Functional Programming

- *Function evaluation* is the basic concept for a programming paradigm that has been implemented in *functional programming languages*

- The language ML (“Meta Language”) was originally introduced in 1977 as part of a theorem proving system, and was intended for describing and implementing proof strategies in the Logic for Computable Functions (LCF) theorem prover (whose language, pplambda, a combination of the first-order predicate calculus and the simply typed polymorphic lambda calculus, had ML as its metalanguage)

- Standard ML of New Jersey (SML) is an implementation of ML
 - The basic mode of computation in SML is the use of the definition and application of functions
Install Standard ML

• Download from:
 • http://www.smlnj.org

• Start Standard ML:
 • Type `sml` from the shell (run command line in Windows)

• Exit Standard ML:
 • `Ctrl-Z` under Windows
 • `Ctrl-D` under Unix/Mac
The basic cycle of SML activity has three parts:
- read input from the user
- evaluate it
- print the computed value (or an error message)
First SML example

• SML prompt:
 -

• Simple example:
 - 3;

val it = 3 : int

• The first line contains the SML prompt, followed by an expression typed in by the user and ended by a semicolon.

• The second line is SML’s response, indicating the value of the input expression and its type.
Interacting with SML

- SML has a number of built-in operators and data types.
 - it provides the standard arithmetic operators
 - `3+2;
 val it = 5 : int`
- The boolean values `true` and `false` are available, as are logical operators such as: `not` (negation), `andalso` (conjunction), and `orelse` (disjunction)
 - `not(true);
 val it = false : bool`
 - `true andalso false;
 val it = false : bool`
As part of the evaluation process, SML determines the type of the output value using methods of \textit{type inference}.

Simple types include \texttt{int}, \texttt{real}, \texttt{bool}, and \texttt{string}

One can also associate identifiers with values

- \texttt{val five} = 3+2;
- \texttt{val five} = 5 : int

and thereby establish a new value binding

- \texttt{five};
- \texttt{val it} = 5 : \texttt{int}
Function Definitions in SML

- The general form of a function definition in SML is:
 \[
 \text{fun <identifier> (<parameters>) = <expression>};
 \]

- For example,
 - \text{fun double}(x) = 2*x;
 \text{val double = fn : int \to int}

 declares \text{double} as a function from integers to integers, i.e., of type \text{int \to int}

- Apply a function to an argument of the wrong type results in an error message:
 - \text{double}(2.0);
 \text{Error: operator and operand don’t agree ...}
Function Definitions in SML

- The user may also **explicitly** indicate types:

 - fun max(x:int,y:int,z:int):int =

 if ((x>y) andalso (x>z)) then x
 else (if (y>z) then y else z);

 - val max = fn : int * int * int -> int

 - max(3,2,2);

 val it = 3 : int
Recursive Definitions

- The use of recursive definitions is a main characteristic of functional programming languages, and these languages encourage the use of recursion over iterative constructs such as while loops:

 - `fun factorial(x) = if x=0 then 1 else x*factorial(x-1);`
 - `val factorial = fn : int -> int`

- The definition is used by SML to evaluate applications of the function to specific arguments:

 - `factorial(5);`
 - `val it = 120 : int`
 - `factorial(10);`
 - `val it = 3628800 : int`
Example: Greatest Common Divisor

- The greatest common divisor (gcd) of two positive integers can be defined recursively based on the following observations:
 \[
gcd(n, n) = n,
\]
 \[
gcd(m, n) = gcd(n, m), \text{ if } m < n, \text{ and }
\]
 \[
gcd(m, n) = gcd(m - n, n), \text{ if } m > n.
\]
- These identities suggest the following recursive definition:

```plaintext
fun gcd(m, n): int = if m=n then n
    else if m>n then gcd(m-n, n)
    else gcd(m, n-m);

val gcd = fn : int * int -> int
val it = 6 : int
val it = 1 : int
val it = 5 : int
```

```plaintext
- gcd(12,30);
- gcd(1,20);
- gcd(125,56345);
```
Basic operators on the integers

<table>
<thead>
<tr>
<th>op</th>
<th>type</th>
<th>form</th>
<th>precedence</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>int × int → int</td>
<td>infix</td>
<td>6</td>
</tr>
<tr>
<td>−</td>
<td>int × int → int</td>
<td>infix</td>
<td>6</td>
</tr>
<tr>
<td>*</td>
<td>int × int → int</td>
<td>infix</td>
<td>7</td>
</tr>
<tr>
<td>div</td>
<td>int × int → int</td>
<td>infix</td>
<td>7</td>
</tr>
<tr>
<td>mod</td>
<td>int × int → int</td>
<td>infix</td>
<td>7</td>
</tr>
<tr>
<td>=</td>
<td>int × int → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td><></td>
<td>int × int → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td><</td>
<td>int × int → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td><=</td>
<td>int × int → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td>></td>
<td>int × int → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td>>=</td>
<td>int × int → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td>~</td>
<td>int → int</td>
<td>prefix</td>
<td></td>
</tr>
<tr>
<td>abs</td>
<td>int → int</td>
<td>prefix</td>
<td></td>
</tr>
</tbody>
</table>

- The infix operators associate to the left
- The operands are always all evaluated
Basic operators on the reals

