Programming Language Syntax

CSE 307 – Principles of Programming Languages
Stony Brook University

http://www.cs.stonybrook.edu/~cse307
Computer languages must be precise:

- Both their form (syntax) and meaning (semantics) must be specified without ambiguity, so that both programmers and computers can tell what a program is supposed to do.

Example: the syntax of Arabic numerals:

A digit “is” 0 | (or) 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

A non_zero_digit “is” 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

A natural_number (>0) “is” a non_zero_digit followed by other digits (a number that doesn’t start with 0) =

the regular expression “non_zero_digit digit*”

Specifying the syntax for programming languages:

Regular Expressions and Context-Free Grammars
Regular Expressions

- A regular expression is one of the following:
 - A character,
 - The empty string, denoted by ε,
 - Two regular expressions concatenated,
 - E.g., name -> letter letter
 - Two regular expressions separated by | (i.e., or),
 - E.g., name -> letter (letter | digit)
 - A regular expression followed by the Kleene star (concatenation of zero or more strings)
 - E.g., name -> letter (letter | digit)*
Regular Expressions

• RE example: the syntax of numeric constants:

A number “is” integer | real
An integer “is” digit digit*
A real “is” integer exponent | decimal (exponent | ε)
A decimal “is” digit * (. digit | digit .) digit *
An exponent “is” (e | E) (+ | - | ε) integer
A digit “is” 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Regular Expressions

- Regular expressions work well for defining tokens.
- They are unable to specify nested constructs.
 - For example, a grammar to define arithmetical expressions:

 \[
 \begin{align*}
 \text{expr} & \rightarrow \text{id} \mid \text{number} \mid - \text{expr} \mid (\text{expr}) \mid \text{expr op expr} \\
 \text{op} & \rightarrow + \mid - \mid * \mid /
 \end{align*}
 \]
 - Same number of open and closed parenthesis cannot be represented.
 - Proof that \(0^n1^n\) cannot be represented using RE is in the CD extension of the textbook using contradiction and the pigeonhole principle.
Chomsky Hierarchy

- Context Free Languages are strictly more powerful than Regular Expressions
- But, Regular Expressions are way faster to recognize, so
 - Regular Expressions create tokens, atoms of the syntax tree.
- Chomsky Hierarchy:
 - Type-0: Unrestricted Language - Turing Machine
 - Type-1: Context-Sensitive Language - Turing Machine w/ Tape * Input
 - Type-2: Context-Free Language - Pushdown Automata - Scanner
 - Type-3: Regular Language - Finite Automata/Regex – Lexer
 - 0 and 1 usually too slow for practical use. 2 maybe, maybe not. 3 are fast.
Context-Free Grammars (CFG)

- Backus–Naur Form (BNF) notation for CFG:
 \[expr \rightarrow id \mid number \mid - expr \mid (expr) \mid expr \ op \ expr \]
 \[op \rightarrow + \mid - \mid * \mid / \]
 Each of the rules in a CFG is known as a *production*.
 The symbols on the left-hand sides of the productions are *nonterminals*.

- A CFG consists of:
 - A set of terminals \(T \),
 - A set of non-terminals \(N \),
 - A start symbol \(S \) (a non-terminal), and
 - A set of productions.
Derivations and ParseTrees

- A context-free grammar shows us how to generate a syntactically valid string of terminals.
- Parse tree for expression grammar (with precedence) for $3 + 4 \times 5$
Context free grammars

- The previous grammar was ambiguous (can generate multiple parse trees): one corresponds to $3+(4*5)$ and one corresponds to $(3+4)*5$

- A better version of our expression grammar should include precedence and associativity:

