
CHAPTER 8

Hilbert Proof Systems, Formal Proofs,

Deduction Theorem

The Hilbert proof systems are systems based on a language with implication
and contain a Modus Ponens rule as a rule of inference. They are usually called
Hilbert style formalizations. We will call them here Hilbert style proof systems,
or Hilbert systems, for short.

Modus Ponens is probably the oldest of all known rules of inference as it was
already known to the Stoics (3rd century B.C.). It is also considered as the
most ”natural” to our intuitive thinking and the proof systems containing it as
the inference rule play a special role in logic. The Hilbert proof systems put
major emphasis on logical axioms, keeping the rules of inference to minimum,
often in propositional case, admitting only Modus Ponens, as the sole inference
rule.

1 Hilbert System H1

Hilbert proof system H1 is a simple proof system based on a language with
implication as the only connective, with two axioms (axiom schemas) which
characterize the implication, and with Modus Ponens as a sole rule of inference.

We define H1 as follows.

H1 = ( L{⇒}, F {A1, A2} MP ) (1)

where A1, A2 are axioms of the system, MP is its rule of inference, called Modus
Ponens, defined as follows:

A1 (A⇒ (B ⇒ A)),

A2 ((A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))),

MP

(MP )
A ; (A⇒ B)

B
,
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and A,B,C are any formulas of the propositional language L{⇒}.

Finding formal proofs in this system requires some ingenuity. Let’s construct,
as an example, the formal proof of such a simple formula as A⇒ A.

Example 1

The formal proof of (A⇒ A) in H1 is a sequence

B1, B2, B3, B4, B5 (2)

as defined below.

B1 = ((A⇒ ((A⇒ A)⇒ A))⇒ ((A⇒ (A⇒ A))⇒ (A⇒ A))),
axiom A2 for A = A, B = (A⇒ A), and C = A

B2 = (A⇒ ((A⇒ A)⇒ A)),
axiom A1 for A = A, B = (A⇒ A)

B3 = ((A⇒ (A⇒ A))⇒ (A⇒ A))),
MP application to B1 and B2

B4 = (A⇒ (A⇒ A)),
axiom A1 for A = A, B = A

B5 = (A⇒ A)
MP application to B3 and B4

We have hence proved the following.

Lemma 1.1 For any A ∈ F ,

`H1(A⇒ A)

and the sequence 2 constitutes its formal proof.

It is easy to see that the above proof wasn’t constructed automatically. The
main step in its construction was the choice of a proper form (substitution) of
logical axioms to start with, and to continue the proof with. This choice is far
from obvious for un-experienced prover and impossible for a machine, as the
number of possible substitutions is infinite.

Observe that the systems S1−S4 from the previous chapter were syntactically
decidable for one simple reason. Their inference rules were such that it was
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possible to ”reverse” their use; to use them in the reverse manner in order to
search for proofs, and we were able to do so in a blind, fully automatic way. We
were able to conduct an argument of the type: if this formula has a proof the
only way to construct it is from such and such formulas by the means of one of
the inference rules, and that formula can be found automatically.

We will see now, that one can’t apply the above argument to the proof search
in Hilbert proof systems, which contain Modus Ponens as an inference rule.

A general procedure for searching for proofs in a proof system S can be
stated is as follows. Given an expression B of the system S. If it has a
proof, it must be conclusion of the inference rule. Let’s say it is a rule
r. We find its premisses, with B being the conclusion, i.e. we evaluate
r−1(B). If all premisses are axioms, the proof is found. Otherwise we
repeat the procedure for any non-axiom premiss.

Search for proof in Hilbert Systems must involve the Modus Ponens. The
rule says: given two formulas A and (A⇒ B) we can conclude a formula
B.

Assume now that we have a formula B and want to find its proof. If it is
an axiom, we have the proof: the formula itself. If it is not an axiom, it
had to be obtained by the application of the Modus Ponens rule, to certain
two formulas A and (A⇒ B). But there is infinitely many of formulas A
and (A⇒ B). I.e. for any B, the inverse image of B under the rule MP ,
MP−1(B) is countably infinite.