<table>
<thead>
<tr>
<th>op</th>
<th>type</th>
<th>form</th>
<th>precedence</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>real × real → real</td>
<td>infix</td>
<td>6</td>
</tr>
<tr>
<td>−</td>
<td>real × real → real</td>
<td>infix</td>
<td>6</td>
</tr>
<tr>
<td>*</td>
<td>real × real → real</td>
<td>infix</td>
<td>7</td>
</tr>
<tr>
<td>/</td>
<td>real × real → real</td>
<td>infix</td>
<td>7</td>
</tr>
<tr>
<td>=</td>
<td>real × real → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td><></td>
<td>real × real → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td><</td>
<td>real × real → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td><=</td>
<td>real × real → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td>></td>
<td>real × real → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td>>=</td>
<td>real × real → bool</td>
<td>infix</td>
<td>4</td>
</tr>
<tr>
<td>~</td>
<td>real → real</td>
<td>prefix</td>
<td></td>
</tr>
<tr>
<td>abs</td>
<td>real → real</td>
<td>prefix</td>
<td></td>
</tr>
<tr>
<td>Math.sqrt</td>
<td>real → real</td>
<td>prefix</td>
<td></td>
</tr>
<tr>
<td>Math.In</td>
<td>real → real</td>
<td>prefix</td>
<td></td>
</tr>
</tbody>
</table>

Unary operator − is represented by ~
Type conversions

<table>
<thead>
<tr>
<th>op</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>real</td>
<td>int → real</td>
</tr>
<tr>
<td>ceil</td>
<td>real → int</td>
</tr>
<tr>
<td>floor</td>
<td>real → int</td>
</tr>
<tr>
<td>round</td>
<td>real → int</td>
</tr>
<tr>
<td>trunc</td>
<td>real → int</td>
</tr>
</tbody>
</table>

- `real(2) + 3.5 ;`

 `val it = 5.5 : real`

- `ceil(23.65) ;`

 `val it = 24 : int`

- `ceil(~23.65) ;`

 `val it = ~23 : int`

- `floor(23.65) ;`

 `val it = 23 : int`
More recursive functions

- fun exp(b,n) = if n=0 then 1.0 else b * exp(b,n-1);
val exp = fn : real * int -> real

- exp(2.0,10);
val it = 1024.0 : real
Tuples in SML

- In SML tuples are finite sequences of arbitrary but fixed length, where different components need not be of the same type

- `(1, "two")`

  ```sml
  val it = (1,"two") : int * string
  ```

- `val t1 = (1,2,3);`

  ```sml
  val t1 = (1,2,3) : int * int * int
  ```

- `val t2 = (4,(5.0,6));`

  ```sml
  val t2 = (4,(5.0,6)) : int * (real * int)
  ```

- The components of a tuple can be accessed by applying the built-in functions \#i, where i is a positive number

  ```sml
  - #1(t1);
  val it = 1 : int
  ```

  ```sml
  - #2(t2);
  val it = (5.0,6) : real * int
  ```

If a function \#i is applied to a tuple with fewer than i components, an error results.
Functions using tuples should completely define the type of tuples, otherwise SML cannot detect the type, e.g., nth argument:

```ml
fun firstThird(Tuple:int * string * int):int * int = 
  (#1(Tuple), #3(Tuple));
val firstThird = fn : int * string * int -> int * int

- firstThird((1,"two",3));
val it = (1,3) : int * int
```

Without types, we would get an error:

```ml
fun firstThird(Tuple) = (#1(Tuple), #3(Tuple));
stdIn: Error: unresolved flex record (need to know the names of ALL the fields in this context)
```
Polymorphic functions

- fun id x = x;
val id = fn : 'a -> 'a
- (id 1, id "two");
val it = (1,"two") : int * string
- fun fst(x,y) = x;
val fst = fn : 'a * 'b -> 'a
- fun snd(x,y) = y;
val snd = fn : 'a * 'b -> 'b
- fun switch(x,y) = (y,x);
val switch = fn : 'a * 'b -> 'b * 'a
Polymorphic functions

- 'a means "any type", while ' 'a means "any type that can be compared for equality" (see the `concat` function later which compares a polymorphic variable list with `[]`)
- There will be a "Warning: calling polyEqual" that means that you're comparing two values with polymorphic type for equality
 - Why does this produce a warning? Because it's less efficient than comparing two values of known types for equality
 - How do you get rid of the warning? By changing your function to only work with a specific type instead of any type
 - Should you do that or care about the warning? Probably not. In most cases having a function that can work for any type is more important than having the most efficient code possible, so you should just ignore the warning.
Lists in SML

- A list in SML is a finite sequence of objects, all of the same type:
 - [1,2,3];
 - [true,false,true];
 - [[1,2,3],[4,5],[6]];
- The last example is a list of lists of integers
Lists in SML

- All objects in a list must be of the same type:
 - \([1, [2]]\);
 Error: operator and operand don’t agree

- An empty list is denoted by one of the following expressions:
 - \([\]\);
 - \(\text{val it} = [] : \text{’a list}\)
 - \(\text{val it} = [] : \text{’a list}\)

- Note that the type is described in terms of a type variable \(\text{’a}\). Instantiating the type variable, by types such as \text{int}, results in (different) empty lists of corresponding types
SML provides various functions for manipulating lists

- The function `hd` returns the first element of its argument list
 - `hd[1,2,3];`
  ```
  val it = 1 : int
  ```
 - `hd[[1,2],[3]];`
  ```
  val it = [1,2] : int list
  ```

Applying this function to the empty list will result in an error.