1. $expr \rightarrow term \mid expr \ add_op \ term$
2. $term \rightarrow factor \mid term \ mult_op \ factor$
3. $factor \rightarrow id \mid number \mid -factor \mid (\ expr\)$
4. $add_op \rightarrow + \mid -$
5. $mult_op \rightarrow * \mid /$

see example parse tree on the next page
Context-Free Grammars

- Parse tree for expression grammar (with left associativity) for $10 - 4 - 3$

```
expr
  /\       \
expr   add_op   term
  |        |      |
 expr  add_op factor
 |    |      |
 expr term
 |    |
 expr
   |
 term
   |
 factor
   |
 number(10)
```

```
expr
  /\       \
expr   add_op   term
  |        |      |
 expr  add_op factor
 |    |      |
 expr term
 |    |
 expr
   |
 term
   |
 factor
   |
 number(4)
```

```
expr
  /\       \
expr   add_op   term
  |        |      |
 expr  add_op factor
 |    |      |
 expr term
 |    |
 expr
   |
 term
   |
 factor
   |
 number(3)
```
Scanning

• The scanner and parser for a programming language are responsible for discovering the syntactic structure of a program (the *syntax analysis*).
• The scanner is responsible for
 • tokenizing source,
 • removing comments,
 • (often) dealing with pragmas (i.e., significant comments),
 • saving text of identifiers, numbers, strings,
 • saving source locations (file, line, column) for error messages.
Scanning

• Suppose we are building an ad-hoc (hand-written) scanner for a Calculator:

 assign → :=
 plus → +
 minus → -
 times → *
 div → /
 lparen → (
 rparen →)

 id → letter (letter | digit)* except for read and write

 number → digit digit * | digit * (. digit | digit .) digit *

 comment → /* (non-* | * non-/)* */
 | // (non-newline)* newline
Scanning

- We read the characters one at a time with look-ahead
 skip any initial white space (spaces, tabs, and newlines)
 if \(\text{cur_char} \in \{\text{‘(‘, ‘)’}, \text{‘+’, ‘-’, ‘*’}\} \)
 return the corresponding single-character token
 if \(\text{cur_char} = \text{‘:’} \)
 read the next character
 if it is ‘=’ then return assign else announce an error
 if \(\text{cur_char} = \text{‘/’} \)
 peek at the next character
 if it is ‘*’ or ‘/’
 read additional characters until “*/” or newline is seen, respectively
 jump back to top of code
 else return div
Scanning

if cur_char = .

read the next character
if it is a digit

read any additional digits
return number
else announce an error

if cur_char is a digit

read any additional digits and at most one decimal point
return number
if cur_char is a letter

read any additional letters and digits
check to see whether the resulting string is read or write
if so then return the corresponding token
else return id
else announce an error
Scanning

- Pictorial representation of a scanner for calculator tokens, in the form of a finite automaton
Scanning

- This is a deterministic finite automaton (DFA)
 - lex, scangen, etc. build these things automatically from a set of regular expressions
 - Specifically, they construct a machine that accepts the language identifier | int const | real const | comment | symbol | ...
Scanning

• We run the machine over and over to get one token after another
 • Nearly universal rule:
 • always take the longest possible token from the input
 thus foobar is foobar and never f or foo or foob
 • more to the point, 3.14159 is a real const and never 3, ., and 14159
 • Regular expressions "generate" a regular language;
 • DFAs "recognize" it
Scanning

• The Lexer turns a program into a string of tokens.
 • Matches regular expressions to program.
 • The Lexer creates a list of tokens.
 • Two syntaxes for regular expressions: EBNF and Perl-style Regex

• Scanners tend to be built three ways
 • Writing / Generating a finite automaton
 • Scanner code
 (usually realized as nested case statements)
 • Table-driven DFA

• Writing / Generating a finite automaton generally yields the fastest, most compact code by doing lots of special-purpose things, though good automatically-generated scanners come very close
Writing a pure DFA as a set of nested case statements is a surprisingly useful programming technique though it's often easier to use perl, awk, sed

Table-driven DFA is what lex and scangen produce
- lex (flex) in the form of C code
- scangen in the form of numeric tables and a separate driver
Scanning

• Note that the rule about longest-possible tokens means you return only when the next character can't be used to continue the current token
 • the next character will generally need to be saved for the next token

• In some cases, you may need to peek at more than one character of look-ahead in order to know whether to proceed
 • In Pascal, for example, when you have a 3 and you see a dot
 • do you proceed (in hopes of getting 3.14)?
 or
 • do you stop (in fear of getting 3..5)? (declaration of arrays in Pascal, e.g., “array [1..6] of Integer”)

