Semantic Analysis

CSE 307 – Principles of Programming Languages
Stony Brook University
http://www.cs.stonybrook.edu/~cse307
Role of Semantic Analysis

- Syntax vs. Semantics:
 - Syntax concerns the *form* of a valid program (described conveniently by a context-free grammar CFG)
 - Semantics concerns its *meaning*: rules that go beyond mere form (e.g., the number of arguments contained in a call to a subroutine matches the number of formal parameters in the subroutine definition – cannot be counted using CFG, type consistency):
 - Defines what the program means
 - Detects if the program is correct
 - Helps to translate it into another representation
Role of Semantic Analysis

- Following parsing, the next two phases of the "typical" compiler are:
 - semantic analysis
 - (intermediate) code generation
- Semantic rules are divided into:
 - static semantics enforced at compile time
 - dynamic semantics: the compiler generates code to enforce dynamic semantic rules at run time (or calls libraries to do it) (for errors like division by zero, out-of-bounds index in array)
- The principal job of the semantic analyzer is to enforce static semantic rules, plus:
 - constructs a syntax tree
 - information gathered is needed by the code generator
Role of Semantic Analysis

- Parsing, semantic analysis, and intermediate code generation are interleaved:
 - A common approach interleaves parsing construction of a syntax tree with phases for semantic analysis and code generation.
- The semantic analysis and intermediate code generation annotate the parse tree with attributes.
 - *Attribute grammars* provide a formal framework for the decoration of a syntax tree.
 - The *attribute flow* constrains the order(s) in which nodes of a tree can be decorated.
 - Replaces the parse tree with a syntax tree that reflects the input program in a more straightforward way.
Role of Semantic Analysis

- Dynamic checks: semantic rules enforced at run time
 - C requires no dynamic checks at all (it relies on the hardware to find division by zero, or attempted access to memory outside the bounds of the program).
 - Java checks as many rules as possible, so that an untrusted program cannot do anything to damage the memory or files of the machine on which it runs.
- Many compilers that generate code for dynamic checks provide the option of disabling them (enabled during program development and testing, but disables for production use, to increase execution speed)
- Hoare: “like wearing a life jacket on land, and taking it off at sea”
Role of Semantic Analysis

- **Assertions**: logical formulas written by the programmers regarding the values of program data used to reason about the correctness of their algorithms (the assertion is expected to be true when execution reaches a certain point in the code):
 - **Java**: `assert denominator != 0;`
 - An **AssertionError** exception will be thrown if the semantic check fails at run time.
 - **C**: `assert (denominator != 0);`
 - If the assertion fails, the program will terminate abruptly with a message: “a.c:10: failed assertion ‘denominator != 0’”
- Some languages also provide explicit support for **invariants**, preconditions, and post-conditions.
 - Like Dafny from Microsoft https://github.com/Microsoft/dafny
Java Assertions

• Java example:
 • An assertion in Java is a statement that enables us to assert an assumption about our program.
 • An assertion contains a Boolean expression that should be true during program execution.
 • Assertions can be used to assure program correctness and avoid logic errors.
 • An assertion is declared using the Java keyword assert in JDK 1.5 as follows:

```
assert assertion;  // OR
assert assertion : detailMessage;
```

where assertion is a Boolean expression and detailMessage is a primitive-type or an Object value.
Java Assertion Example

```java
public class AssertionDemo {
    public static void main(String[] args) {
        int i;
        int sum = 0;
        for (i = 0; i < 10; i++) {
            sum += i;
        }
        assert i==10;
        assert sum>10 && sum<5*10 : "sum is " + sum;
    }
}
```

- When an assertion statement is executed, Java evaluates the assertion.
 - If it is false, an `AssertionError` will be thrown.
Java Assertion Example

- The `AssertionError` class has a no-arg constructor and seven overloaded single-argument constructors of type `int`, `long`, `float`, `double`, `boolean`, `char`, and `Object`.
- For the first assert statement in the example (with no detail message), the no-arg constructor of `AssertionError` is used.
- For the second assert statement with a detail message, an appropriate `AssertionError` constructor is used to match the data type of the message.
- Since `AssertionError` is a subclass of `Error`, when an assertion becomes false, the program displays a message on the console and exits.
Running Programs with Assertions