- The function `tl` removes the first element of its argument lists, and returns the remaining list
 - `tl[1,2,3];`
  ```
  val it = [2,3] : int list
  ```
 - `tl[[1,2],[3]];`
  ```
  val it = [[3]] : int list list
  ```

- The application of this function to the empty list will also result in an error
Operations on Lists

- Lists can be constructed by the (binary) function :: (read cons) that adds its first argument to the front of the second argument.
 - 5::[];
 val it = [5] : int list
 - 1::[2,3];
 val it = [1,2,3] : int list
 - [1,2]::[[3],[4,5,6,7]];
 val it = [[1,2],[3],[4,5,6,7]] : int list list

- IMPORTANT: The arguments must be of the right type (such that the result is a list of elements of the same type):
 - [1]::[2,3];
 Error: operator and operand don’t agree
Operations on Lists

- Lists can also be compared for equality:
 - \([1,2,3]=[1,2,3]\);
 \[\text{val it = true : bool}\]
 - \([1,2]=[2,1]\);
 \[\text{val it = false : bool}\]
 - \(\text{tl[1] = []}\);
 \[\text{val it = true : bool}\]
Defining List Functions

• **Recursion** is particularly useful for defining functions that process lists

• For example, consider the problem of defining an SML function that takes as arguments two lists of the same type and returns the concatenated list.

• In defining such list functions, it is helpful to keep in mind that a list is either
 – an empty list `[]` or
 – of the form `x :: y`
In designing a function for **concatenating** two lists \(x \) and \(y \) we thus distinguish two cases, depending on the form of \(x \):

- If \(x \) is an empty list \([] \), then concatenating \(x \) with \(y \) yields just \(y \).
- If \(x \) is of the form \(x_1 :: x_2 \), then concatenating \(x \) with \(y \) is a list of the form \(x_1 :: z \), where \(z \) is the result of concatenating \(x_2 \) with \(y \).

We can be more specific by observing that

\[
x = x_1 :: x_2 = \text{hd}(x) :: \text{tl}(x)
\]
Concatenation

- fun concat(x,y) = if x=[] then y else hd(x)::concat(tl(x),y);
val concat = fn : ''a list * ''a list -> ''a list

• Applying the function yields the expected results:
 - concat([1,2],[3,4,5]);
 val it = [1,2,3,4,5] : int list
 - concat([], [1,2]);
 val it = [1,2] : int list
 - concat([1,2],[]);
 val it = [1,2] : int list
Length

- The following function computes the length of its argument list:

  ```ml
  fun length(L) = if (L=nil) then 0
                     else 1+length(tl(L));
  val length = fn : ''a list -> int
  ```

 - `length[1,2,3];`
 `val it = 3 : int`
 - `length[[5],[4],[3],[2,1]];`
 `val it = 4 : int`
 - `length[];`
 `val it = 0 : int`
The following function doubles all the elements in its argument list (of integers):

- fun doubleall(L) =
 if L=[] then []
 else (2*hd(L))::doubleall(tl(L));

val doubleall = fn : int list -> int list

- doubleall([1,3,5,7]);
val it = [2,6,10,14] : int list
Reversing a List

- fun reverse(L) =
 if L = nil then nil
 else concat(reverse(tl(L)), [hd(L)]);
val reverse = fn : ''a list -> ''a list

- reverse [1,2,3];
calls
- concat(reverse([2,3]), [1])
- concat([3,2], [1]);
val it = [3,2,1] : int list
Reversing a List

- Concatenation of lists, for which we gave a recursive definition, is actually a built-in operator in SML, denoted by the symbol @
- We can use this operator in reversing:

```
fun reverse(L) = 
  if L = nil then nil 
  else reverse(tl(L)) @ [hd(L)];
val reverse = fn : ''a list -> ''a list 
- reverse [1,2,3];
val it = [3,2,1] : int list
Reversing a List

- fun reverse(L) =
  if L = nil then nil
  else concat(reverse(tl(L)),[hd(L)]);

This method is not efficient: \(O(n^2)\)

\[
T(N) = T(N-1) + (N-1) = \\
= T(N-2) + (N-2) + (N-1) = \\
= 1+ 2 + 3+ ... + N-1 = N * (N-1)/2
\]
Reversing a List

- This way (using an accumulator) is better: \(O(n)\)
  
  - fun reverse_helper(L, L2) =
    
    if L = nil then L2
    
    else reverse_helper(tl(L), hd(L)::L2);
  
  - fun reverse(L) = reverse_helper(L, []);
  
  - reverse [1,2,3];
    
    reverse_helper([1,2,3],[[]]);
    
    reverse_helper([2,3],[1]);
    
    reverse_helper([3],[2,1]);
    
    reverse_helper([], [3,2,1]);

[3,2,1]
Removing List Elements

- The following function removes all occurrences of its first argument from its second argument list

```ml
fun remove (x, L) = if (L = []) then []
 else if x = hd (L) then remove (x, tl (L))
 else hd (L) :: remove (x, tl (L));
val remove = fn : 'a * 'a list -> 'a list