(c) P.Fodor (CS Stony Brook) and Elsevier
Perl-style Regexp

• Learning by examples:

 abcd - concatenation
 a(b | c)d - grouping
 a(b | c)*d - can apply # of repeats to char or group.
 ? = 0-1
 * = 0-inf
 + = 1-inf
 [bc] - character class
 [a-zA-Z0-9_] - ranges
 . - matches any character.
 \a - alpha
 \d - numeric
 \w - word (alpha, num, _)
 \s - whitespace
Perl-style Regexp

• Learning by examples:

How do we write a regexp that matches floats?

\d+\.\d* | \.\d+
Python TPG Lexer

• Toy Parser Generator (TPG): http://cdsoft.fr/tpg

• Syntax:

 token <name> <regex> <function> ;

 separator <name> <regex> ;

• Example:

 token integer '\d+' int;

 token float '\d+.\d*|\.\d+' float;

 token rbrace '{';

 separator space '\s+';
Python TPG Lexer

- Embed TPG in Python:

```python
import tpg
class Calc:
    r''"
    separator spaces: '\s+' ;
    token number: '\d+' ;
    token add: '[-+]' ;
    token mul: '[/]' ;
    """
```

Try it in Python: download TGP from http://cdsoft.fr/tpg
Parsing

• The parser calls the scanner to get the tokens, assembles the tokens together into a syntax tree, and passes the tree (perhaps one subroutine at a time) to the later phases of the compiler (*syntax-directed translation*).

• Most use a context-free grammar (CFG)

• Terminology:
 • symbols
 • terminals (tokens)
 • non-terminals
 • production
 • derivations (left-most and right-most - canonical)
 • parse trees
 • sentential form
Parsing

• It turns out that for any CFG we can create a parser that runs in $O(n^3)$ time (e.g., Earley’s algorithm and the Cocke-Younger-Kasami (CYK) algorithm)
 • $O(n^3)$ time is clearly unacceptable for a parser in a compiler - too slow even for a program of 1000 tokens.
Parsing

- Fortunately, there are large classes of grammars for which we can build parsers that run in linear time
 - The two most important classes are called LL and LR
- LL stands for 'Left-to-right, Leftmost derivation'.
- LR stands for 'Left-to-right, Rightmost derivation'.
- Leftmost derivation - work on the left side of the parse tree.
- Rightmost derivation - work on the right side of the tree.
Parsing

- LL parsers are also called 'top-down', or 'predictive' parsers & LR parsers are also called 'bottom-up', or 'shift-reduce' parsers
- There are several important sub-classes of LR parsers
 - SLR
 - LALR
 - “full LR”
Top-down parsing (LL)

Consider a grammar for a comma separated list of identifiers, terminated by a semicolon:

\[
\begin{align*}
 id_list & \rightarrow id \ id_list_tail \\
 id_list_tail & \rightarrow , \ id \ id_list_tail \\
 id_list_tail & \rightarrow ;
\end{align*}
\]

- The top-down construction of a parse tree for the string: “A, B, C;” starts from the root and applies rules and tried to identify nodes.
Bottom-up parsing (LR)

\[
id_{\text{list}} \rightarrow \text{id} \; id_{\text{list_tail}}
\]

\[
id_{\text{list_tail}} \rightarrow , \; \text{id} \; id_{\text{list_tail}}
\]

\[
id_{\text{list_tail}} \rightarrow ;
\]

- The bottom-up construction of a parse tree for the string: “A, B, C;”
- The parser finds the left-most leaf of the tree is an id. The next leaf is a comma. The parser continues in this fashion, shifting new leaves from the scanner into a forest of partially completed parse tree fragments.
Bottom-up parsing (LR)

- The bottom-up construction realizes that some of those fragments constitute a complete right-hand side.
- In this grammar, that occur when the parser has seen the semicolon—the right-hand side of `id_list_tail`. With this right-hand side in hand, the parser reduces the semicolon to an `id_list_tail`.
- It then reduces `, id list tail` into another `id_list_tail`.
- After doing this one more time it is able to reduce `id list tail` into the root of the parse tree, `id_list`.
Parsing