• By default, the assertions are disabled at runtime. To enable it, use the switch --enableassertions, or --ea for short, as follows:

```
java --ea AssertionDemo
```

```java
public class AssertionDemo {
    public static void main(String[] args) {
        int i; int sum = 0;
        for (i = 0; i < 10; i++) {
            sum += i;
        }
        assert i!=10;
    }
}
```

Exception in thread "main" java.lang.AssertionError
at AssertionDemo.main(AssertionDemo.java:7)
Running Programs with Assertions

- Assertions can be selectively enabled or disabled at class level or package level.
 - The disable switch is \(–\text{disableassertions}\) or \(–\text{da}\) for short.
 - For example, the following command enables assertions in package package1 and disables assertions in class Class1.

\[
\text{java } –\text{ea:package1 } –\text{da:Class1 AssertionDemo}
\]
Using Exception Handling or Assertions?

- Assertion should not be used to replace exception handling.
 - Exception handling deals with unusual circumstances during program execution.
 - Assertions are to assure the correctness of the program.

- Exception handling addresses robustness and assertion addresses correctness.

- Assertions are used for internal consistency and validity checks.

- Assertions are checked at runtime and can be turned on or off at startup time.
Do not use assertions for argument checking in public methods:

- Valid arguments that may be passed to a public method are considered to be part of the method’s contract.
- The contract must always be obeyed whether assertions are enabled or disabled.

For example, the following code in the Circle class should be rewritten using exception handling:

```java
public void setRadius(double newRadius) {
    assert newRadius >= 0;
    radius = newRadius;
}
```
Using Exception Handling or Assertions?

- Use assertions to reaffirm assumptions.
 - This gives you more confidence to assure correctness of the program.
- A common use of assertions is to replace assumptions with assertions in the code.
- A good use of assertions is place assertions in a switch statement without a default case. For example:

```java
switch (month) {
   case 1: ... ; break;
   case 2: ... ; break;
   ...
   case 12: ... ; break;
   default: assert false : "Invalid month: " + month;
}
```
Correctness of Algorithms

- **Loop Invariants**: used to prove correctness of a loop with respect to pre- and post-conditions

 [Pre-condition for the loop]

 while (G)

 [Statements in the body of the loop]

 end while

 [Post-condition for the loop]

A loop is correct with respect to its pre- and post-conditions if, and only if, whenever the algorithm variables satisfy the pre-condition for the loop and the loop terminates after a finite number of steps, the algorithm variables satisfy the post-condition for the loop.
Loop Invariant

- A loop invariant $I(n)$ is a predicate with domain a set of integers, which for each iteration of the loop (mathematical induction), if the predicate is true before the iteration, it is true after the iteration.

If the loop invariant $I(0)$ is true before the first iteration of the loop AND

After a finite number of iterations of the loop, the guard G becomes false AND

The truth of the loop invariant ensures the truth of the post-condition of the loop

then the loop will be correct with respect to its pre- and post-conditions.
Correctness of a Loop to Compute a Product:
A loop to compute the product mx for a nonnegative integer m and a real number x, without using multiplication

[Pre-condition: m is a nonnegative integer, x is a real number, i = 0, and product = 0]

while (i ≠ m)
 product := product + x
 i := i + 1
end while

[Post-condition: product = mx]

Loop invariant I(n): i = n and product = n*x
Guard G: i ≠ m
Base Property: I (0) is “$i = 0$ and product = $0 \cdot x = 0$”

Inductive Property: [If $G \land I (k)$ is true before a loop iteration (where $k \geq 0$), then $I (k+1)$ is true after the loop iteration.]

Let k is a nonnegative integer such that $G \land I (k)$ is true

Since $i \neq m$, the guard is passed

$$\text{product} = \text{product} + x = kx + x = (k + 1)x$$

$$i = i + 1 = k + 1$$

$I (k + 1)$: $(i = k + 1$ and $\text{product} = (k + 1)x$) is true

Eventual Falsity of Guard: [After a finite number of iterations of the loop, G becomes false]

After m iterations of the loop: $i = m$ and G becomes false
Correctness of the Post-Condition: [If N is the least number of iterations after which G is false and I (N) is true, then the value of the algorithm variables will be as specified in the post-condition of the loop.]

