
CSE 307 – Principles of Programming Languages

Stony Brook University

http://www.cs.stonybrook.edu/~cse307

1

Regular Expressions in

programming

http://www.cs.stonybrook.edu/~cse307

(c) Paul Fodor (CS Stony Brook)

What are Regular Expressions?
 Formal language representing a text pattern interpreted

by a regular expression processor

Used for matching, searching and replacing text

There are no variables and you cannot do

mathematical operations (such as: you cannot add

1+1) – it is not a programming language

Frequently you will hear them called regex or RE for

short (or pluralized "regexes")

2

(c) Paul Fodor (CS Stony Brook)

What are Regular Expressions?
 Usage examples:
Test if a phone number has the correct number of digits

Test if an email address has the correct format

Test if a Social Security Number is in the correct format

 Search a text for words that contain digits

Find duplicate words in a text

Replace all occurrences of "Bob" and "Bobby" with "Robert"

Count the number of times "science" is preceded by

"computer" or "information"

Convert a tab indentations file with spaces indentations

3

(c) Paul Fodor (CS Stony Brook)

What are Regular Expressions?
 But what is "Matches"?
a text matches a regular expression if it is correctly

described by the regex

>>> m = re.match(r"(\w+) (\w+)", "Isaac Newton, physicist")

>>> m

<re.Match object; span=(0, 12), match='Isaac Newton'>

>>> m.group(0) # The entire match

'Isaac Newton'

>>> m.group(1) # The first parenthesized subgroup.

'Isaac'

>>> m.group(2) # The second parenthesized subgroup.

'Newton'
4

(c) Paul Fodor (CS Stony Brook)

History of Regular Expressions
 1943: Warren McCulloch and Walter Pitts developed

models of how the nervous system works

 1956: Steven Kleene described these models with an

algebra called "regular sets" and created a notation to

express them called "regular expressions"

 1968: Ken Thompson implements regular expressions in

ed, a Unix text editor

Example: g/Regular Expression/p

meaning Global Regular Expression Print (grep)

g = global / whole file; p= print

5

(c) Paul Fodor (CS Stony Brook)

History of Regular Expressions
 grep evolved into egrep

 but broke backward compatibility

 Therefore, in 1986, everyone came together and defined POSIX

(Portable Operating Systems Interface)

 Basic Regular Expressions (BREs)

 Extended Regular Expressions (EREs)

 1986: Henry Spencer releases the regex library in C
 Many incorporated it in other languages and tools

 1987: Larry Wall released Perl
 Used Spencer's regex library

 Added powerful features

 Everybody wanted to have it in their languages: Perl Compatible RE

(PCRE) library, Java, Javascript, C#/VB/.NET, MySQL, PHP,

Python, Ruby
6

(c) Paul Fodor (CS Stony Brook)

Regular Expressions Engines
 Main versions / standards:

 PCRE

 POSIX BRE

 POSIX ERE

 Very subtle differences
 Mainly older UNIX tools that use POSIX BRE for compatibility reasons

 In use:
 Unix (POSIX BRE, POSIX ERE)

 PHP (PCRE)

 Apache (v1: POSIX ERE, v2: PCRE)

 MySQL (POSIX ERE)

 Each of these languages is improving, so check their manuals

7

(c) Paul Fodor (CS Stony Brook)

Python Regular Expressions
 https://docs.python.org/3/library/re.html

 It is more powerful than String splits:

>>> "ab bc cd".split()

['ab', 'bc', 'cd']

 Import the re module:
import re

>>> re.split(" ", "ab bc cd")

['ab', 'bc', 'cd']

>>> re.split("\d", "ab1bc4cd")

['ab', 'bc', 'cd']

>>> re.split("\d*", "ab13bc44cd443gg")

['', 'a', 'b', '', 'b', 'c', '', 'c', 'd',

'', 'g', 'g', '']8

https://docs.python.org/3/library/re.html

(c) Paul Fodor (CS Stony Brook)

Python Regular Expressions
>>> re.split("\d+", "ab13bc44cd443gg")

['ab', 'bc', 'cd', 'gg']

>>> m = re.search('(?<=abc)def', 'abcdef')

>>> m

<re.Match object; span=(3, 6), match='def'>

9

(c) Paul Fodor (CS Stony Brook)

Online Regular Expressions
 https://regexpal.com

10

https://regexpal.com/

(c) Paul Fodor (CS Stony Brook)