- The number in LL(1), LL(2), …, indicates how many tokens of look-ahead are required in order to parse.
 - Almost all real compilers use one token of look-ahead
- The expression grammar (with precedence and associativity) you saw before is LR(1), but not LL(1)
- Every LL(1) grammar is also LR(1), though right recursion in production tends to require very deep stacks and complicates semantic analysis
- Every CFL that can be parsed deterministically has an SLR(1) grammar (which is LR(1))
- Every deterministic CFL with the prefix property (no valid string is a prefix of another valid string) has an LR(0) grammar.
LL Parsing

• Consider an LL(1) grammar:

\[
\begin{align*}
\text{program} & \rightarrow \text{stmt_list} \ \text{$\$$(end \ of \ file)} \\
\text{stmt_list} & \rightarrow \text{stmt} \ \text{stmt_list} \\
& \quad | \ \varepsilon \\
\text{stmt} & \rightarrow \text{id} := \text{expr} \\
& \quad | \ \text{read id} \\
& \quad | \ \text{write expr} \\
\text{expr} & \rightarrow \text{term} \ \text{term_tail} \\
\text{term_tail} & \rightarrow \text{add_op} \ \text{term} \ \text{term_tail} \\
& \quad | \ \varepsilon
\end{align*}
\]
LL Parsing

term \rightarrow factor fact_tail

fact_tail \rightarrow mult_op fact fact_tail

| ε

factor \rightarrow (expr)

| id

| number

add_op \rightarrow +

| -

mult_op \rightarrow *

| /
LL Parsing

- Like the bottom-up grammar, this one captures associativity and precedence, but most people don't find it as pretty
 - for one thing, the operands of a given operator aren't in a Right Hand Side (RHS) together!
 - however, the simplicity of the parsing algorithm makes up for this weakness

- How do we parse a string with this grammar?
 - by building the parse tree incrementally
LL Parsing

- Example (the average program):

 read A
 read B
 sum := A + B
 write sum
 write sum / 2

- We start at the top and predict needed productions on the basis of the current left-most non-terminal in the tree and the current input token
Parse tree for the average program

```
program
  stmt_list $$
    stmt
      read id(A)
    stmt_list
      stmt
        read id(B)
      stmt_list
        id(sum) := expr
    stmt_list
      term
        factor factor_tail
        add_op term
        term_tail
          id(A) ε +
        factor factor_tail
          id(B) ε
data_factor
        factor factor_tail
          id(sum) ε
data_factor
        factor factor_tail
          id(sum) mul_op number(2) ε
    stmt_list
      write expr
        e
```
LL Parsing

- Table-driven LL parsing: you have a big loop in which you repeatedly look up an action in a two-dimensional table based on current leftmost non-terminal and current input token. The actions are
 - (1) match a terminal
 - (2) predict a production
 - (3) announce a syntax error
LL Parsing

- LL(1) parse table for parsing for calculator language
LL Parsing

- Problems trying to make a grammar LL(1)
 - left recursion
 - example:
 \[
 \text{id_list} \rightarrow \text{id} \\
 \quad \quad \mid \text{id_list, id}
 \]
 - we can get rid of all left recursion mechanically in any grammar
 \[
 \text{id_list} \rightarrow \text{id} \: \text{id_list_tail} \\
 \text{id_list_tail} \rightarrow , \text{id} \: \text{id_list_tail} \\
 \quad \mid \varepsilon
 \]
LL Parsing

• Problems trying to make a grammar LL(1)
 • common prefixes
 • example:
 stmt → id := expr
 | id (arg_list)
 • we can eliminate left-factor mechanically = "left-factoring"
 stmt → id id_stmt_tail
 id_stmt_tail → := expr
 | (arg_list)
LL Parsing

• Note that eliminating left recursion and common prefixes does NOT make a grammar LL
 • there are infinitely many non-LL LANGUAGES, and the mechanical transformations work on them just fine
LL Parsing

- Problems trying to make a grammar LL(1)
 - the "dangling else" problem prevents grammars from being LL(1) (or in fact LL(k) for any k)
 - the following natural grammar fragment is ambiguous (Pascal):
 stmt → if cond then_clause else_clause | other_stuff
 then_clause → then stmt
 else_clause → else stmt
 | ε

String: "if C1 then if C2 then S1 else S2"
The else can be paired with either then!!!