I(N) is true at the end of the loop: \(i = N \) and \(\text{product} = Nx \)

G becomes false after N iterations, \(i = m \), so \(m = i = N \)

The post-condition: the value of product after execution of the loop should be \(m*x \) is true.
Static analysis

- Static analysis: compile-time algorithms that predict run-time behavior
- Type checking, for example, is static and precise in ML: the compiler ensures that no variable will ever be used at run time in a way that is inappropriate for its type.
 - By contrast, languages like Lisp and Smalltalk accept the run-time overhead of dynamic type checks
- In Java, type checking is mostly static, but dynamically loaded classes and type casts require run-time checks.
Static analysis

- Examples of static analysis:
 - *Alias analysis* determines when values can be safely cached in registers, computed “out of order,” or accessed by concurrent threads.
 - *Escape analysis* determines when all references to a value will be confined to a given context, allowing it to be allocated on the stack instead of the heap, or to be accessed without locks.
 - *Subtype analysis* determines when a variable in an object-oriented language is guaranteed to have a certain subtype, so that its methods can be called without dynamic dispatch.
Other static analysis

- Static analysis is usually done for **Optimizations**:
 - optimizations can be **unsafe** if they may lead to incorrect code,
 - **speculative** if they usually improve performance, but may degrade it in certain cases
 - **Non-binding prefetches** bring data into the cache before they are needed,
 - **Trace scheduling** rearranges code in hopes of improving the performance of the processor pipeline and the instruction cache.
 - A compiler is **conservative** if it applies optimizations only when it can guarantee that they will be both safe and effective.
 - A compiler is **optimistic** if it uses speculative optimizations.
 - it may also use unsafe optimizations by generating two versions of the code, with a dynamic check that chooses between them based on information not available at compile time.
Attribute Grammars

- Both semantic analysis and (intermediate) code generation can be described in terms of *annotation*, or "*decoration*" of a parse or syntax tree
 - attributes are properties/actions attached to the production rules of a grammar
 - **ATTRIBUTE GRAMMARS** provide a formal framework for decorating a parse tree
- The attributes are divided into two groups: *synthesized* attributes and *inherited* attributes.
 - Synthesized: the value is computed from the values of attributes of the children
 - *S-attributed grammar* = synthesized attributes only
Attribute Grammars

- LR (bottom-up) grammar for arithmetic expressions made of constants, with precedence and associativity
- Detects if a string follows the grammar
- But says nothing about what the program MEANS

\[
egin{align*}
E & \rightarrow E + T \\
E & \rightarrow E - T \\
E & \rightarrow T \\
T & \rightarrow T \ast F \\
T & \rightarrow T / F \\
T & \rightarrow F \\
F & \rightarrow - F \\
F & \rightarrow (E) \\
F & \rightarrow \text{const}
\end{align*}
\]
Attribute Grammars

- Attributed grammar:
 - defines the semantics of the input program
 - Associates expressions to mathematical concepts!!!
- Attribute rules are definitions, not assignments: they are not necessarily meant to be evaluated at any particular time, or in any particular order

```
E_1 → E_2 + T
   ▷ E_1.val := sum(E_2.val, T.val)
E_1 → E_2 - T
   ▷ E_1.val := difference(E_2.val, T.val)
E → T
   ▷ E.val := T.val
T_1 → T_2 * F
   ▷ T_1.val := product(T_2.val, F.val)
T_1 → T_2 / F
   ▷ T_1.val := quotient(T_2.val, F.val)
T → F
   ▷ T.val := F.val
F_1 → - F_2
   ▷ F_1.val := additive_inverse(F_2.val)
F → ( E )
   ▷ F.val := E.val
F → const
   ▷ F.val := const.val
```

(c) Paul Fodor (CS Stony
Attribute Grammars Example with variables

Tokens: int (attr val), var (attr name)

S → var = E
 ▷ assign(var.name, E.val)
E1 → E2 + T
 ▷ E1.val = add(E2.val, T.val)
E1 → E2 - T
 ▷ E1.val = sub(E2.val, T.val)
E → T
 ▷ E.val = T.val
T → var
 ▷ T.val = lookup(var.name)
T → int
 ▷ T.val = int.val

