
CSE 307 – Principles of Programming Languages

Stony Brook University

http://www.cs.stonybrook.edu/~cse307

Data Abstraction and

Object Orientation

1

http://www.cs.stonybrook.edu/~cse307

(c) Paul Fodor (CS Stony Brook) and Elsevier

Object-Oriented Programming
 Control or PROCESS abstraction (subroutines!) is a very old idea

 Data abstraction (Object-Oriented (OO)) is somewhat newer

 An Abstract Data Type is one that is defined in terms of the operations

that it supports (i.e., that can be performed upon it) rather than in

terms of its structure or implementation

 How did we do it before OO?

 We created and manipulated a data structures.

 “Manager functions“: pre-OO formalism

l = list_create()

list_append(l, o)

 C libraries still use this paradigm: GTK, Linux Kernel, etc.

 In this chapter, object = instance of a class.

2

(c) Paul Fodor (CS Stony Brook) and Elsevier

Why abstractions?

easier to think about - hide what doesn't matter

protection - prevent access to things you

shouldn't see

plug compatibility

replacement of pieces, often without

recompilation, definitely without rewriting

libraries

division of labor in software projects

3

Object-Oriented Programming

(c) Paul Fodor (CS Stony Brook) and Elsevier

We talked about data abstraction some back in

the unit on naming and scoping

historical development of abstraction mechanisms:

 Static set of variables Basic

 Locals Fortran

 Statics Fortran, Algol 60, C

 Modules Modula-2, Ada 83

 Module types Euclid

 Objects Smalltalk, C++, Eiffel, Java

 Oberon, Modula-3, Ada 95

4

Object-Oriented Programming

(c) Paul Fodor (CS Stony Brook) and Elsevier

The 3 key factors in OO programming

Encapsulation (data hiding)

Inheritance

Dynamic method binding

5

Object-Oriented Programming

(c) Paul Fodor (CS Stony Brook) and Elsevier

 OOP is currently ascendant. It cross-cuts paradigms:

 Imperative OO (C++, Java, C#, Python, etc.)

Functional OO (Ocaml, CLOS, etc.)

Logical OO (Flora-2)

 OO adds:

Convenient syntax,

 Inheritance,

Dynamic method binding,

Encapsulation.

6

Object-Oriented Programming

(c) Paul Fodor (CS Stony Brook) and Elsevier

Benefits of OOP:

1. Reduced Conceptual Load

Give a concept a name

2. Fault containment

Object can enforce an interface that must be followed

3. Independence

Reusability

7

Object-Oriented Programming

(c) Paul Fodor (CS Stony Brook) and Elsevier

 The language needs a way of defining a class:

Name,

Superclasses (incl. Interfaces),

Fields,

Methods.

Fields + Methods = Members of the class

 Note: classes do not need to be defined in a single file:

C++ allows a definition to be split up over multiple

files,

Java allows more than one class per file (one is public)
8

Object-Oriented Programming

(c) Paul Fodor (CS Stony Brook) and Elsevier

A class needs ways to:

Allocate objects (constructors and the new

operator)

Some languages allow to allocate in all 3 areas, not

just heap

Change fields

Invoke methods

9

Object-Oriented Programming

(c) Paul Fodor (CS Stony Brook) and Elsevier

Protection
 OO supports data hiding / protection:

 Keep implementation details from leaking into the larger

program

 The 4 kinds of Visibility protection in Java:

 Public

 Protected

 Default (visible to classes in same module)

 Private

 Others are possible: C++ has Friend

 Private inheritance: we can inherit code from a parent,

without advertising that we are substitutable for that superclass

 10

(c) Paul Fodor (CS Stony Brook) and Elsevier

Protection
 A C++ friend class in C++ can access the "private" and

"protected" members of the class in which it is declared as a

friend:
class B {

 friend class A; // A is a friend of B

private:

 int i;

};

class A {

public:

 A(B b) { // the object has to be passed as a parameter to the function

 b.i = 0; // legal access due to friendship

 }

};
11

(c) Paul Fodor (CS Stony Brook) and Elsevier

Encapsulation and Inheritance
 Example:

class circle : public shape { ...

anybody can convert (assign) a circle* into a shape*

class circle : protected shape { ...

only members and friends of circle or its derived classes can

convert (assign) a circle* into a shape*

class circle : private shape { ...

only members and friends of circle can convert (assign) a

circle* into a shape*

12

(c) Paul Fodor (CS Stony Brook) and Elsevier

Accessors
 Field access is bad in OOP: allows an external program

to change any value.