Obviously, we have the following.

Fact 1.1 Any Hilbert proof system is not syntactically decidable, in particular,
the system H1 is not syntactically decidable.

Semantic Link 1 System H1 is obviously sound under classical semantics and
is sound under  L, H semantics and not sound under K semantics.

We leave the proof of the following theorem (by induction with respect of the
length of the formal proof) as an easy exercise to the reader.

Theorem 1.1 (Soundness of H1) For any A ∈ F of H1,

If `H1
A, then |= A.

3



Semantic Link 2 The system H1 is not complete under classical semantics.
It means that not all classical tautologies have a proof in H1. We have
proved that one needs negation and one of other connectives ∪,∩,⇒ to
express all classical connectives, and hence all classical tautologies. Our
language contains only implication and one can’t express negation in terms
of implication and hence we can’t provide a proof of any tautology i.e. its
logically equivalent form in our language.

We have constructed a formal proof 2 of (A ⇒ A) in H1 on a base of logical
axioms, as an example of complexity of finding proofs in Hilbert systems.

In order to make the construction of formal proofs easier by the use of previously
proved formulas we use the notions of a formal proof from some hypotheses Γ
(and logical axioms), as defined in chapter 7. Here is a simple example.

Example 2

Construct a proof of (A⇒ C) from hypotheses Γ = {(A⇒ B), (B ⇒ C)}. I.e.
show that

(A⇒ B), (B ⇒ C) `H1
(A⇒ C).

The formal proof is a sequence

B1, B2, .....B7 (3)

such that

B1 = (B ⇒ C),
hypothesis

B2 = (A⇒ B),
hypothesis

B3 = ((B ⇒ C)⇒ (A⇒ (B ⇒ C))),
axiom A1 for A = (B ⇒ C), B = A

B4 = (A⇒ (B ⇒ C))
B1, B3 and MP

B5 = ((A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))),
axiom A2

B6 = ((A⇒ B)⇒ (A⇒ C)),
B5 and B4 and MP
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B7 = (A⇒ C)
B2 and B6 and MP

Example 2

Show, by constructing a formal proof that

A `H1
(A⇒ A)

The formal proof is a sequence

B1, B2, B3 (4)

such that

B1 = A,
hypothesis

B2 = (A⇒ (A⇒ A)),
Axiom A1 for B = A,

B3 = (A⇒ A)
B1, B2 and MP.

We can even further simplify the task of constructing formal proofs by the use
of the Deduction Theorem, which is presented and proved in the next section.

2 Deduction Theorem

In mathematical arguments, one often assumes a statement B on the assump-
tion (hypothesis) of some other statement A and then concludes that we have
proved the implication ”if A, then B”. This reasoning is justified by the follow-
ing theorem, called a Deduction Theorem. It was first formulated and proved
for a proof system for the classical propositional logic by Herbrand in 1930.

Theorem 2.1 (Herbrand,1930) For any formulas A,B,

if A ` B, then ` (A⇒ B).

We are going to prove now that for our system H1 is strong enough to prove the
Deduction Theorem for it. In fact we prove a more general version of Herbrand
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theorem. To formulate it we introduce the following notation. We write
Γ, A ` B for Γ ∪ {A} ` B, and in general we write Γ, A1, A2, ..., An ` B for
Γ ∪ {A1, A2, ..., An} ` B.

Theorem 2.2 (Deduction Theorem for H1) For any subset Γ of the set
of formulas F of H1 and for any formulas A,B ∈ F ,

Γ, A `H1 B if and only if Γ `H1 (A⇒ B).

In particular,
A `H1B if and only if `H1 (A⇒ B).

Proof. We use in the proof the symbol ` instead of `H1
.