Input:
“bar = 50
foo = 100 + 200 – bar”
Evaluating Attributes

- The process of evaluating attributes is called *annotation*, or *DECORATION*, of the parse tree.
- When the parse tree under the previous example grammar is fully decorated, the value of the expression will be in the `val` attribute of the root.
- The code fragments for the rules are called *SEMANTIC FUNCTIONS*.
- For example:
 \[
 E1.val = \text{sum}(E2.val, T.val)
 \]
Attribute Grammars

- Attributed grammar to count the elements of a list:

\[
L \rightarrow \text{id} \\
L_1 \rightarrow L_2 , \text{id}
\]

\[
\triangleright L_1.c := 1 \\
\triangleright L_1.c := L_2.c + 1
\]

- Semantic functions are not allowed to refer to any variables or attributes outside the current production

- Action routines may do that (see later).
Evaluating Attributes

Decoration of a parse tree for \((1 + 3) \times 2\) needs to detect the order of attribute evaluation:

- Curving arrows show the **attribute flow**
 - Each box holds the output of a single semantic rule
 - The arrow is the input to the rule
- **synthesized attributes**: their values are calculated (synthesized) only in productions in which their symbol appears on the left-hand side.
- A **S-attributed grammar** is a grammar where all attributes are synthesized.
Evaluating Attributes

- Tokens have only synthesized attributes, initialized by the scanner (name of an identifier, value of a constant, etc.).
- **INHERITED attributes** may depend on things above or to the side of them in the parse tree, e.g., LL(1) grammar:

\[
\begin{align*}
expr & \rightarrow \text{const} \ expr_tail \\
expr_tail & \rightarrow - \text{const} \ expr_tail \mid \epsilon
\end{align*}
\]

we cannot summarize the right subtree of the root with a single numeric value

subtraction is left associative:

requires us to embed the entire tree into the attributes of a single node
Evaluating Attributes

- Decoration with *left-to-right attribute flow*: pass attribute values not only bottom-up but also left-to-right in the tree
- 9 can be combined in left-associative fashion with the 4 and
- 5 can then be passed into the middle `expr_tail` node, combined with the 3 to make 2, and then passed upward to the root
Evaluating Attributes

\[
expr \rightarrow \text{const } expr_{tail} \\
\quad \vdash expr_{tail}.st := \text{const}.val \quad (1) \\
\quad \vdash expr.val := expr_{tail}.val \quad (2)
\]

\[
expr_{tail_1} \rightarrow - \text{const } expr_{tail_2} \\
\quad \vdash expr_{tail_2}.st := expr_{tail_1}.st - \text{const}.val \\
\quad \vdash expr_{tail_1}.val := expr_{tail_2}.val
\]

\[
expr_{tail} \rightarrow \varepsilon \\
\quad \vdash expr_{tail}.val := expr_{tail}.st
\]

(1) serves to copy the left context (value of the expression so far) into a “subtotal” (st) attribute.

Root rule (2) copies the final value from the right-most leaf back up to the root.
Evaluating Attributes

