¬a) ∪ ¬(¬a ∩ c))

≡ ¬(¬¬((a ∩ b) ∩ ¬a) ∩ ¬¬(¬a ∩ c))

≡¬(((a ∩ b) ∩ ¬a) ∩ (¬a ∩ c))

28

There are two formulas B of L{∩,¬}, such that

A ≡ B.

B = B1 = ¬(¬¬((a ∩ b) ∩ ¬a) ∩ ¬¬(¬a ∩ c)),

B = B2 = ¬(((a ∩ b) ∩ ¬a) ∩ (¬a ∩ c)).

29

Solution (d)

6|= ¬(¬(¬a ∩ ¬b) ∩ a)

Our formula A is logically equivalent, as proved

in (c) with the formula

B = ¬(¬(a ∪ b) ∪ ¬a).

Consider any truth assignment v, such that

v(a) = F , then

(¬(a ∪ b) ∪ T) = T ,

and hence v∗(B) = F .

30

Solution (e)

|= (((¬a ∪ ¬b) ∪ a) ∪ (a ∪ ¬c))

because it was proved in (c) that

(((¬a ∪ ¬b) ∪ a) ∪ (a ∪ ¬c))

≡ ¬(((a ∩ b) ∩ ¬a) ∩ (¬a ∩ c))

and obviously the formula

(((a ∩ b) ∩ ¬a) ∩ (¬a ∩ c))

is a contradiction.

Hence its negation is a tautology.

31

Exercise 2 Prove by transformation, using proper

logical equivalences that

1.

¬(A⇔ B) ≡ ((A ∩ ¬B) ∪ (¬A ∩B)),

2.

((B ∩ ¬C)⇒ (¬A ∪B))

≡ ((B ⇒ C) ∪ (A⇒ B)).

32

Solution 1.

¬(A⇔ B)

≡def¬((A⇒ B) ∩ (B ⇒ A))

≡de Morgan(¬(A⇒ B) ∪ ¬(B ⇒ A))

≡neg impl((A ∩ ¬B) ∪ (B ∩ ¬A))

≡commut((A ∩ ¬B) ∪ (¬A ∩B)).

Solution 2.

((B ∩ ¬C)⇒ (¬A ∪B))

≡impl(¬(B ∩ ¬C) ∪ (¬A ∪B))

≡de Morgan((¬B ∪ ¬¬C) ∪ (¬A ∪B))

≡neg((¬B ∪ C) ∪ (¬A ∪B))

≡impl((B ⇒ C) ∪ (A⇒ B)).

33

SOME PROBLEMS: chapters 5,6

Reminder: We define H semantics operations

∪ and ∩ as follows

a ∪ b = max{a, b}, a ∩ b = min{a, b}.

The Truth Tables for Implication and Nega-

tion are:

H-Implication

⇒ F ⊥ T
F T T T
⊥ F T T
T F ⊥ T

H Negation

¬ F ⊥ T
T F F

34

QUESTION 1 We know that

v : V AR −→ {F,⊥, T}

is such that

v∗((a ∩ b)⇒ (a⇒ c)) =⊥

under H semantics.

evaluate:

v∗(((b⇒ a)⇒ (a⇒ ¬c)) ∪ (a⇒ b)).

35

Solution : v∗((a ∩ b) ⇒ (a ⇒ c)) =⊥ under H

semantics if and only if (we use shorthand

notation) (a ∩ b) = T and (a ⇒ c) =⊥ if

and only if a = T, b = T and (T ⇒ c) =⊥ if

and only i f c =⊥. I.e. we have that

v∗((a∩b)⇒ (a⇒ c)) =⊥ iff a = T, b = T, c =⊥ .

Now we can we evaluate v∗(((b ⇒ a) ⇒
(a ⇒ ¬c)) ∪ (a ⇒ b)) as follows (in short-

hand notation).

v∗(((b⇒ a)⇒ (a⇒ ¬c)) ∪ (a⇒ b)) =

(((T ⇒ T)⇒ (T ⇒ ¬ ⊥)) ∪ (T ⇒ T)) =

((T ⇒ (T ⇒ F)) ∪ T) = T .

36

We define a 4 valued L4 logic semantics as

follows. The language is L = L{¬,⇒,∪,∩}.

We define the logical connectives ¬,⇒,∪,∩
of L4 as the following operations in the set

{F,⊥1,⊥2, T}, where {F < ⊥1 < ⊥2 < T}.

Negation ¬ : {F,⊥1,⊥2, T} −→ {F,⊥1,⊥2, T},

such that

¬⊥1 = ⊥1, ¬⊥2 = ⊥2, ¬F = T, ¬T = F.