Assume that Γ, A `B, i.e. that we have a formal proof

B1, B2, ..., Bn (5)

of B from the set of formulas Γ ∪ {A}. In order to prove that Γ ` (A⇒ B) we
will prove a little bit stronger statement, namely that Γ ` (A⇒ Bi) for any Bi

(1 ≤ i ≤ n) in the formal proof 5 of B. And hence, in particular case, when
i = n, we will obtain that also Γ ` (A⇒ B).

The proof is conducted by induction on i ( 1 ≤ i ≤ n).

Step i = 1. When i = 1, it means that the formal proof 5 contains only one
element B1. By the definition of the formal proof from Γ∪{A}, we have that B1

must be an logical axiom, or in in Γ, or B1 = A, i.e. B1 ∈ {A1, A2} ∪ Γ ∪ {A}.
Here we have two cases.

Case 1: B1 ∈ {A1, A2} ∪ Γ. Observe that (B1 ⇒ (A ⇒ B1)) is the axiom A1
and by assumption B1 ∈ {A1, A2}∪Γ, hence we get the required proof of
(A⇒ B1) from Γ by the following application of the Modus Ponens rule

(MP )
B1 ; (B1 ⇒ (A⇒ B1))

(A⇒ B1)
.

Case 2: B1 = A. When B1 = A, then to prove Γ ` (A ⇒ B) means to prove
Γ ` (A⇒ A), what holds by the monotonicity of the consequence and the
fact that we have shown that `(A⇒ A).

The above cases conclude the proof of Γ ` (A⇒ Bi) for i = 1.

Inductive step. Assume that Γ `(A ⇒ Bk) for all k < i, we will show that
using this fact we can conclude that also Γ `(A⇒ Bi).
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Consider a formula Bi in the sequence 5. By the definition, Bi ∈ {A1, A2}∪Γ∪
{A} or Bi follows by MP from certain Bj , Bm such that j < m < i. We have
to consider again two cases.

Case 1: Bi ∈ {A1, A2} ∪ Γ ∪ {A}. The proof of (A⇒ Bi) from Γ in this case
is obtained from the proof of the Step i = 1 by replacement B1 by Bi

and will be omitted here as a straightforward repetition.

Case 2: Bi is a conclusion of MP. If Bi is a conclusion of MP, then we must
have two formulas Bj , Bm in the sequence 5 such that j < m < i and

(MP )
Bj ; Bm

Bi
. By the inductive assumption, the formulas Bj , Bm are

such that

Γ ` (A⇒ Bj) (6)

and
Γ ` (A⇒ Bm). (7)

Moreover, by the definition of the Modus Ponens rule, the formula Bm

has to have a form (Bj ⇒ Bi), i.e. Bm = (Bj ⇒ Bi), and the inductive
assumption 7 can be re-written as follows.

Γ ` (A⇒ (Bj ⇒ Bi)), for j < i. (8)

Observe now that the formula ((A⇒ (Bj ⇒ Bi))⇒ ((A⇒ Bj)⇒ (A⇒ Bi)))
is a substitution of the axiom schema A2 and hence has a proof in our system.
By the monotonicity of the consequence, it also has a proof from the set Γ, i.e.

Γ ` ((A⇒ (Bj ⇒ Bi))⇒ ((A⇒ Bj)⇒ (A⇒ Bi))). (9)

Applying the rule MP to formulas 9 and 8, i.e. performing the following

(MP )
(A⇒ (Bj ⇒ Bi)) ; ((A⇒ (Bj ⇒ Bi))⇒ ((A⇒ Bj)⇒ (A⇒ Bi)))

((A⇒ Bj)⇒ (A⇒ Bi))

we get that also

Γ `((A⇒ Bj)⇒ (A⇒ Bi)). (10)

Applying again the rule MP to formulas 6 and 10, i.e. performing the following
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(MP )
(A⇒ Bj) ; ((A⇒ Bj)⇒ (A⇒ Bi))

(A⇒ Bi)

we get that

Γ `(A⇒ Bi)

what ends the proof of the inductive step. By the mathematical induction
principle, we hence have proved that Γ `(A⇒ Bj) for all i such that 1 ≤ i ≤ n.
In particular it is true for i = n, what means for Bn = B . This ends the proof
of the fact that if Γ, A `B, then Γ ` (A⇒ B).