- remove (1, [5, 3, 1]);
val it = [5, 3] : int list

- remove (2, [4, 2, 4, 2, 4, 2, 2]);
val it = [4, 4, 4] : int list
```
Removing Duplicates

- The remove function can be used in the definition of another function that removes all duplicate occurrences of elements from its argument list:

  - \[
  \text{fun \hspace{1em} removedupl} (L) = \\
  \hspace{1em} \begin{cases} \\
  \text{if} \hspace{1em} (L=[]) \text{ then } [] \\
  \text{else} \hspace{1em} \text{hd}(L) :: \text{removedupl} (\text{remove} (\text{hd}(L), \text{tl}(L)))
  \end{cases} \\
  \hspace{1em} \text{val \hspace{1em} removedupl} = \text{fn : ''a list -> ''a list}
  \]

  - \[\text{removedupl}([3,2,4,6,4,3,2,3,4,3,2,1]);\]

  - \[\text{val \hspace{1em} it} = [3,2,4,6,1]: \text{int list}\]
Definition by Patterns

- In SML functions can also be defined via patterns.
  - The general form of such definitions is:

    ```ml
 fun <identifier>(<pattern1>) = <expression1>
 | <identifier>(<pattern2>) = <expression2>
 | ...
 | <identifier>(<patternK>) = <expressionK>;
    ```

    where the identifiers, which name the function, are all the same, all patterns are of the same type, and all expressions are of the same type.

- Example:

  ```ml
 val reverse = fn : 'a list -> 'a list
  ```

  ```ml
 fun reverse(nil) = nil
 | reverse(x::xs) = reverse(xs) @ [x];
  ```

  The patterns are inspected in order and the first match determines the value of the function.
fun member(X,L) =
  if L=[] then false
  else if X=hd(L) then true
  else member(X,tl(L));

OR with patterns:

fun member(X,[]) = false
  | member(X,Y::Ys) =
      if (X=Y) then true
      else member(X,Ys);

member(1,[1,2]); (* true *)
member(1,[2,1]); (* true *)
member(1,[2,3]); (* false *)
fun union(L1,L2) = 
    if L1=[] then L2 
    else if member(hd(L1),L2) 
        then union(tl(L1),L2) 
        else hd(L1)::union(tl(L1),L2); 

union([1,5,7,9],[2,3,5,10]); (* [1,7,9,2,3,5,10] *)
union([], [1,2]); (* [1,2] *)
union([1,2], []); (* [1,2] *)
fun union([], L2) = L2
| union(X::Xs, L2) = if member(X, L2) then union(Xs, L2) else X::union(Xs, L2);
fun intersection(L1,L2) = 
if L1=[] then [] 
else if member(hd(L1),L2) then 
hd(L1)::intersection(tl(L1),L2) 
else intersection(tl(L1),L2);

intersection([1,5,7,9],[2,3,5,10]);  (* [5] *)
Sets $\cap$ with patterns

fun intersection([],L2) = []
  | intersection(L1,[]) = []
  | intersection(X::Xs,L2) =
  
    if member(X,L2)
    then X::intersection(Xs,L2)
    else intersection(Xs,L2);
fun subset(L1,L2) = if L1=[] then true
  else if L2=[] then false
  else if member(hd(L1),L2)
    then subset(tl(L1),L2)
  else false;

subset([1,5,7,9],[2,3,5,10]); (* false *)
subset([5],[2,3,5,10]); (* true *)
Sets subset patterns

fun subset([], L2) = true
  | subset(L1, []) = if (L1 = [])
    then true
    else false
  | subset(X::Xs, L2) =
    if member(X, L2)
      then subset(Xs, L2)
      else false;

Sets equal

fun setEqual(L1,L2) =
    subset(L1,L2) andalso subset(L2,L1);

setEqual([1,5,7],[7,5,1,2]); (* false *)
setEqual([1,5,7],[7,5,1]);  (* true   *)
fun minus([],L2) = [] |
  minus(X::Xs,L2) = |
    if member(X,L2) |
      then minus(Xs,L2) |
      else X::minus(Xs,L2);

minus([1,5,7,9],[2,3,5,10]); (* [1,7,9] *)
fun product_one(X, []) = []
    | product_one(X, Y::Ys) =
        (X, Y):::product_one(X, Ys);

product_one(1, [2, 3]);
(* [(1,2), (1,3)] *)

fun product([], L2) = []
    | product(X::Xs, L2) =
        union(product_one(X, L2),
            product(Xs, L2));

product([1, 5, 7, 9], [2, 3, 5, 10]);
(* [(1,2), (1,3), (1,5), (1,10), (5,2),
    (5,3), (5,5), (5,10), (7,2), (7,3), ...] *)
fun insert_all(E,L) = 
  if L=[] then [] 
  else (E::hd(L)) :: insert_all(E,tl(L));
insert_all(1,[[],[2],[3],[2,3]]);
(* [ [1], [1,2], [1,3], [1,2,3] ] *)

fun powerSet(L) = 
  if L=[] then [[]] 
  else powerSet(tl(L)) @
    insert_all(hd(L),powerSet(tl(L)));

powerSet([]);
powerSet([1,2,3]);
powerSet([2,3]);
Higher-Order Functions

• In functional programming languages functions (called *first-class functions*) can be used as parameters or return value in definitions of other (called *higher-order*) functions.

• The following function, `map`, applies its *first argument (a function)* to all elements in its second argument (a list of suitable type):
  
  ```
 fun map(f,L) = if (L=[][]) then []
 else f(hd(L))::(map(f,t1(L)));
  ```

