
Chapter 2: Introduction to
Propositional Logic

PART ONE: History and Motivation

Origins: Stoic school of philosophy (3rd cen-

tury B.C.), with the most eminent repre-

sentative was Chryssipus.

Modern Origins: Mid-19th century - English

mathematician G. Boole, who is some-

times regarded as the founder of mathe-

matical logic.

First Axiomatic System: 1879 by German lo-

gician G. Frege.
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The first assumption underlying the formal-

ization of classical propositional logic (cal-

culus) is the following.

We assume that sentences are always evalu-

ated as true or false. Such sentences are

called logical sentences or propositions.

Hence the name propositional logic.
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A statement: 2+2 = 4 is a proposition (true).

A statement: 2 + 2 = 5 is also a proposition

(false).

A statement: I am pretty is modeled as a log-

ical sentence (proposition). We assume

that it is false, or true.

A statement: 2+n = 5 is not a proposition;

it might be true for some n, for example

n=3, false for other n, for example n= 2,

and moreover, we don’t know what n is.

Sentences of this kind are called proposi-

tional functions.

We model propositional functions within propo-

sitional logic by treating propositional func-

tions as propositions.
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The classical logic reflects the black and white

qualities of mathematics.

We expect from mathematical theorems to

be always either true or false and the rea-

sonings leading to them should guarantee

this without any ambiguity.
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Formulas

We combine logical sentences to form more

complicated sentences, called formulas.

We combine them using the following words

or phrases:

not; and; or; if ..., then; if and only if.

We use only symbols do denote both logical

sentences and the phrases: not; and; or; if

..., then; if and only if.

Hence the name symbolic logic.
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Logical sentences are denoted by symbols

a, b, c, p, r, q, ..

Symbols for logical connectives are: ¬ for ”not”,

∩ for ”and”, ∪ for ”or”, ⇒ for ”if ..., then”,

and ⇔ for ”if and only if”.
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Translate a natural language sentence:

The fact that it is not true that at the

same time 2 + 2 = 4 and 2 + 2 = 5 implies

that 2 + 2 = 4

into its propositional symbolic logic for-

mula.

First we write it in a form:

If not (2 + 2 = 4 and 2 + 2 = 5) then

2 + 2 = 4

Second we write it in a symbolic formula:

(¬(a ∩ b)⇒ a).
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Translate a natural language sentence:

The fact that it is not true that at the

same time 2 + n = 4 and some numbers

are pretty implies that 2 + n = 4

into its propositional symbolic logic for-

mula.

First we write it in a form:

If not (2 + n = 4 and some numbers are

pretty ) then 2 + n = 4

Second we write it in a symbolic formula:

(¬(a ∩ b)⇒ a).
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Syntax of a symbolic language is the formal

description of the symbols we use and the

way we construct the formulas.

A formal language, or just a language, is an-

other word for the symbolic language.

Propositional languages are the syntax of

propositional logics.

Predicate languages are the syntax of more

complex logics, called predicate logics or

predicate calculi.
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GENERAL REMARK: The formal language

symbols and formulas i.e. the established

syntax don’t directly carry with them any

logical value.

We assign them their logical value in a sepa-

rate step.

This next step is called a semantics of the

given language.

A given language can have different seman-

tics and the different semantics will define

different logics.
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Propositional Language

Any symbolic language consists of an alpha-

bet and a set of formulas.

Propositional language consists of a propo-

sitional alphabet and a set of formulas (propo-

sitional).

Propositional Alphabet consists of a set of

variables and a set of propositional con-

nectives.

Variables are the symbols denoting logical sen-

tences (propositions) are called proposi-

tional variables.
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We denote the propositional variables by let-

ters a, b, c,.... , with indices if necessary.

We also use a1, a2, ..., b1, b2, ... etc... as sym-

bols for propositional variables.

The symbols for connectives are: ¬, ∩, ∪,

⇒, ⇔ and their names are: a negation,

a conjunction, a disjunction, an implica-

tion,and an equivalence, respectively.
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Formulas are expressions build by means of

logical connectives and variables and are

be denoted by A,B,C, ..., with indices, if

necessary.

The propositional variables are formulas and

are called atomic formulas.

Recursive step: if we already have two for-

mulas A,B, then we adopt the expression:

(A∩B), (A∪B), (A⇒ B), (A⇔ B) and also

¬A as formulas.
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Example

By the definition, any propositional variable is

a formula. For example, a, b are formulas

(atomic).

By the recursive step we get that

(a ∩ b), (a ∪ b), (a⇒ b), (a⇔ b),¬a,¬b

are formulas.

Recursive step applied again produces for ex-

ample the following formulas :

¬(a ∩ b), ((a⇔ b) ∪ ¬b),¬¬a,¬¬(a ∩ b).
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We didn’t list all formulas we obtained in the

first recursive step.

Moreover , the recursive process continue. The

set of all formulas is (countably) infinite.

Remark that we put parenthesis within the

formulas in a way to avoid ambiguity.

The expression: a ∩ b ∪ a, is ambiguous. We

don’t know whether it represents (a∩ b)∪a
or a ∩ (b ∪ a). So, it is not a formula.
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Introduction to Semantics for Classical

Propositional Connectives

We present here the definition of propositional

connectives in terms of logical values (true

or false) and discussed the motivations for

presented definitions.

The resulting definitions are called a seman-

tics for the classical propositional connec-

tives.

The formal description of a process of assign-

ing a logical value (true or false) to all for-

mulas is called a semantics of the classical

propositional logic.
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CONJUNCTION - Motivation and definition.

A conjunction (A ∩ B) is a true formula if

both A and B are true formulas. If one of

the formulas, or both, are false, then the

conjunction is a false formula.

Denote A is false by v(A) = F and A is true

by v(A) = T .