The proof of the inverse implication is straightforward. Assume that Γ ` (A⇒
B) , hence by the monotonicity of the consequence we have also that Γ, A ` (A⇒
B). Obviously, Γ, A ` A. Applying Modus Ponens to the above, we get the
proof of B from {Γ, A} i.e. we have proved that Γ, A ` B. That ends the proof
of the deduction theorem for any set Γ ⊆ F and any formulas A,B ∈ F . The
particular case is obtained from the above by assuming that the set Γ is empty.

The proof of the following Lemma provides a good example of multiple appli-
cations of Deduction Theorem.

Lemma 2.1 For any A,B,C ∈ F ,

(a) (A⇒ B), (B ⇒ C) `H1
(A⇒ C),

(b) (A⇒ (B ⇒ C)) `H1 (B ⇒ (A⇒ C)).

Proof of (a).

Deduction theorem says:

(A⇒ B), (B ⇒ C) `H1
(A⇒ C) if and only if (A⇒ B), (B ⇒ C), A `H1

C.

We construct a formal proof

B1, B2, B3, B4, B5

of (A⇒ B), (B ⇒ C), A `H1
C as follows.

B1 = (A⇒ B),
hypothesis
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B2 = (B ⇒ C),
hypothesis

B3 = A
hypothesis

B4 = B
B1, B3 and MP

B5 = C
B2, B4 and MP

Thus
(A⇒ B), (B ⇒ C) `H1

(A⇒ C)

by Deduction Theorem.

Proof of (b).

By Deduction Theorem,

(A⇒ (B ⇒ C)) `H1
(B ⇒ (A⇒ C)) if and only if (A⇒ (B ⇒ C)), B `H1

(A⇒ C).

We construct a formal proof

B1, B2, B3, B4, B5, B6, B7

of (A⇒ (B ⇒ C)), B `H1
(A⇒ C). as follows.

B1 = (A⇒ (B ⇒ C))
hypothesis

B2 = B
hypothesis

B3 = ((B ⇒ (A⇒ B))
A1 for A = B,B = A

B4 = (A⇒ B)
B2, B3 and MP

B5 = ((A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C)))
axiomA2

B6 = ((A⇒ B)⇒ (A⇒ C))
B1, B5 and MP
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B7 = (A⇒ C)

Thus
(A⇒ (B ⇒ C)) `H1

(B ⇒ (A⇒ C))

by Deduction Theorem.

3 Hilbert System H2

The system H1 presented in the previous section is sound and strong enough to
prove the Deduction Theorem for it, but it is not complete.

We extend now its set of logical axioms to a complete set of axioms, i.e. we
define a system H2 that is complete with respect to classical semantics. The
proof of completeness will be presented in the next chapter.

H2 is the following proof system:

H2 = ( L{⇒,¬}, A1, A2, A3, MP ) (11)

where A1, A2, A3 are axioms of the system defined below, MP is its rule of
inference, called Modus Ponens is called a Hilbert proof system for the classical
propositional logic. The axioms A1−A3 are defined as follows.

A1 (A⇒ (B ⇒ A)),

A2 ((A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))),

A3 ((¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B)))

MP (Rule of inference)

(MP )
A ; (A⇒ B)

B
,

and A,B,C are any formulas of the propositional language L{⇒,¬}.

We write, as before

`H2
A
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to denote that a formula A has a formal proof in H2 (from the set of logical
axioms A1, A2, A3). We write

Γ `H2
A

to denote that a formula A has a formal proof in H2 from a set of formulas Γ
(and the set of logical axioms A1, A2, A3).

Observe that system H2 was obtained by adding axiom A3 to the system H1.
Hence the Deduction Theorem holds for system H2.

Theorem 3.1 (Deduction Theorem for H2) For any subset Γ of the set
of formulas F of H2 and for any formulas A,B ∈ F ,

Γ, A `H2
B if and only if Γ `H2

(A⇒ B).