  ```
 val map = fn : ("a -> 'b) * 'a list -> 'b list
  ```

• We may apply `map` with any function as argument:
  
  ```
 fun square(x) = (x:int)*x;
  ```

  ```
 val square = fn : int -> int
  ```

  ```
 - map(square,[2,3,4]);
  ```

  ```
 val it = [4,9,16] : int list
  ```
Higher-Order Functions

- **Anonymous functions**:
  - `map(fn x=>x+1, [1,2,3,4,5]);`
  - `fun incr(list) = map (fn x=>x+1, list);`

```plaintext
val it = [2,3,4,5,6] : int list
```

- `incr[1,2,3,4,5];`

```plaintext
val it = [2,3,4,5,6] : int list
```
McCarthy's 91 function

- McCarthy's 91 function:
  
  - fun mc91(n) = if n>100 then n-10
    else mc91(mc91(n+11));

  val mc91 = fn : int -> int

  - map mc91 [101, 100, 99, 98, 97, 96];

  val it = [91,91,91,91,91,91,91] : int list
Filter

- Filter: keep in a list only the values that satisfy some logical condition/boolean function:

```plaintext
- fun filter(f,l) =
 if l=[] then []
 else if f(hd l)
 then (hd l)::(filter (f, tl l))
 else filter(f, tl l);

val filter = fn : ('a -> bool) * 'a list -> 'a list

- filter((fn x => x>0), [~1,0,1,2,3,~2,4]);
val it = [1,2,3,4] : int list
```
Permutations

- fun myInterleave(x,[]) = [[x]]
  | myInterleave(x,h::t) =
  |   (x::h::t)::(
  |     map((fn l => h::l), myInterleave(x,t)));

- myInterleave(1,[]);
val it = [[[1]]] : int list list

- myInterleave(1,[3]);
val it = [[[1,3],[3,1]]] : int list list

- myInterleave(1,[2,3]);
val it = [[[1,2,3],[2,1,3],[2,3,1]]] : int list list
Permutations

- fun appendAll(nil) = nil
  | appendAll(z::zs) = z @ (appendAll(zs));
flattens the list
- appendAll([[1, 2], [2, 1]]);
val it = [[1, 2], [2, 1]] : int list list

- fun permute(nil) = [[]]
  | permute(h::t) = appendAll(
      map((fn l => myInterleave(h, l)), permute(t)));

- permute([1, 2, 3]);
val it = [[1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 3, 2], [3, 1, 2],
         [3, 2, 1]] : int list list
Currying = partial application

- fun f a b c = a+b+c;
  OR
- fun f(a)(b)(c) = a+b+c;
val f = fn : int -> int -> int -> int
val f = fn : int -> (int -> (int -> int))
- val inc1 = f(1);
val inc1 = fn : int -> int -> int
val inc1 = fn : int -> (int -> int)
- val inc12 = inc1(2);
val inc12 = fn : int -> int
- inc12(3);
val it = 6 : int
Currying and Lazy evaluation

- fun mult x y = if x = 0 then 0 else x * y;

Eager evaluation: reduce as much as possible before applying the function

mult (1−1) (3 div 0)
-> (fn x => (fn y => if x = 0 then 0 else x * y)) (1−1) (3 div 0)
-> (fn x => (fn y => if x = 0 then 0 else x * y)) 0 (3 div 0)
-> (fn y => if 0 = 0 then 0 else 0 * y) (3 div 0)
-> (fn y => if 0 = 0 then 0 else 0 * y) error
-> error

Lazy evaluation:

mult (1−1) (3 div 0)
-> (fn x => (fn y => if x = 0 then 0 else x * y)) (1−1) (3 div 0)
-> (fn y => if (1−1) = 0 then 0 else (1−1) * y) (3 div 0)
-> if (1−1) = 0 then 0 else (1−1) * (3 div 0)
-> if 0 = 0 then 0 else (1−1) * (3 div 0)
-> 0
Currying and **Lazy evaluation**

- Argument evaluation as late as possible (possibly never)
- Evaluation only when indispensable for a reduction
- Each argument is evaluated at most once
- Lazy evaluation in Standard ML for the primitives: `if` `then` `else`, `andalso`, `orelse`, and pattern matching
- Property: If the eager evaluation of expression `e` gives `n1` and the lazy evaluation of `e` gives `n2` then `n1 = n2`
- Lazy evaluation gives a result **more often**
Sum sequence

- fun sum f n =
  if n = 0 then 0
  else f(n) + sum f (n-1);
val sum = fn : (int → int) → int → int

- sum (fn x => x * x) 3 ;
val it = 14 : int

because

\[ f(3) + f(2) + f(1) + f(0) = 9 + 4 + 1 + 0 = 14 \]
Composition

- Composition is another example of a higher-order function:

```plaintext
- fun comp (f, g) (x) = f(g(x));

val comp = fn : ('a -> 'b) * ('c -> 'a) -> 'c -> 'b

- val f = comp(Math.sin, Math.cos);
val f = fn : real -> real

SAME WITH:

- val g = Math.sin o Math.cos;