 Accessors: small subroutines that are used to access.

constrain how we can change our implementation.

getters + setters = accessors and mutators for all the

fields.

 Less convenient than fields, but preferred for safety.

 Good compromise: declare properties, which look like

fields, but invoke methods (C#, Python)

13

(c) Paul Fodor (CS Stony Brook) and Elsevier

Constructors and Destructors
 Objects often need to be initialized before they are used.

 This is because Objects represent things with semantics.

 Constructors are used to initialize objects.

 Languages often support multiple constructors.

 Overloading on type and # of arguments.

 Named constructors.

 Example: a Coordinate class.

 double x, double y OR

 double angle, double radius

 Important constructors:

 Zero Argument,

 Copying: must take a reference.

14

In C++ (objects use value semantics):

class C { ... }

C a; <- calls 0-argument constructor.

C b = a; <- calls copying constructor.

Differs from: C b;

 b = a;

(c) Paul Fodor (CS Stony Brook) and Elsevier

 In languages where objects are values, those values

need to be initialized as part of our constructor. (By

calling their constructor.)

class A : public B {

 C d;

 A () { }

}

Leads to 2 further constructor calls: to B, then C.

15

Constructors and Destructors

(c) Paul Fodor (CS Stony Brook) and Elsevier

Destructors:

Called when an object goes away, to free

up resourced used by it.

Interact poorly with GC, especially in the

presence of cycles.

16

Constructors and Destructors

(c) Paul Fodor (CS Stony Brook) and Elsevier

Inheritance
 We can create a subclass that inherits from a superclass.

 Inherits fields and methods from base class.

 Do we need a root class?

C++ is fine without it.

Java, Smalltalk, C#, etc have one.

 OO requires scoping rules to determine where we

look for fields:

The instance,

The class (statics),

Superclasses,

Global Scope,

The method (local vars.)

17

(c) Paul Fodor (CS Stony Brook) and Elsevier

General-purpose base classes.

When we don't have generics in a

language, use a base class and subclasses to

fake it.

Not as good as generics/Parametric

Polymorphism, because it means that we

have to use multiple classes, one for each

type, e.g., IntList, PersonList, etc.

18

Inheritance

(c) Paul Fodor (CS Stony Brook) and Elsevier

 In C++, you can say

class professor : public teacher, public researcher {

 ...

 }

Here you get all the members of teacher and all the

members of researcher

 If there's anything that's in both (same name and

argument types), then calls to the member are

ambiguous; the compiler disallows them

19

Multiple Inheritance

(c) Paul Fodor (CS Stony Brook) and Elsevier

 You can of course create your own member in the merged

class

 professor::print () {

 teacher::print ();

 researcher::print (); ...

 }

Or you could get both:

 professor::tprint () {

 teacher::print ();

 }

 professor::rprint () {

 researcher::print ();

 }
20

Multiple Inheritance

(c) Paul Fodor (CS Stony Brook) and Elsevier

Nested Inner Classes
 Inner Class = class defined inside another class:

Need to decide which fields such a class sees

Nothing - no special relationship to outer class

(Python)

Statics Only (C++/C#).

Associated with every instance (Java)

Needs link to instance of enclosing class.

21

(c) Paul Fodor (CS Stony Brook) and Elsevier

Metaclasses
In some languages, a class is an object

(Python, Flora-2, not Java)

Class of the class = metaclass

Constructing a metaclass

22

(c) Paul Fodor (CS Stony Brook) and Elsevier

Extension Methods
 It's possible to extend a class without inheriting from it

C#: Extension method:

 public static string[] split(this string s) {

 }

Can use like:

 s = "Hello World";

 s.split()

Really syntactic sugar: Defines a new class with a

static method, and then calls static method.