In particular,
A `H2B if and only if `H2 (A⇒ B).

Obviously, the axioms A1, A2, A3 are tautologies, and the Modus Ponens rule
leads from tautologies to tautologies, hence our proof system H2 is sound i.e.
the following holds.

Theorem 3.2 (Soundness Theorem for H2) For every formula A ∈ F ,

if `H2
A, then |= A.

The soundness theorem proves that the system ”produces” only tautologies. We
show, in the next chapter, that our proof system H2 ”produces” not only tau-
tologies, but that all tautologies are provable in it. This is called a completeness
theorem for classical logic.

Theorem 3.3 (Completeness Theorem for H2) For every A ∈ F ,

`H2 A, if and only if |= A.

The proof of completeness theorem (for a given semantics) is always a main
point in any logic creation. There are many ways (techniques) to prove it,
depending on the proof system, and on the semantics we define for it.

We present in the next chapter two proofs of the completeness theorem for
our system H2. The proofs use very different techniques, hence the reason of
presenting both of them. In fact the proofs are valid for any proof system for
classical propositional logic in which one can prove all formulas proved in the
next section and stated in lemma 4.1.

11



4 Formal Proofs in H2

We present here some examples of formal proofs in H2. There are two reasons for
presenting them. First reason is that all formulas we prove here to be provable
play a crucial role in the proof of Completeness Theorem for H2, or are needed
to find formal proofs of those needed. The second reason is that they provide a
”training” ground for a reader to learn how to develop formal proofs. For this
second reason we write some proofs in a full detail and we leave some others for
the reader to complete in a way explained in the following example.

We write ` instead of `H2 for the sake of simplicity.

Example 1

Here are consecutive steps
B1, ..., B5, B6 (12)

of the proof (in H2) of (¬¬B ⇒ B).

B1 = ((¬B ⇒ ¬¬B)⇒ ((¬B ⇒ ¬B)⇒ B))

B2 = ((¬B ⇒ ¬B)⇒ ((¬B ⇒ ¬¬B)⇒ B))

B3 = (¬B ⇒ ¬B)

B4 = ((¬B ⇒ ¬¬B)⇒ B)

B5 = (¬¬B ⇒ (¬B ⇒ ¬¬B))

B6 = (¬¬B ⇒ B)

Exercise 1

Complete the proof 12 by providing comments how each step of the proof was
obtained.

Solution

The comments that complete the proof are as follows.

B1 = ((¬B ⇒ ¬¬B)⇒ ((¬B ⇒ ¬B)⇒ B))
Axiom A3 for A = ¬B,B = B
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B2 = ((¬B ⇒ ¬B)⇒ ((¬B ⇒ ¬¬B)⇒ B))

B1 and lemma 2.1 b for A = (¬B ⇒ ¬¬B), B = (¬B ⇒ ¬B), C = B, i.e.

((¬B ⇒ ¬¬B) ⇒ ((¬B ⇒ ¬B) ⇒ B)) ` ((¬B ⇒ ¬B) ⇒ ((¬B ⇒
¬¬B)⇒ B))

B3 = (¬B ⇒ ¬B)
Lemma 1.1 for A = ¬B

B4 = ((¬B ⇒ ¬¬B)⇒ B)
B2, B3 and MP

B5 = (¬¬B ⇒ (¬B ⇒ ¬¬B))
Axiom A1 for A = ¬¬B,B = ¬B

B6 = (¬¬B ⇒ B)

B4, B5 and Lemma 2.1 a for A = ¬¬B,B = (¬B ⇒ ¬¬B), C = B; i.e.

(¬¬B ⇒ (¬B ⇒ ¬¬B)), ((¬B ⇒ ¬¬B)⇒ B) ` (¬¬B ⇒ B).