Regular Expressions
 Strings:

 "car" matches "car"

 "car" also matches the first three letters in "cartoon"

 "car" does not match "c_a_r"

 Similar to search in a word processor

 Case-sensitive (by default): "car" does not match "Car"

 Metacharacters:
 Have a special meaning

 Like mathematical operators
 Transform char sequences into powerful patterns

 Only a few characters to learn: \ . * + - { } [] () ^ $ | ? : ! =

 May have multiple meanings
 Depend on the context in which they are used

 Variation between regex engines

11

(c) Paul Fodor (CS Stony Brook)

The wildcard character
 Like in card games: one card can replace any other card on the

pattern

 Examples:
 "h.t" matches "hat", "hot", "heat"

 ".a.a.a" matches "banana", "papaya"

 "h.t" does not match ""heat" or "Hot"

 Common mistake:
 "9.00" matches "9.00", but it also match "9500", "9-00"

 We should write regular expressions to match what we

want and ONLY what we want (We don’t want to be overly

permissive, we don't want false positives, we want the

regular expression to match what we are not looking for)
12

Metacharacter Meaning

. Any character except newline

(c) Paul Fodor (CS Stony Brook)

Escaping Metacharacter
 Allow the use of metacharacters as characters:

 "\." matches "."

 "9\.00" matches only "9.00", but not "9500" or "9-00"

 Match a backslash by escaping it with a backslash:
 "\\" matches only "\"

 "C:\\Users\\Paul" matches "C:\Users\Paul"

 Only for metacharacters
 literal characters should never be escaped because it gives them meaning, e.g., r"\n"

 Sometimes we want both meanings

 Example: we want to match files of the name: "1_report.txt", "2_report.txt",…

 "._report\.txt" uses the first . as a wildcard and the second \. as the period itself

13

Metacharacter Meaning

\ Escape the next character

(c) Paul Fodor (CS Stony Brook)

Other special characters
 Tabs: \t

 Line returns: \r (line return), \n (newline), \r\n

 Unicode codes: \u00A9

 ASCII codes: \x00A9

14

(c) Paul Fodor (CS Stony Brook)

Character sets

 Matches any of the characters inside the set
 But only one character

 Order of characters does not matter

 Examples:
 "[aeiou]" matches a single vowel, such as: "a" or "e"

 "gr[ae]y" matches "gray" or "grey"

 "gr[ae]t" does not match "great"

15

Metacharacter Meaning

[Begin character set

] End character set

(c) Paul Fodor (CS Stony Brook)

Character ranges
 [a-z] = [abcdefghijklmnoprqstuxyz]

 Range metacharacter - is only a character range when it is inside a

character set, a dash line otherwise
 represent all characters between two characters

 Examples:
 [0-9]

 [A-Za-z]

 [0-9A-Za-z]

 [0-9][0-9][0-9]-[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9] matches phone "631-632-9820"

 [0-9][0-9][0-9][0-9][0-9] matches zip code "90210"

 [A-Z0-9][A-Z0-9][A-Z0-9] [A-Z0-9][A-Z0-9][A-Z0-9] matches Canadian zip codes,

such as, "VC5 B6T"

 Caution:
 What is [50-99]?

 It is not {50,51,…,99}

 It is same with [0-9]: the set contains already 5 and 9

16

(c) Paul Fodor (CS Stony Brook)

Negative Character sets

 Caret (^) = not one of several characters
 Add ^ as the first character inside a character set

 Still represents one character

 Examples:
 [^aeiou] matches any one character that is not a lower case vowel

 [^aeiouAEIOU] matches any one character that is not a vowel (non-vowel)

 [^a-zA-Z] matches any one character that is not a letter

 see[^mn] matches "seek" and "sees", but not "seem" or "seen"

 see[^mn] matches "see " because space matches [^mn]

 see[^mn] does not match "see" because there is no more character after see

17

Metacharacter Meaning

^ Negate a character set

(c) Paul Fodor (CS Stony Brook)

Metacharacters
 Metacharacters inside Character sets are already escaped:

 Do not need to escape them again

 Examples:
 h[o.]t matches "hot" and "h.t"

 Exceptions: metacharacters that have to do with character sets:]-^\

 Examples:
 [[\]] matches "[" or "]"

 var[[(][0-9][)\]] matches "var()" or "var[]"