An attribute grammar for constant expressions based on an LL(1) CFG

- An attribute grammar is **well defined** if its rules determine a unique set of values for the attributes of every possible parse tree.
- An attribute grammar is **noncircular** if it never leads to a parse tree in which there are cycles in the attribute flow graph.

```plaintext
1. \[ E \rightarrow T \ TT \]
   \[ T \ TT \]
   \[ \triangleright T.\text{st} := T.\text{val} \]
   \[ \triangleright E.\text{val} := T.\text{val} \]

2. \[ TT_1 \rightarrow + T \ TT_2 \]
   \[ TT_2 \]
   \[ \triangleright TT_2.\text{st} := TT_1.\text{st} + T.\text{val} \]
   \[ \triangleright TT_1.\text{val} := TT_2.\text{val} \]

3. \[ TT_1 \rightarrow - T \ TT_2 \]
   \[ TT_2 \]
   \[ \triangleright TT_2.\text{st} := TT_1.\text{st} - T.\text{val} \]
   \[ \triangleright TT_1.\text{val} := TT_2.\text{val} \]

4. \[ TT \rightarrow \epsilon \]
   \[ \triangleright TT.\text{val} := TT.\text{st} \]

5. \[ T \rightarrow F \ FT \]
   \[ F \ FT \]
   \[ \triangleright F.\text{st} := F.\text{val} \]
   \[ \triangleright T.\text{val} := FT.\text{val} \]

6. \[ FT_1 \rightarrow * F \ FT_2 \]
   \[ FT_2 \]
   \[ \triangleright FT_2.\text{st} := FT_1.\text{st} \times F.\text{val} \]
   \[ \triangleright FT_1.\text{val} := FT_2.\text{val} \]

7. \[ FT_1 \rightarrow / F \ FT_2 \]
   \[ FT_2 \]
   \[ \triangleright FT_2.\text{st} := FT_1.\text{st} \div F.\text{val} \]
   \[ \triangleright FT_1.\text{val} := FT_2.\text{val} \]

8. \[ FT \rightarrow \epsilon \]
   \[ \triangleright FT.\text{val} := FT.\text{st} \]

9. \[ F_1 \rightarrow - F_2 \]
   \[ F_2 \]
   \[ \triangleright F_1.\text{val} := - F_2.\text{val} \]

10. \[ F \rightarrow (E) \]
    \[ \triangleright F.\text{val} := E.\text{val} \]

11. \[ F \rightarrow \text{const} \]
    \[ \triangleright F.\text{val} := \text{const}.\text{val} \]
```
Evaluating Attributes

top-down parse tree for \((1 + 3) \times 2\)
Evaluating Attributes

• Synthesized Attributes (S-attributed grammar):
 • Data flows bottom-up,
 • From RHS to LHS only,
 • Can be parsed by LR grammar.

• Inherited Attributes:
 • Data flows top-down and bottom-up,
 • Can be parsed with LL grammar.
A translation scheme is an algorithm that decorates parse trees by invoking the rules of an attribute grammar in an order consistent with the tree’s attribute flow.

- An oblivious scheme makes repeated passes over a tree, invoking any semantic function whose arguments have all been defined, and stopping when it completes a pass in which no values change.
- A dynamic scheme that tailors the evaluation order to the structure of the given parse tree, e.g., by constructing a topological sort of the attribute flow graph and then invoking rules in an order consistent with the sort.

An attribute grammar is \textit{L-attributed} if its attributes can be evaluated by visiting the nodes of the parse tree in a single left-to-right, depth-first traversal (same order with a top-down parse).
Syntax trees

- A *one-pass compiler* is a compiler that interleaves semantic analysis and code generation with parsing.

- **Syntax trees**: if the parsing and semantic analysis are *not interleaved*, then attribute rules must be added to create the syntax tree:
 - The attributes in these grammars point to nodes of the syntax tree (containing unary or binary operators, pointers to the supplied operand(s), etc.),
 - The attributes hold neither numeric values nor target code fragments.
Syntax trees

- Bottom-up (S-attributed) attribute grammar to construct a syntax tree

\[
\begin{align*}
E_1 &\rightarrow E_2 + T \\
&\quad \triangleright E_1.\text{ptr} := \text{make_bin_op}\("+", E_2.\text{ptr}, T.\text{ptr}) \\
E_1 &\rightarrow E_2 - T \\
&\quad \triangleright E_1.\text{ptr} := \text{make_bin_op}\("-", E_2.\text{ptr}, T.\text{ptr}) \\
E &\rightarrow T \\
&\quad \triangleright E.\text{ptr} := T.\text{ptr} \\
T_1 &\rightarrow T_2 \times F \\
&\quad \triangleright T_1.\text{ptr} := \text{make_bin_op}\("\times", T_2.\text{ptr}, F.\text{ptr}) \\
T_1 &\rightarrow T_2 / F \\
&\quad \triangleright T_1.\text{ptr} := \text{make_bin_op}\("\div", T_2.\text{ptr}, F.\text{ptr}) \\
T &\rightarrow F \\
&\quad \triangleright T.\text{ptr} := F.\text{ptr} \\
F_1 &\rightarrow - F_2 \\
&\quad \triangleright F_1.\text{ptr} := \text{make_un_op}\("-\), F_2.\text{ptr}) \\
F &\rightarrow (E) \\
&\quad \triangleright F.\text{ptr} := E.\text{ptr} \\
F &\rightarrow \text{const} \\
&\quad \triangleright F.\text{ptr} := \text{make_leaf}(\text{const.val})
\end{align*}
\]
Syntax trees