General Remark

In step B2, B3, B5, B6 we call previously proved facts and use their results as a
part of our proof. We can insert previously constructed formal proofs into our
formal proof. For example we adopt previously constructed proof 2 of (A⇒ A)
in H1 to the proof of (¬B ⇒ ¬B) in H2 by replacing A by ¬B and we insert the
proof of (¬B ⇒ ¬B) after B2. The ”old” step B3 becomes now B7, the ”old”
step B4 becomes now B8, etc.....

B1 = ((¬B ⇒ ¬¬B)⇒ ((¬B ⇒ ¬B)⇒ B))
Axiom A3 for A = ¬B,B = B

B2 = ((¬B ⇒ ¬B)⇒ ((¬B ⇒ ¬¬B)⇒ B))

B1 and lemma 2.1 b for A = (¬B ⇒ ¬¬B), B = (¬B ⇒ ¬B), C = B,

B3 = ((¬B ⇒ ((¬B ⇒ ¬B) ⇒ ¬B)) ⇒ ((¬B ⇒ (¬B ⇒ ¬B)) ⇒ (¬B ⇒
¬B))),
axiom A2 for A = ¬B, B = (¬B ⇒ ¬B), and C = ¬B

B4 = (¬B ⇒ ((¬B ⇒ ¬B)⇒ ¬B)),
axiom A1 for A = ¬B, B = (¬B ⇒ ¬B)

B5 = ((¬B ⇒ (¬B ⇒ ¬B))⇒ (¬B ⇒ ¬B))),
MP application to B4 and B3
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B6 = (¬B ⇒ (¬B ⇒ ¬B)),
axiom A1 for A = ¬B, B = ¬B

B7 = (”old” B3)(¬B ⇒ ¬B)
MP application to B5 and B4

B8 = (”old” B4) ((¬B ⇒ ¬¬B)⇒ B)
B2, B3 and MP

B9 = (”old B5) (¬¬B ⇒ (¬B ⇒ ¬¬B))
Axiom A1 for A = ¬¬B,B = ¬B

B10 = (”old B6) (¬¬B ⇒ B)
B8, B9 and Lemma 2.1 a for A = ¬¬B,B = (¬B ⇒ ¬¬B), C = B

We repeat our procedure by replacing the step B2 by its formal proof as defined
in the proof of the lemma 2.1 b, and continue the process for all other steps
which involved application of lemma 2.1 until we get a full formal proof from
the axioms of H2 only.

Usually we don’t need to do it, but it is important to remember that it always
can be done, if we wished to take time and space to do so.

Example 2

Here are consecutive steps
B1, ..., B5 (13)

in a proof of
(B ⇒ ¬¬B).

B1 = ((¬¬¬B ⇒ ¬B)⇒ ((¬¬¬B ⇒ B)⇒ ¬¬B))

B2 = (¬¬¬B ⇒ ¬B)

B3 = ((¬¬¬B ⇒ B)⇒ ¬¬B)

B4 = (B ⇒ (¬¬¬B ⇒ B))

B5 = (B ⇒ ¬¬B)

Exercise 2

Complete the proof sequence 13 by providing comments how each step of the
proof was obtained.
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Solution

The comments that complete the proof 13 are as follows.

B1 = ((¬¬¬B ⇒ ¬B)⇒ ((¬¬¬B ⇒ B)⇒ ¬¬B))
Axiom A3 for A = B,B = ¬¬B

B2 = (¬¬¬B ⇒ ¬B)
Example 1 for B = ¬B

B3 = ((¬¬¬B ⇒ B)⇒ ¬¬B)
B1, B2 and MP, i.e.

(¬¬¬B ⇒ ¬B); ((¬¬¬B ⇒ ¬B)⇒ ((¬¬¬B ⇒ B)⇒ ¬¬B))

((¬¬¬B ⇒ B)⇒ ¬¬B)

B4 = (B ⇒ (¬¬¬B ⇒ B))
Axiom A1 for A = B,B = ¬¬¬B

B5 = (B ⇒ ¬¬B)
B3, B4 and lemma 2.1a for A = B,B = (¬¬¬B ⇒ B), C = ¬¬B, i.e.