The logical value of a conjunction depends

on the logical values of its factors in a way

which is express in the form of the following

table (truth table).
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Conjunction Table :

v(A) v(B) v(A ∩B)
T T T
T F F
F T F
F F F
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DISJUNCTION - Motivation and definition.

The word or is used in two different senses.

First: A or B is true if at least one of the

statements A and B is true.

Second: A or B is true if one of the state-

ments A and B is true, and the other is

false.

In mathematics and hence in logic, the word

or is used in the first sense.
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Hence, we adopt the convention that a dis-

junction (A ∪ B) is true if at least one of

the formulas A and B is true.

We write in a form of the following

Disjunction Table :

v(A) v(B) v(A ∪B)
T T T
T F T
F T T
F F F
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NEGATION - Motivation and definition.

The negation of a true formula is a false for-

mula, and the negation of a false formula

is a true formula. This is expressed in the

following

Negation Table :

v(A) v(¬A)
T F
F T
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IMPLICATION - Motivation and definition.

The semantics of the statements in the form

if A, then B needs a little but more od

discussion.

In everyday language a statement

if A, then B

is interpreted to mean that B can be

inferred from A.

In mathematics its interpretation differs from

that in natural language.
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Consider the following arithmetical theorem:

For every natural number n,

if 6 DIVIDES n, then 3 DIVIDES n.

The theorem is true for any natural number,

hence, in particular, it is true for numbers

2,3,6.

Consider number 2.

The following proposition is true.

if 6 DIVIDES 2, then 3 DIVIDES 2.

It means an implication (A ⇒ B) in which A

and B are false statements is interpreted

as a true statement.
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Consider now a number 3.

The following proposition is true.

if 6 DIVIDES 3, then 3 DIVIDES 3,

It means an implication (A ⇒ B) in which A

is false and B is true is interpreted as a

true statement.

Consider now a number 6.

The following proposition is true.

if 6 DIVIDES 6, then 3 DIVIDES 6.

It means an implication (A ⇒ B) in which A

and B are true is interpreted as a true

statement.
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One more case : what happens when in the

implication (A ⇒ B), A is true and B is

false.

Example : consider a sentence

if 6 DIVIDES 12, then 6 DIVIDES 5.

Obviously, this is a false statement.
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The above examples justify adopting the fol-

lowing

semantics of an implication (A⇒ B).

Implication Table :

v(A) v(B) v(A⇒ B)
T T T
T F F
F T T
F F T
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EQUIVALENCE - Motivation and definition.

An equivalence (A ⇔ B) is true if both for-

mulas A and B have the same logical value.

Equivalence Table :

v(A) v(B) v(A⇔ B)
T T T
T F F
F T F
F F T
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Extensional connectives are the connectives

that have the following property:

the logical value of the formulas form

by means of these connectives and cer-

tain given formulas depends only on the

logical value(s) of the given formulas.

All classical connectives are extensional .

Binary connectives are such connectives that

they enable us to form a new formula from

two formulas.

The classical connectives: ∪,∩,⇒, and ⇔
are binary propositional connectives.
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Unary connectives are such connectives that

they enable us to form a new formula from

one formula.

The classical connective ¬ is a unary propo-

sitional connective.

Remark that in everyday language there are

expressions which are propositional connec-

tives but are not extensional. They do not

play any role in mathematics and so are

not discussed in classical logic.
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Other Notations :
Negation Disjunction Conjunction Implication Equivalence
−A A ∪B A ∩B A⇒ B A⇔ B
NA DAB CAB IAB EAB
A A ∨B A & B A→ B A↔ B
∼ A A ∨B A ·B A ⊃ B A ≡ B
A′ A + B A ·B A→ B A ≡ B

The first notation is the closest to ours and
is drawn mainly from the algebra of sets
and lattice theory.

The second comes from the Polish logician
J.  Lukasiewicz and is called the Polish no-
tation.

The third was used by D. Hilbert.

The fourth comes from Peano and Russell.

The fifth goes back to Schröder and Pierce.

30



There are many other propositional connec-

tives!

Table of all unary connectives :

v(A) v(51A) v(52A) v(¬A) v(54A)
T F T F T
F F F T T
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Table of all binary connectives :

v(A) v(B) v(A◦1B) v(A ∩B) v(A◦3B) v(A◦4B)
T T F T F F
T F F F T F
F T F F F T
F F F F F F

v(A) v(B) v(A ↓ B) v(A◦6B) v(A◦7B) v(A↔ B)
T T F T T T
T F F T F F
F T F F T F
F F T F F T

v(A) v(B) v(A◦9B) v(A◦10B) v(A◦11B) v(A ∪B)
T T F F F T
T F T T F T
F T T F T T
F F F T T F

v(A) v(B) v(A◦13B) v(A⇒ B) v(A ↑ B) v(A◦16B)
T T T T F T
T F T F T T
F T F T T T
F F T T T T
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FUNCTIONAL DEPENDENCY is the abil-

ity of defining some connectives in terms of

some others.

All propositional connectives can be defined

in terms of disjunction and negation.

Two binary connectives: ↓ and ↑ suffice, each

of them separately, to define all connec-

tives, whether unary or binary.
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The connective ↑ was discovered in 1913 by

H.M. Sheffer, who called it alternative nega-

tion. Now it is often called a Sheffer’s

connective.

The formula A ↑ B reads: not both A and B.

Negation ¬A is defined as A ↑ A.

Disjunction is defined as A ∪ B, as (A ↑ A) ↑
(B ↑ B).
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The connective ↓ was termed by J.  Lukasiewics

joint negation.

The formula A ↓ B reads: neither A nor B.

It was proved in 1925 by E. Żyliński that no

propositional connective other than ↑ and

↓ suffices to define all the remaining con-

nectives.
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