- Top-down (L-attributed) attribute grammar to construct a syntax tree:

```
E → T TT
   ▷ TT.st := T.ptr
   ▷ E.ptr := TT.ptr

TT → + T TT
    ▷ TT2.st := make_bin_op("+", TT1.st, T.ptr)
    ▷ TT1.ptr := TT2.ptr

TT → - T TT
    ▷ TT2.st := make_bin_op("-", TT1.st, T.ptr)
    ▷ TT1.ptr := TT2.ptr

TT → ε
    ▷ TT.ptr := TT.st

T → F FT
   ▷ FT.st := F.ptr
   ▷ T.ptr := FT.ptr

FT1 → * F FT2
     ▷ FT2.st := make_bin_op("x", FT1.st, F.ptr)
     ▷ FT1.ptr := FT2.ptr

FT1 → / F FT2
     ▷ FT2.st := make_bin_op("÷", FT1.st, F.ptr)
     ▷ FT1.ptr := FT2.ptr

FT → ε
    ▷ FT.ptr := FT.st

F1 → - F2
    ▷ F1.ptr := make_un_op("-/, F2.ptr

F → ( E )
   ▷ F.ptr := E.ptr

F → const
    ▷ F.ptr := make_leaf(const.val)
```
Action Routines

- While it is possible to construct automatic tools to analyze attribute flow and decorate parse trees, most compilers rely on action routines, which the compiler writer embeds in the right-hand sides of productions to evaluate attribute rules at specific points in a parse.

- An action routine is a semantic function that we tell the compiler to execute at a particular point in the parse

- In an LL-family parser, action routines can be embedded at arbitrary points in a production’s right-hand side.
 - They will be executed left to right during parsing.
Action Routines

- If semantic analysis and code generation are interleaved with parsing, then action routines can be used to perform semantic checks and generate code.
 - Later compilation phases can then consist of ad-hoc tree traversal(s), or can use an automatic tool to generate a translation scheme.
- If semantic analysis and code generation are broken out as separate phases, then action routines can be used to build a syntax tree.
Action Routines

- Entries in the attributes stack are pushed and popped automatically
- The syntax tree is produced

```
program -> item
int_decl : item -> id item
read : item -> id item
real_decl : item -> id item
write : item -> expr item
null : item -> ε
'/' : expr -> expr expr
'+' : expr -> expr expr
float : expr -> expr
id : expr -> ε
real_const : expr -> ε
```

```
program
  |__________int_decl__________
  |__________________________|
  |______read__________
  |     |__________real_decl__________|
  |     |__________________________|
  |                    |__________write__________|
  |                    |__________________________|
  |______null__________|
```

```
int a
read a
real b
read b
write (float (a) + b) / 2.0
```
Decorating a Syntax Tree

- Sample of complete tree grammar representing structure of the syntax tree

```plaintext
id : expr → ε
    | if (id.name, A) ∈ expr.symtab
    | expr.errors := null
    | expr.type := A
    | else
    | expr.errors := [id.name "undefined at" id.location]
    | expr.type := error

int.const : expr → ε
    | expr.type := int

real.const : expr → ε
    | expr.type := real

'+' : expr1 → expr1 expr3
    | expr1.symtab := expr1.symtab
    | expr3.symtab := expr1.symtab
    | check.types(expr1, expr2, expr3)

'-' : expr1 → expr1 expr3
    | expr1.symtab := expr1.symtab
    | expr3.symtab := expr1.symtab
    | check.types(expr1, expr2, expr3)

'\times' : expr1 → expr1 expr3
    | expr1.symtab := expr1.symtab
    | expr3.symtab := expr1.symtab
    | check.types(expr1, expr2, expr3)

'\div' : expr1 → expr1 expr3
    | expr1.symtab := expr1.symtab
    | expr3.symtab := expr1.symtab
    | check.types(expr1, expr2, expr3)

float : expr1 → expr1
    | expr1.symtab := expr1.symtab
    | convert.type(expr1, expr1, int, real, "float of non-int")

trunc : expr1 → expr2
    | expr1.symtab := expr1.symtab
    | convert.type(expr1, expr1, real, int, "trunc of non-real")
```