(B ⇒ (¬¬¬B ⇒ B)), ((¬¬¬B ⇒ B)⇒ ¬¬B)`H2
(B ⇒ ¬¬B)

Example 3

Here are consecutive steps
B1, ..., B12 (14)

in a proof of
(¬A⇒ (A⇒ B)).

B1 = ¬A

B2 = A

B3 = (A⇒ (¬B ⇒ A))

B4 = (¬A⇒ (¬B ⇒ ¬A))

B5 = (¬B ⇒ A)

B6 = (¬B ⇒ ¬A)

B7 = ((¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B))

B8 = ((¬B ⇒ A)⇒ B)

B9 = B
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B10 = ¬A,A ` B

B11 = ¬A ` (A⇒ B)

B12 = (¬A⇒ (A⇒ B))

Exercise 3

(1) Complete the proof sequence 14 by providing comments how each step of
the proof was obtained.

(2) Prove that ¬A,A ` B.

Example 4

Here are consecutive steps

B1, ..., B7 (15)

in a proof of
((¬B ⇒ ¬A)⇒ (A⇒ B)).

B1 = (¬B ⇒ ¬A)

B2 = ((¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B))

B3 = (A⇒ (¬B ⇒ A))

B4 = ((¬B ⇒ A)⇒ B)

B5 = (A⇒ B)

B6 = (¬B ⇒ ¬A) ` (A⇒ B)

B6 = ((¬B ⇒ ¬A)⇒ (A⇒ B))

Exercise 4

Complete the proof sequence 15 by providing comments how each step of the
proof was obtained.

Example 5
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Here are consecutive steps
B1, ..., B9 (16)

in a proof of
((A⇒ B)⇒ (¬B ⇒ ¬A)).

B1 = (A⇒ B)

B2 = (¬¬A⇒ A)

B3 = (¬¬A⇒ B)

B4 = (B ⇒ ¬¬B)

B5 = (¬¬A⇒ ¬¬B)

B6 = ((¬¬A⇒ ¬¬B)⇒ (¬B ⇒ ¬A))

B7 = (¬B ⇒ ¬A)

B8 = (A⇒ B) ` (¬B ⇒ ¬A)

B9 = ((A⇒ B)⇒ (¬B ⇒ ¬A))

Exercise 5

Complete the proof sequence 16 by providing comments how each step of the
proof was obtained.

Solution

B1 = (A⇒ B)
Hypothesis

B2 = (¬¬A⇒ A)
Example 1 for B = A

B3 = (¬¬A⇒ B)
Lemma 2.1 a for A = ¬¬A,B = A,C = B

B4 = (B ⇒ ¬¬B)
Example 2

B5 = (¬¬A⇒ ¬¬B)
Lemma 2.1 a for A = ¬¬A,B = B,C = ¬¬B

B6 = ((¬¬A⇒ ¬¬B)⇒ (¬B ⇒ ¬A))
Example 4 for B = ¬A,A = ¬B
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B7 = (¬B ⇒ ¬A)
B5, B6 and MP

B8 = (A⇒ B) ` (¬B ⇒ ¬A)
B1 −B7

B9 = ((A⇒ B)⇒ (¬B ⇒ ¬A))
Deduction Theorem

Exercise 6

Prove that
` (A⇒ (¬B ⇒ (¬(A⇒ B)))).

Solution Here are consecutive steps of building the formal proof.

B1 = A, (A⇒ B) ` B
by MP

B2 = A ` ((A⇒ B)⇒ B)
Deduction Theorem

B3 = ` (A⇒ ((A⇒ B)⇒ B))
Deduction Theorem

B4 = ` (((A⇒ B)⇒ B)⇒ (¬B ⇒ ¬(A⇒ B)))
Example 5 for A = (A⇒ B), B = B

B5 = ` (A⇒ (¬B ⇒ (¬(A⇒ B)))
3. and 4. and lemma 2a for A = A,B = ((A ⇒ B) ⇒ B), C = (¬B ⇒
(¬(A⇒ B))

Example 7

Here are consecutive steps
B1, ..., B12 (17)

in a proof of
((A⇒ B)⇒ ((¬A⇒ B)⇒ B)).