Desired effect: pair the else with the nearest then.
LL Parsing

- The less natural grammar fragment can be parsed bottom-up but not top-down:

 \[
 \text{stmt} \rightarrow \text{balanced_stmt} \mid \text{unbalanced_stmt}
 \]
 \[
 \text{balanced_stmt} \rightarrow \text{if cond then balanced_stmt} \quad \text{else balanced_stmt} \\
 \mid \text{other_stuff}
 \]
 \[
 \text{unbalanced_stmt} \rightarrow \text{if cond then stmt} \quad \text{if cond then balanced_stmt} \\
 \mid \text{else unbalanced_stmt}
 \]

- A \textit{balanced stmt} is one with the same number of thens and elses.
- An \textit{unbalanced stmt} has more thens.
LL Parsing

• The usual approach, whether top-down OR bottom-up, is to use the ambiguous grammar together with a disambiguating rule that says:
 • else goes with the closest then or
 • more generally, the first of two possible productions is the one to predict (or reduce)
LL Parsing

• Better yet, languages (since Pascal) generally employ explicit end-markers, which eliminate this problem.

• In Modula-2, for example, one says:

 if A = B then
 if C = D then E := F end
 else
 G := H

 end

• Ada says 'end if'; other languages say 'fi'
LL Parsing

- One problem with end markers is that they tend to bunch up.
 In Pascal you say

 if \(A = B \) then …
 else if \(A = C \) then …
 else if \(A = D \) then …
 else if \(A = E \) then …
 else …;

- With end markers this becomes

 if \(A = B \) then …
 else if \(A = C \) then …
 else if \(A = D \) then …
 else if \(A = E \) then …
 else …;
 end; end; end; end;…
LL Parsing

- The algorithm to build predict sets is tedious (for a "real" sized grammar), but relatively simple
- It consists of three stages:
 1. compute FIRST sets for symbols
 2. compute FOLLOW sets for non-terminals
 (this requires computing FIRST sets for some strings)
 3. compute predict sets or table for all productions
LL Parsing

- It is conventional in general discussions of grammars to use
 - lower case letters near the beginning of the alphabet for terminals
 - lower case letters near the end of the alphabet for strings of terminals
 - upper case letters near the beginning of the alphabet for non-terminals
 - upper case letters near the end of the alphabet for arbitrary symbols
 - greek letters for arbitrary strings of symbols
LR Parsing

- LR parsers are almost always table-driven:
 - like a table-driven LL parser, an LR parser uses a big loop in which it repeatedly inspects a two-dimensional table to find out what action to take
 - unlike the LL parser, however, the LR driver has non-trivial state (like a DFA), and the table is indexed by current input token and current state
 - the stack contains a record of what has been seen SO FAR (NOT what is expected)
LR Parsing

- A scanner is a DFA
 - it can be specified with a state diagram
- An LL or LR parser is a PDA
 - Early's & CYK algorithms do NOT use PDAs
 - a PDA can be specified with a state diagram and a stack
 - the state diagram looks just like a DFA state diagram, except the arcs are labeled with \(<\text{input symbol}, \text{top-of-stack symbol}>\) pairs, and in addition to moving to a new state the PDA has the option of pushing or popping a finite number of symbols onto/off the stack
Actions

- We can run actions when a rule triggers:
 - Often used to construct an AST for a compiler.
 - For simple languages, can interpret code directly.
 - We can use actions to fix the Top-Down Parsing problems.
Classic Parsing Tools

lex - original UNIX lexics generator (Lesk, 1975)
- create a C function that will parse input according to a set of regular expressions

yacc - "yet another compiler compiler" UNIX parser (Johnson, 1975)
- generate a C program for a parser from BNF rules

bison and **flex** ("fast lex") - more powerful, free versions of yacc and lex, from GNU Software Found'n.