(* Composition "o" is predefined *)
val g = fn : real -> real

- f(0.25);
val it = 0.824270418114 : real

- g(0.25);
val it = 0.824270418114 : real
```
Find

- Pick only the first element of a list that satisfies a given predicate:
  - fun myFind pred nil = raise Fail "No such element"
    | myFind pred (x::xs) =
      if pred x then x
      else myFind pred xs;
  val myFind = fn : ('a -> bool) -> 'a list -> 'a

  - myFind (fn x => x > 0.0) [~1.2, ~3.4, 5.6, 7.8];
  val it = 5.6 : real
Reduce (aka. foldr)

- We can generalize the notion of recursion over lists as follows: all recursions have a base case, an iterative case, and a way of combining results:

  - fun reduce f b nil = b
    | reduce f b (x::xs) = f(x, reduce f b xs);

  - fun sumList aList = reduce (op +) 0 aList;
    val sumList = fn : int list -> int

  - sumList [1, 2, 3];
    val it = 6 : int
fun foldl\( (f: 'a*'b->'b, acc: 'b, l: ''a list): 'b = \)
\[
\begin{align*}
\text{if } l&=[] \text{ then acc} \\
\text{else foldl}(f, f(hd(l), acc), tl(l))
\end{align*}
\]

fun sum\( (l:int list):int = \)
\[
\text{foldl}((\text{fn} (x,acc) \Rightarrow acc+x), 0, l);
\]

sum\[1, 2, 3]\;
val it = 6 : int

- it walks the list from left to right
foldl vs. reduce (foldr)

foldr (op ^) "" ["a", "b", "c"]
type: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b

foldl (op ^) "" ["a", "b", "c"]
type: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b

(c) Paul Fodor (CS Stony Brook)
Numerical integration

- Computation of $\int_a^b f(x) \, dx$ by the trapezoidal rule:

$$n \text{ intervals}$$

$$h = (b - a) / n$$

$$\int_a^b f(x) \, dx \approx h \left( \frac{f(a)}{2} + \sum_{i=1}^{n-1} f(a + ih) + \frac{f(b)}{2} \right)$$
Numerical integration

fun integrate (f,a,b,n) =
  if n <= 0 orelse b <= a then 0.0
  else ((b-a) / real n) * ( f(a) + f(a+h) ) / 2.0 +
       integrate (f,a+((b-a) / real n),b,n-1);
val integrate = fn : (real -> real) * real * real * int
               -> real

fun cube x:real = x * x * x ;
val cube = fn : real -> real

- integrate ( cube , 0.0 , 2.0 , 10 ) ;
val it = 4.04 : real
Collect like in Java streams

- fun collect(b, combine, accept, nil) = accept(b)
  | collect(b, combine, accept, x::xs) =
  | collect(combine(b,x), combine, accept, xs);

- fun average(aList) = collect((0,0),
  (fn ((total,count),x) => (total+x,count+1)),
  (fn (total,count) => real(total)/real(count)),
  aList);

- average [1, 2, 4];
val it = 2.3333333333333333 : real
Mutually recursive function definitions

- fun odd(n) = if n=0 then false
  else even(n-1)

and

  even(n) = if n=0 then true
  else odd(n-1);

val odd = fn : int -> bool
val even = fn : int -> bool

- even(1);
val it = false : bool
- odd(1);
val it = true : bool
Sorting

• **Merge-Sort:**
  • To sort a list L:
    • first split L into two disjoint sublists (of about equal size),
    • then (recursively) sort the sublists, and
    • finally merge the (now sorted) sublists
  • It requires suitable functions for
    • splitting a list into two sublists AND
    • merging two sorted lists into one sorted list
Splitting

- We split a list by applying two functions, `take` and `skip`, which extract alternate elements; respectively, the elements at odd-numbered positions and the elements at even-numbered positions.

- The definitions of the two functions mutually depend on each other, and hence provide an example of mutual recursion, as indicated by the SML-keyword `and`:

```
- fun take(L) =
 if L = nil then nil
 else hd(L)::skip(tl(L))