Conjunction ∩ : {F,⊥1,⊥2, T}×{F,⊥1,⊥2, T} −→
{F, ⊥1,⊥2, , T}

such that for any a, b ∈ {F,⊥1,⊥2, T},

a ∩ b = min{a, b}.

37

Disjunction ∪ : {F,⊥1,⊥2, T}×{F,⊥1,⊥2, T} −→
{F,⊥1,⊥2, T}

such that for any a, b ∈ {F,⊥1,⊥2, T},

a ∪ b = max{a, b}.

Implication ⇒: {F,⊥1,⊥2, T}×{F,⊥1,⊥2, T} −→
{F,⊥1,⊥2, T},

such that for any a, b ∈ {F,⊥1,⊥2, T},

a⇒ b =

{
¬a ∪ b if a > b
T otherwise

38

QUESTION 2

Part 1 Write all Tables for L4

Solution :

 L4 Negation

¬ F ⊥1 ⊥2 T
T ⊥1 ⊥2 F

 L4 Conjunction

∩ F ⊥1 ⊥2 T
F F F F F
⊥1 F ⊥1 ⊥1 ⊥1
⊥2 F ⊥1 ⊥2 ⊥2
T F ⊥1 ⊥2 T

39

 L4 Disjunction

∪ F ⊥1 ⊥2 T
F F ⊥1 ⊥2 T
⊥1 ⊥1 ⊥1 ⊥2 T
⊥2 ⊥2 ⊥2 ⊥2 T
T T T T T

 L4-Implication

⇒ F ⊥1 ⊥2 T
F T T T T
⊥1 ⊥1 T T T
⊥2 ⊥2 ⊥2 T T
T F ⊥1 ⊥2 T

40

Part 2 Verify whether

|= L4
((a⇒ b)⇒ (¬a ∪ b))

Solution : Let v be a truth assignment such

that v(a) = v(b) = ⊥1.

We evaluate v∗((a ⇒ b) ⇒ (¬a ∪ b)) =

((⊥1 ⇒ ⊥1) ⇒ (¬⊥1 ∪ ⊥1)) = (T ⇒ (⊥1 ∪
⊥1)) = (T ⇒ ⊥1) = ⊥1.

41

This proves that v is a counter-model for our

formula and

6 |= L4
((a⇒ b)⇒ (¬a ∪ b)).

Observe that a v such that v(a) = v(b) =

⊥2 is also a counter model, as v∗((a⇒ b)⇒
(¬a ∪ b)) = ((⊥2 ⇒ ⊥2) ⇒ (¬⊥2 ∪ ⊥2)) =

(T ⇒ (⊥2 ∪ ⊥2)) = (T ⇒ ⊥2) = ⊥2.

42

QUESTION 3 Prove using proper logical equiv-

alences (list them at each step) that

1. ¬(A⇔ B) ≡ ((A ∩ ¬B) ∪ (¬A ∩B)),

Solution: ¬(A ⇔ B)≡def¬((A ⇒ B) ∩ (B ⇒
A))≡deMorgan(¬(A⇒ B) ∪ ¬(B ⇒ A))

≡negimpl((A∩¬B)∪ (B ∩¬A))≡commut((A∩
¬B) ∪ (¬A ∩B)).

2. ((B ∩ ¬C) ⇒ (¬A ∪ B)) ≡ ((B ⇒ C) ∪ (A ⇒
B)).

43

Solution: ((B ∩ ¬C) ⇒ (¬A ∪ B))≡impl(¬(B ∩
¬C)∪(¬A∪B))≡deMorgan((¬B∪¬¬C)∪(¬A∪
B))

≡dneg((¬B∪C)∪(¬A∪B))≡impl((B ⇒ C)∪
(A⇒ B)).

44

QUESTION 4 We define an EQUIVALENCE

of LANGUAGES as follows:

Given two languages:

L1 = LCON1
and L2 = LCON2

, for CON1 6=
CON2.

We say that they are logically equivalent,

i.e.

L1 ≡ L2

if and only if the following conditions C1,

C2 hold.

C1: For every formula A of L1, there is

a formula B of L2, such that

A ≡ B,

C2: For every formula C of L2, there is

a formula D of L1, such that

C ≡ D.

45

Prove that L{¬,∩} ≡ L{¬,⇒}.

Solution: The equivalence of languages holds

due to two definability of connectives equiv-

alences:

(A∩B) ≡ ¬(A⇒ ¬B), (A⇒ B) ≡ ¬(A∩¬B).

46