Lexical Rules → Grammar Rules

Lex or Flex

Input → yylex() → parsed Input

Yacc or Bison

(c) P.Fodor (CS Stony Brook) and Elsevier
Classic Parsing Tools

- Lex and Yacc generate C code for your analyzer & parser.

Lexical Rules

Lex or Flex

Input
char stream

yylex()
C code
Lexical Analyzer (Tokenizer)

Grammar Rules

Yacc or Bison

Parsed Input
token stream

yyparse()
C code
Parser
The programmer puts BNF rules and token rules for the parser he wants in a bison source file `myparser.y`.

run bison to create a C program (*.tab.c) containing a parser function.

The programmer must also supply a tokenizer named `yylex()`.

The programmer puts BNF rules and actions for your grammar in `myparser.y`.

Run `bison myparser.y` to create the parser source code `myparser.tab.c`.

The tokenizer function is provided in `yylex.c`.

Compile the code with `gcc -o myprog myparser.tab.c yylex.c` to create the executable program `myprog`.

(c) P.Fodor (CS Stony Brook) and Elsevier
Combining Lex/Flex with Yacc/Bison

- **Lex specification** (lex.l) and token definitions
 - lex.yy.c
 - y.tab.h

- **Yacc or Bison**
 - yacc specification (yacc.y)
 - y.tab.c
 - y.tab.h

- **C compiler**
 - lex.yy.c
 - a.out

- **Output stream**

- **Input stream**

(c) P.Fodor (CS Stony Brook) and Elsevier
%option noyywrap
%
#include "y.tab.h"
extern double yylval;
%
number [0-9]+\.|[0-9]*\.[0-9]+%%[] { /* skip blanks */ }{number} { sscanf(yytext, "%lf", &yylval);
 return NUMBER;
}
|. { return yytext[0]; }

Generated by Yacc, contains
#define NUMBER ...

Defined in y.tab.c
Bison Specification Example

- A grammar written in BNF.
- Bison creates a C program that parses according to the rules

```
term    : term '*' factor { $$ = $1 * $3; } |
        term '/' factor { $$ = $1 / $3; } |
        factor          { $$ = $1; } ;

factor  : ID              { $$ = valueof($1); } |
        NUMBER          { $$ = $1; } ;
```

```
yacc -d example2.y
lex example2.l
gcc y.tab.c lex.yy.c ./a.out

bison -d -y example2.y
flex example2.l
gcc y.tab.c lex.yy.c ./a.out
```
TPG example

- TGP is a lexical and syntactic parser generator for Python.
- YACC is too complex to use in simple cases (calculators, configuration files, small programming languages, …).
- You can also add Python code directly into grammar rules and build abstract syntax trees while parsing.
TPG example

- Defining the grammar:
 - Terminal symbols for expressions:

 number [0 - 9]+ or \d+ One or more digits
 add [+ -] a + or a -
 mul [*/] a * or a /
 spaces \s+ One or more spaces
 - Non-terminal productions:

 START -> Expr ;
 Expr -> Term (add Term)* ;
 Term -> Fact (mul Fact)* ;
 Fact -> number | '\(' Expr '\)' ;
import tpg
class Calc:
 r""
 separator spaces: '\s+' ;
token number: '\d+' ;
token add: '[-+]' ;
token mul: '[*/]' ;
START -> Expr ;
Expr -> Term (add Term)* ;
Term -> Fact (mul Fact)* ;
Fact -> number | '\(' Expr '\)' ;
"""
TPG example

- Reading the input and returning values:
 separator spaces: '\s+' ;
 token number: '\d+' int ;
 token add: '[-+]' make_op;
 token mul: '[/\] ' make_op;
- Transform tokens into defined operations:
 def make_op(s):
 return {
 '+': lambda x,y: x+y,
 '-': lambda x,y: x-y,
 '*': lambda x,y: x*y,
 '/': lambda x,y: x/y,
 }[s]
TPG example

- After a terminal symbol is recognized we will store it in a Python variable: for example to save a number in a variable n: `number/n`.