and

 skip(L) =
 if L=nil then nil
 else take(tl(L));
```

val take = fn : ''a list -> ''a list
val skip = fn : ''a list -> ''a list
- take[1,2,3,4,5,6,7];
val it = [1,3,5,7] : int list
- skip[1,2,3,4,5,6,7];
val it = [2,4,6] : int list
Merging

- Merge pattern definition:
  - fun merge([],M) = M
  - merge(L,[]) = L
  - merge(x::xl,y::yl) =
    if (x:int)<y then x::merge(xl,y::yl)
    else y::merge(x::xl,yl);
val merge = fn : int list * int list -> int list

- merge([1,5,7,9],[2,3,6,8,10]);
  val it = [1,2,3,5,6,7,8,9,10] : int list
- merge([],[1,2]);
  val it = [1,2] : int list
- merge([1,2],[]);
  val it = [1,2] : int list
Merge Sort

- fun sort(L) =
  if L=[] then []
  else if tl(L)=[] then L
  else merge(sort(take(L)),sort(skip(L)));

val sort = fn : int list -> int list
Local declarations

- fun fraction (n,d) =
  let val k = gcd (n,d)
  in
    ( n div k , d div k )
  end;

• The identifier \( k \) is local to the expression after \textbf{in}
• Its binding exists only during the evaluation of this expression
• All other declarations of \( k \) are hidden during the evaluation of this expression
Sorting with comparison

• How to sort a list of elements of type $\alpha$?
  • We need the comparison function/operator for elements of type $\alpha$!

- fun sort order [ ] = [ ]
  | sort order [x] = [x]
  | sort order xs =

    let fun merge [ ] M = M
    | merge L [ ] = L
    | merge (L as x::xs) (M as y::ys) =
      if order(x,y) then x::merge xs M
      else y::merge L ys

    val (ys,zs) = split xs

    in merge (sort order ys) (sort order zs) end;

- sort (op >) [5.1, 3.4, 7.4, 0.3, 4.0] ;
  val it = [7.4,5.1,4.0,3.4,0.3] : real list
Sorting with comparison

- fun split_helper(L: 'a list, Acc:'a list * 'a list)
  :'a list * 'a list =
  if L=[] then Acc
  else split_helper(tl(L), (#2(Acc), (hd(L)) :: #1(Acc)));

- fun split(L) = split_helper(L, ([], []));

- split([1,2,3,4,5,6]);
  split([1,2,3,4,5,6])
  split_helper([1,2,3,4,5,6], ([],[]))
  split_helper([2,3,4,5,6], ([],[1]))
  split_helper([3,4,5,6], ([1],[2]))
  split_helper([4,5,6], ([2],[3,1]))
  split_helper([5,6], ([3,1],[4,2]))
  split_helper([6], ([4,2],[5,3,1]))
  split_helper([], ([5,3,1],[6,4,2]))
([5,3,1],[6,4,2])
Quicksort

- C.A.R. Hoare, in 1962: Average-case running time: $\Theta(n \log n)$

```latex
- fun sort [] = []
 | sort (x::xs) =
 let val (S,B) = partition (x,xs)
 in (sort S) @ (x :: (sort B))
 end;
```

Double recursion and no tail-recursion