 Exception to exception: "10[-/]10" matches "10-10" or "10/10"
 - does not need to be escaped because it is not a range

18

(c) Paul Fodor (CS Stony Brook)

Shorthand character sets

 Underscore (_) is a word character
 Hyphen (-) is not a word character

 "\d\d\d" matches "123"

 "\w\w\w" matches "123" and "ABC" and "1_A"

 "\w\s\w\w" matches "I am", but not "Am I"

 "[^\d]" matches "a"

 "[^\d\w]" is not the same with "[\D\W]" (accepts "a")19

Shorthand Meaning Equivalent

\d Digit [0-9]

\w Word character [a-zA-z0-9_]

\s Whitespace [\t\n\r]

\D Not digit [^0-9]

\W Not word character [^a-zA-z0-9_]

\S Not white space [^ \t\n\r]

Introduced in Perl

Not in many Unix tools

(c) Paul Fodor (CS Stony Brook)

POSIX Bracket Expressions

20

(c) Paul Fodor (CS Stony Brook)

Repetition

21

Metacharacter Meaning

* Preceding item zero or more times

+ Preceding item one or more times

? Preceding item zero or one time

 Examples:

 apples* matches "apple" and "apples" and "applessssssss"

 apples+ matches "apples" and "applessssssss"

 apples? matches "apple" and "apples"

\d* matches "123"

 colou?r matches "color" and "colour"

(c) Paul Fodor (CS Stony Brook)

Quantified Repetition

22

Metacharacter Meaning

{ Start quantified repetition of preceding item

} End quantified repetition of preceding item

 {min, max}
 min and max must be positive numbers

 min must always be included

 min can be 0

 max is optional

 Syntaxes:
 \d{4,8} matches numbers with 4 to 8 digits

 \d{4} matches numbers with exactly 4 digits

 \d{4,} matches numbers with minimum 4 digits

 \d{0,} is equivalent to \d*

 \d{1,} is equivalent to \d+

(c) Paul Fodor (CS Stony Brook)

Greedy Expressions

23

 Standard repetition quantifiers are greedy:

 expressions try to match the longest possible string

 \d* matches the entire string "1234" and not just "123", "1",

or "23"

 Lazy expressions:

 matches as little as possible before giving control to the next

expression part

 ? makes the preceding quantifier into a lazy quantifier
 *?

 +?

 {min,max}?

 ??

 Example:
 "apples??" matches "apple" in "apples"

(c) Paul Fodor (CS Stony Brook)

Grouping metacharacters

24

 Group a large part to apply repetition to it
 "(abc)*" matches "abc" and "abcabcabc"

 "(in)?dependent" matches "dependent" and "independent"

 Makes expressions easier to read

 Cannot be used inside character sets

Metacharacter Meaning

(Start grouped expression

) End grouped expression

(c) Paul Fodor (CS Stony Brook)

Metacharacters

25

 $ Matches the ending position of the string or the position

just before a string-ending newline.
 In line-based tools, it matches the ending position of any line.
 [hc]at$ matches "hat" and "cat", but only at the end of the string or line.

 ^ Matches the beginning of a line or string.

 | The choice (also known as alternation or set union) operator matches

either the expression before or the expression after the operator.
 For example, abc|def matches "abc" or "def".

 \A Matches the beginning of a string (but not an internal line).

 \z Matches the end of a string (but not an internal line).

(c) Paul Fodor (CS Stony Brook)

Summary: Frequently Used Regular Expressions

26

(c) Paul Fodor (CS Stony Brook)

Python match and search Functions

27

 re.match(r, s) returns a match object if the regex r

matches at the start of string s
import re

regex = "\d{3}-\d{2}-\d{4}"

ssn = input("Enter SSN: ")

match1 = re.match(regex, ssn)

if match1 != None:

print(ssn, " is a valid SSN")

print("start position of the matched text is "

+ str(match1.start()))

print("start and end position of the matched text is "

+ str(match1.span()))

else:

print(ssn, " is not a valid SSN")

Enter SSN: 123-12-1234 more text

123-12-1234 more text is a valid SSN

start position of the matched text is 0

start and end position of the matched text is (0, 11)

(c) Paul Fodor (CS Stony Brook)

Python match and search Functions

28

 Invoking re.match returns a match object if the string

matches the regex pattern at the start of the string.

 Otherwise, it returns None.

 The program checks whether if there is a match.