- Include Python code example:
  ```
  Expr/t -> Term/t ( add/op Term/f $t=op(t,f)$ )* ;
  Term/f -> Fact/f ( mul Fact/a $f=op(f,a)$ )* ;
  Fact/a -> number/a | \('Expr/a ')\);
  ```
import math # Simple calculator calc.py
import operator
import string
import tpg
def make_op(s):
 return {
 '+': lambda x,y: x+y,
 '-': lambda x,y: x-y,
 '*': lambda x,y: x*y,
 '/': lambda x,y: x/y,
 }[s]
class Calc(tpg.Parser):
 r"""
 separator spaces: '\s+' ;
 token number: '\d+' int ;
 token add: '[-+]' make_op ;
 token mul: '[-/*]' make_op ;
 START/e -> Term/e ; # continue on next slide
Term/t -> Fact/t (add/op Fact/f $t=op(t,f)$)* ;
Fact/f -> Atom/f (mul/op Atom/a $f=op(f,a)$)* ;
Atom/a -> number/a | '\(' Term/a '\)' ;

""

calc = Calc()

if tpg.__python__ == 3:
 operator.div = operator.truediv
 raw_input = input

expr = raw_input('Enter an expression: ')
print(expr, '=' , calc(expr))
#!/usr/bin/env python

Larger example: scientific_calc.py

import math
import operator
import string
import tpg

if tpg.__python__ == 3:
 operator.div = operator.truediv
 raw_input = input

def make_op(op):
 return {
 '+' : operator.add,
 '-' : operator.sub,
 '*' : operator.mul,
 '/' : operator.div,
 '%' : operator.mod,
 '^' : lambda x,y:x**y,
 '**' : lambda x,y:x**y,
 'cos' : math.cos,
 'sin' : math.sin,
 'tan' : math.tan,
 'acos' : math.acos,
 }
'asin': math.asin,
'atan': math.atan,
'sqr': lambda x:x*x,
'sqrt': math.sqrt,
'abs': abs,
'norm': lambda x,y:math.sqrt(x*x+y*y),
}

class Calc(tpg.Parser, dict):
 r""
 separator space '\s+';
token pow_op '\^|**' $ make_op
token add_op '[+-]' $ make_op
token mul_op '[*/%]' $ make_op
token funct1 '(cos|sin|tan|acos|asin|atan|sqr|sqrt|abs)\b' $ make_op
token funct2 '(norm)\b' $ make_op
token real '(\d+\.\d*|\d*\.\d+)([eE][-+]?\d+)?|\d+[eE][-+]?\d+' $ float
token integer '\d+' $ int
token VarId '[a-zA-Z_]\w*' ;
START/e ->
 'vars' $ e=self.mem()
 | VarId/v '=' Expr/e $ self[v]=e
 | Expr/e

; Var/$self.get(v,0)$ -> VarId/v ;
Expr/e -> Term/e (add_op/op Term/t $ e=op(e,t))*

; Term/t -> Fact/t (mul_op/op Fact/f $ t=op(t,f))*

; Fact/f ->
 add_op/op Fact/f $ f=op(0,f)
 | Pow/f

; Pow/f -> Atom/f (pow_op/op Fact/e $ f=op(f,e))?

;
Atom/a ->
 real/a
 | integer/a
 | Function/a
 | Var/a
 | '\(' Expr/a '\)'

;
Function/y ->
 funct1/f '\(' Expr/x '\)'
 $ y = f(x)
 | funct2/f '\(' Expr/x1 ',' Expr/x2 '\)'
 $ y = f(x1,x2)

""

def mem(self):
 vars = sorted(self.items())
 memory = ["%s = %s"%(var, val) for (var, val) in vars]
 return "\n\n".join(memory)
print("Calc (TPG example)")
calc = Calc()
while 1:
 l = raw_input("\n:")
 if l:
 try:
 print(calc(l))
 except Exception:
 print(tpg.exc())
 else:
 break