23

(c) Paul Fodor (CS Stony Brook) and Elsevier

User-Defined Objects
 How do we store the fields in objects?

class A {

int v;

int w;

 String s;

}

 The object variable = (reference == pointer == address)

 The field == constant offset from pointer.

 1 opcode on all but most RISC CPUs.

 What about inheritance?

 The object contains all fields starting from root ancestor.

 An alternative is to represent objects as maps (Python,

Javascript): key = field name, maps to field values

24

(c) Paul Fodor (CS Stony Brook) and Elsevier

User-Defined Objects
Objects as maps (Python, Javascript):

key = field name, maps to field values

Pro: allows for reflection to be done

easily.

Pro: allows for adding of fields at

runtime.

Con: requires an expensive map

lookup per field.

25

(c) Paul Fodor (CS Stony Brook) and Elsevier

Method Binding
 Can use a subclass in place of the superclass: Subtype

polymorphism:

class C: def foo(): ...

class D(C): def foo(): ...

 When both define method foo, which method do we call:

 static method binding - needs static typing - call method

based on static type - method call == function call

 dynamic method binding - use class of the object - call from

most derived type  more expensive.

 Dynamic == virtual methods in C++.

 Dynamic == default in Java.

 C# requires you to decide if you're overriding or replacing.

26

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Pure virtual = No implementation for method.

 Abstract in Java.

 Means that we won't be able to instantiate the class.

 Java Interfaces = Really Classes without non-abstract methods
 Also, no base class == no diamond problem.

 Dynamic method binding:

 Virtual Dispatch
class C: a() b()

class D(C): c() b()

 The subclass includes methods in the same order = the vtable

 Multiple inheritance problem.
 no-canonical order to put the entries in.

 multiple vtables.
27

Method Binding

(c) Paul Fodor (CS Stony Brook) and Elsevier
28

The representation of object F begins with the address of the

vtable for class foo.

All objects of this class will point to the same vtable.

The vtable itself consists of an array of addresses, one for the

code of each virtual method of the class.

The remainder of F consists of the representations of its

fields.

(c) Paul Fodor (CS Stony Brook) and Elsevier
29

Single inheritance

(c) Paul Fodor (CS Stony Brook) and Elsevier

class Shape:

 def name(): print "Shape"

 def color(): print "Blue"

class Rectangle(Shape):

 def name(): print "Rectangle"

 def color(): print "Red"

class Square(Shape)

 def name(): print "Square"

Square s = new Square()

Rectangle r = s

Shape sh = s

s.name()

r.name()

sh.name()

30

Static Method Binding: Square

Rectangle Shape

Dynamic Method Binding:

Square Square Square

(c) Paul Fodor (CS Stony Brook) and Elsevier

Garbage Collection
 Automatic heap memory management.

 Alternative is to require explicit deletes.

 What is garbage? What is not garbage?

 Set of roots: - Registers - Stack - Statics - etc.

 Objects reachable from roots are live. - Recursively search objects for other

objects. - Some objects don't need to be searched. (Strings, Arrays of basic types,

etc.)

 Unreachable objects are dead, can be freed.

 Reference counts: Each object contains a field giving the number of

objects (incl. stack frames) referring to it.

 When a reference is taken to object, inc refcount.

 When a reference is removed, dec refcount.

 When drops to 0, deallocate.

 Problem with circular references.

 31

(c) Paul Fodor (CS Stony Brook) and Elsevier

Garbage Collection
 Mark and Sweep:

 Walk references, flag useful objects.
 Requires space in header for flag.

 Walk objects, find unflagged, dealloc.
 Requires ability to walk objects.

 Interesting technique: Pointer reversal.
 Stores path to parent var in place of pointer to child obj.

 Stop and Copy (Compacting)

 Generational Collection:

 Objects live short or long time.

 Old objects rarely refer to much newer objects.

 Requires MMU or some sort of write barrier.

 Incremental GC

32

(c) Paul Fodor (CS Stony Brook) and Elsevier

Object-Oriented Programming

 SMALLTALK is the canonical object-oriented language

 It has all three of the characteristics listed above

 It's based on the thesis work of Alan Kay at Utah in

the late 1960‘s

 It went through 5 generations at Xerox PARC, where

Kay worked after graduating

Smalltalk-80 is the current standard

33