```latex
- fun partition (p,[]) = ([],[])
 | partition (p,x::xs) =
 let val (S,B) = partition (p,xs)
 in if x < p then (x::S,B) else (S,x::B)
 end
```
Nested recursion

For $m, n \geq 0$:

$\text{acker}(0, m) = m+1$

$\text{acker}(n, 0) = \text{acker}(n-1, 1)$ for $n > 0$

$\text{acker}(n, m) = \text{acker}(n-1, \text{acker}(n, m-1))$ for $n, m > 0$

- fun acker 0 m = m+1
  | acker n 0 = acker (n-1) 1
  | acker n m = acker (n-1) (acker n (m-1));

It is guaranteed to end because of \textit{lexicographic order}:

$(n', m') < (n, m)$ iff $n' < n$ or $(n' = n$ and $m' < m)$
Nested recursion

- **Knuth's up-arrow operator** $\uparrow^n$ (invented by Donald Knuth):
  
a $\uparrow^1 b = a^b$
  
a $\uparrow^n b = a \uparrow^{n-1} (b \uparrow^{n-1} b)$ for $n > 1$

- fun opKnuth 1 a b = Math.pow (a,b)
  | opKnuth n a b = opKnuth (n−1) a
  | (opKnuth (n−1) b b);

- opKnuth 2 3.0 3.0 ;
val it = 7.62559748499E12 : real
- opKnuth 3 3.0 3.0 ;
  ! Uncaught exception: Overflow;

- **Graham’s number** (also called the “largest” number):
  
  - opKnuth 63 3.0 3.0,
Recursion on a generalized problem

- It is impossible to determine whether \( n \) is prime via the reply to the question “is \( n - 1 \) prime”?
- It seems impossible to directly construct a recursive program
- We thus need to find another function that is more general than prime, in the sense that prime is a particular case of this function
  - for which a recursive program can be constructed

\[
\begin{align*}
\text{- fun } & \text{ndivisors } n \text{ low up } = \text{ low } > \text{ up orelse (n mod low)} \neq 0 \text{ andalso ndivisors } n \text{ (low+1) up;}
\text{- fun } & \text{prime } n = \text{ if } n \leq 0 \\
& \text{ then error "prime: non-positive argument"}
\text{ else if } n = 1 \text{ then false}
\text{ else ndivisors } n \text{ 2 floor(Math.sqrt(real n))};
\end{align*}
\]

- The discovery of divisors requires imagination and creativity
Tail recursion

- fun length [ ] = 0
  | length (x::xs) = 1 + length xs;

- The recursive call of length is nested in an expression: during the evaluation, all the terms of the sum are stored, hence the memory consumption for expressions & bindings is proportional to the length of the list!

  length [5,8,4,3]
  -> 1 + length [8,4,3]
  -> 1 + (1 + length [4,3])
  -> 1 + (1 + (1 + length [3]))
  -> 1 + (1 + (1 + (1 + length [ ])))
  -> 1 + (1 + (1 + (1 + 0)))
  -> 1 + (1 + (1 + 1))
  -> 1 + (1 + 2)
  -> 1 + 3
  -> 4
Tail recursion

- fun lengthAux [ ] acc = acc
| lengthAux (x::xs) acc = lengthAux xs (acc+1);
- fun length L = lengthAux L 0;
- length [5,8,4,3];
  -> lengthAux [5,8,4,3] 0
  -> lengthAux [8,4,3] (0+1)
  -> lengthAux [8,4,3] 1
  -> lengthAux [4,3] (1+1)
  -> lengthAux [4,3] 2
  -> lengthAux [3] (2+1)
  -> lengthAux [3] 3
  -> lengthAux [ ] (3+1)
  -> lengthAux [ ] 4
  -> 4

- **Tail recursion**: recursion is the outermost operation
  - **Space complexity**: *constant* memory consumption for expressions & bindings (SML can use the *same stack frame/activation record*)
  - **Time complexity**: (still) one traversal of the list
Tail recursion

- fun factAux 0 0 acc = acc
  | factAux n acc = factAux (n-1) (n*acc);
- fun fact n =
  if n < 0 then error "fact: negative argument"
  else factAux n 1;

- fact(3);
- factAux(3,1)
- factAux(2,3)
- factAux(1,6)
- factAux(0,6)
  6
Records

- Records are structured data types of heterogeneous elements that are labeled

- \{x=2, \ y=3\};
  - The order does not matter:

- \{\text{make}="Toyota", \text{model}="Corolla", \text{year}=2017, \text{color}="silver"\}
  \ = \ \{\text{model}="Corolla", \text{make}="Toyota", \text{color}="silver", \text{year}=2017\};

val it \ = \ true : \text{bool}

- fun \text{full\_name}\{\text{first}\String, \text{last}\String, \text{age}\Int, \text{balance}\Real\}:\String =
  \text{first} ^ " " ^ \text{last};

(* ^ is the string concatenation operator *)

val \text{full\_name}=fn:\{\text{age}\Int, \text{balance}\Real, \text{first}\String, \text{last}\String\} \to \String
string and char

- "a";
val it = "a" : string
- "a";
val it = "a" : char
- explode("ab");
val it = [#"a",#"b"] : char list
- implode([#"a",#"b"]);
val it = "ab" : string
- "abc" ^ "def" = "abcdef";
val it = true : bool
- size ("abcd");
val it = 4 : int
string and char

- `String.sub("abcde",2);`
val it = "c" : char
- `substring("abcdefgij",3,4);`
val it = "defg" : string
- `concat ["AB"," ","CD"];`
val it = "AB CD" : string
- `str(#"x");`
val it = "x" : string
Functional programming in SML

• Covered fundamental elements:
  • Evaluation by reduction of expressions
  • Recursion
  • Polymorphism via type variables
  • Strong typing
  • Type inference
  • Pattern matching
  • Higher-order functions
  • Tail recursion
Beyond functional programming

- **Relational programming** (aka logic programming)

  - For which triples does the `append` relation hold?
    
    ```prolog
 ?- append ([1,2], [3], X).
 Yes
 X = [1,2,3]
 ?- append ([1,2], X, [1,2,3]).
 X = [3]
 ?- append (X, Y, [1,2,3]).
 X = [], Y = [1,2,3];
 X = [1], Y = [2,3];
 ...
 X = [1,2,3], Y = [];

 - No differentiation between arguments and results!
Beyond functional programming

- *Backtracking* mechanism to enumerate all the possibilities
- *Unification* mechanism, as a generalization of pattern matching
- Power of the logic paradigm / relational framework
Beyond functional programming

- **Constraint Processing:**
 - Constraint Satisfaction Problems (CSPs)
 - Variables: X1, X2, …, Xn
 - Domains of the variables: D1, D2, …, Dn
 - Constraints on the variables: examples: 3 \cdot X1 + 4 \cdot X2 \leq X4
 - What is a solution?
 - An assignment to each variable of a value from its domain, such that all the constraints are satisfied

- **Objectives:**
 - Find a solution
 - Find all the solutions
 - Find an optimal solution, according to some cost expression on the variables
Beyond functional programming

- The n-Queens Problem:
 - How to place n queens on an n × n chessboard such that no queen is threatened?
 - Variables: X1, X2, . . . , Xn (one variable for each column)
 - Domains of the variables: Di = {1, 2, . . . , n} (the rows)
 - Constraints on the variables:
 - No two queens are in the same column: this is impossible by the choice of the variables!
 - No two queens are in the same row: Xi != Xj, for each i != j
 - No two queens are in the same diagonal: \(| Xi − Xj| != | i − j |, for each i != j
 - Number of candidate solutions: \(n^n\)

- Exhaustive Enumeration
 - Generation of possible values of the variables.
 - Test of the constraints.

- Optimization:
 - Where to place a queen in column k such that it is compatible with rk+1, . . . , rn?
 - Eliminate possible locations as we place queens
Beyond functional programming

• Applications:
 • Scheduling
 • Planning
 • Transport
 • Logistics
 • Games
 • Puzzles

• Complexity
 • Generally these problems are NP-complete with exponential complexity
The program of Young McML

fun tartan_column(i,j,n) =
 if j=n+1 then "\n"
 else if (i+j) mod 2=1 then
 concat(["* ",tartan_column(i,j+1,n)])
 else concat(["+ ",tartan_column(i,j+1,n)]);

fun tartan_row(i,n) =
 if i=n+1 then ""
 else concat([tartan_column(i,1,n),
 tartan_row(i+1,n)]);

fun tartan(n) = tartan_row(1,n);

print(tartan(30));

(c) Paul Fodor (CS Stony Brook)