B1 = (A⇒ B)

B2 = (¬A⇒ B)

B3 = ((A⇒ B)⇒ (¬B ⇒ ¬A))

B4 = (¬B ⇒ ¬A)
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B5 = ((¬A⇒ B)⇒ (¬B ⇒ ¬¬A))

B6 = (¬B ⇒ ¬¬A)

B7 = ((¬B ⇒ ¬¬A)⇒ ((¬B ⇒ ¬A)⇒ B)))

B8 = ((¬B ⇒ ¬A)⇒ B)

B9 = B

B10 = (A⇒ B), (¬A⇒ B) ` B

B11 = (A⇒ B) ` ((¬A⇒ B)⇒ B)

B12 = ((A⇒ B)⇒ ((¬A⇒ B)⇒ B))

Exercise 7

Complete the proof sequence 17 by providing comments how each step of the
proof was obtained.

Solution

B1 = (A⇒ B)
Hypothesis

B2 = (¬A⇒ B)
Hypothesis

B3 = ((A⇒ B)⇒ (¬B ⇒ ¬A))
Example 5

B4 = (¬B ⇒ ¬A)
B1, B3 and MP

B5 = ((¬A⇒ B)⇒ (¬B ⇒ ¬¬A))
Example 5 for A = ¬A,B = B

B6 = (¬B ⇒ ¬¬A)
B2, B5 and MP

B7 = ((¬B ⇒ ¬¬A)⇒ ((¬B ⇒ ¬A)⇒ B)))
Axiom A3 for B = B,A = ¬A

B8 = ((¬B ⇒ ¬A)⇒ B)
B6, B7 and MP

B9 = B
B4, B8 and MP
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B10 = (A⇒ B), (¬A⇒ B) ` B
B1 −B9

B11 = (A⇒ B) ` ((¬A⇒ B)⇒ B)
Deduction Theorem

B12 = ((A⇒ B)⇒ ((¬A⇒ B)⇒ B)) Deduction Theorem

Example 8

Here are consecutive steps
B1, ..., B3 (18)

in a proof of
((¬A⇒ A)⇒ A).

B1 = ((¬A⇒ ¬A)⇒ ((¬A⇒ A)⇒ A)))

B2 = (¬A⇒ ¬A)

B3 = ((¬A⇒ A)⇒ A))

Exercise 8

Complete the proof sequence 18 by providing comments how each step of the
proof was obtained.

Solution

B1 = ((¬A⇒ ¬A)⇒ ((¬A⇒ A)⇒ A)))
Axiom A3 for B = A

B2 = (¬A⇒ ¬A)
Lemma 1.1 for A = ¬A

B3 = ((¬A⇒ A)⇒ A))
B1, B2 and MP

The above examples 1 - 8, and the example 1 of previous section provide a proof
of the following lemma.

Lemma 4.1 For any formulas A,B,C of the system H2,

1. `H2
(A⇒ A)
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2. `H2 (¬¬B ⇒ B)

3. `H2
(B ⇒ ¬¬B)

4. `H2
(¬A⇒ (A⇒ B))

5. `H2 ((¬B ⇒ ¬A)⇒ (A⇒ B))

6. `H2 ((A⇒ B)⇒ (¬B ⇒ ¬A))

7. `H2
(A⇒ (¬B ⇒ (¬(A⇒ B)))

8. `H2
((A⇒ B)⇒ ((¬A⇒ B)⇒ B))

9. `H2 ((¬A⇒ A)⇒ A

The set of provable formulas from the above lemma 4.1 includes a set of prov-
able formulas (formulas 1, 3, 4, and 7-9) needed, with H2 axioms to execute two
proofs of the Completeness Theorem for H2 which we present in the next chap-
ter. These two proofs represent two diametrally different methods of proving
Completeness Theorem.
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