 If so, it invokes the match object’s start()method to return

the start position of the matched text in the string (line 10) and the

span()method to return the start and end position of the

matched text in a tuple (line 11).

(c) Paul Fodor (CS Stony Brook)

Python match and search Functions

29

 re.search(r, s) returns a match object if the regex r matches

anywhere in string s
import re

regex = "\d{3}-\d{2}-\d{4}"

text = input("Enter a text: ")

match1 = re.search(regex, text)

if match1 != None:

print(text, " contains a valid SSN")

print("start position of the matched text is "

+ str(match1.start()))

print("start and end position of the matched text is "

+ str(match1.span()))

else:

print(ssn, " does not contain a valid SSN")

Enter a text: The ssn for Smith is 343-34-3490

The ssn for Smith is 343-34-3490 contains a SSN

start position of the matched text is 21

start and end position of the matched text is (21, 32)

(c) Paul Fodor (CS Stony Brook)

Flags

30

 For the functions in the re module, an optional flag parameter

can be used to specify additional constraints

 For example, in the following statement
re.search("a{3}", "AaaBe", re.IGNORECASE)

The string "AaaBe" matches the pattern a{3} case-insensitive

(c) Paul Fodor (CS Stony Brook)

Findall

31

 findall(pattern, string [, flags]) return a list of

strings giving all nonoverlapping matches of pattern in string. If there are

any groups in patterns, returns a list of groups, and a list of tuples if the

pattern has more than one group

>>> re.findall('<(.*?)>','<spam> /<ham><eggs>')

['spam', 'ham', 'eggs']

>>> re.findall('<(.*?)>/?<(.*?)>',

'<spam>/<ham> ... <eggs><cheese>')

[('spam', 'ham'), ('eggs', 'cheese')]

(c) Paul Fodor (CS Stony Brook)

Findall

32

 sub(pattern, repl, string [, count, flags])

returns the string obtained by replacing the (first count) leftmost

nonoverlapping occurrences of pattern (a string or a pattern object) in

string by repl (which may be a string with backslash escapes that may

back-reference a matched group, or a function that is passed a single match

object and returns the replacement string).

 compile(pattern [, flags]) compiles a regular expression

pattern string into a regular expression pattern object, for later matching.

(c) Paul Fodor (CS Stony Brook)

Groups

33

 Groups: extract substrings matched by REs in '()' parts
 (R) Matches any regular expression inside (), and delimits a group (retains

matched substring)

 \N Matches the contents of the group of the same number N: '(.+) \1' matches

“42 42”
import re

patt = re.compile("A(.)B(.)C(.)") # saves 3 substrings

mobj = patt.match("A0B1C2") # each '()' is a group, 1..n

print(mobj.group(1), mobj.group(2), mobj.group(3))

patt = re.compile("A(.*)B(.*)C(.*)") # saves 3 substrings

mobj = patt.match("A000B111C222") # groups() gives all groups

print(mobj.groups())

print(re.search("(A|X)(B|Y)(C|Z)D", "..AYCD..").groups())

print(re.search("(?P<a>A|X)(?PB|Y)(?P<c>C|Z)D",

"..AYCD..").groupdict())

patt = re.compile(r"[\t]*#\s*define\s*([a-z0-9_]*)\s*(.*)")

mobj = patt.search(" # define spam 1 + 2 + 3") # parts of C #define

print(mobj.groups()) # \s is whitespace

(c) Paul Fodor (CS Stony Brook)

Groups

34

python re-groups.py

0 1 2

('000', '111', '222')

('A', 'Y', 'C')

{'a': 'A', 'c': 'C', 'b': 'Y'}

('spam', '1 + 2 + 3')

(c) Paul Fodor (CS Stony Brook)

Groups

35

 When a match or search function or method is successful, you get back a

match object
 group(g) group(g1, g2, ...) Return the substring that matched a

parenthesized group (or groups) in the pattern. Accept group numbers or names.

Group numbers start at 1; group 0 is the entire string matched by the pattern. Returns

a tuple when passed multiple group numbers, and group number defaults to 0 if

omitted

 groups() Returns a tuple of all groups’ substrings of the match (for

group numbers 1 and higher).

 start([group]) end([group]) Indices of the start and end of the

substring matched by group (or the entire matched string, if no group is

passed).

 span([group]) Returns the two-item tuple: (start(group),
end(group))

