
CSE 305 – Principles of Database Systems

Paul Fodor

Stony Brook University

http://www.cs.stonybrook.edu/~cse305

Java EE Intro

http://www.cs.stonybrook.edu/~cse305

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

JavaEE Setup is much of the battle

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Lots and lots of stuff

• Tools

– i.e. NetBeans, Glassfish, etc.

• Core Libraries

– JSF, JPA, Ajax, etc.

• Related APIs

–PrimeFaces, Struts, Spring, etc.

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Common Java Frameworks
1. Spring MVC (23%)

2. Struts 1.x (15%)

3. Apache Axis (15%)

4. Apache Xerces (14%)

5. Hibernate (12%)

6. JDOM (12%)

7. Java Applet (8.1%)

8. Apache Velocity (7.9%)

9. Apache ORO (7.0%)

10. JAX-WS (6.5%)

Source: VeraCode Blog

http://www.veracode.com/blog/2012/01/top-ten-java-frameworks-observed-in-customer-

applications/

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

A good place to start

• Core Libraries

– Java Server Faces

– JSTL & EL

– Java Persistance API

–Enterprise Java Beans

– JavaScript & Ajax

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

A good place to start

• Related AP

–RichFaces

–PrimeFaces

–Spring

–Struts

– JQuery

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Servers, Servers, and More Servers

• What are:

– Web Servers?

– Application Servers?

– Enterprise Servers?

– Database Servers?

– Java EE Servers?

• Abstraction, abstraction, abstraction

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Multi-Tier JavaEE Applications

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

First: Annotations

• Provide data about a program to:

– compiler

– Tools

– JVM

• Can be applied to:

– classes

– fields

– Methods

• Can contain elements with values

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Annotations Look-Up

• Scattered in the Java EE 6 API. Ex:

– http://docs.oracle.com/javaee/6/api/javax/annotation/package-summary.html

– http://docs.oracle.com/javaee/6/api/javax/faces/bean/package-summary.html

• Via cheat sheet:

– http://www.physics.usyd.edu.au/~rennie/javaEE6ReferenceSheet.pdf

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

CDI?

• Context & Dependency Injection

– f.k.a Web Beans

• Contexts?

– lets you use JavaBeans, EJBs, etc. in other contexts

• Dependency Injection?

– context polymorphism

• CDI will do much of the work behind our annotations

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

CDI At Work

• @Named

– makes a bean accessible via a Facelet page. Ex:

@Named("cart")

@SessionScoped

public class ShoppingCart

• bookcatalog.xhtml:

<h:commandLink id="check" action="bookshowcart"

immediate="true"

rendered="#{cart.numberOfItems > 0}">

<h:outputText value="#{bundle.CartCheck}"/>

</h:commandLink>

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

So what are facelets?

• A page declaration language

– used to build JSF views

• And tag libraries:

<ui: for templating

<h: for HTML components

<f: for custom actions

<c: for JSTL (Java language features)

<fn: more JSTL (Java API features)

• JSTL: JavaServerPages Standard Tag Library

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Facelets use EL

• Expression Language

• For what?

– evaluate expressions

– get/set data

– invoke methods

• EL defines:

– how to write expressions: ${customer.age + 20}

– how to reference get/set: ${customer.name}

– how to invoke methods: val="#{customer.validateName}"

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

What's a managed bean?

• In JSF apps, typically each page connects to one. Why?

– defines methods/properties associated with the page's

components

– Why?

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

We've Seen Front-End JavaEE

• JavaServerFaces

• XHTML

• CSS

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Now for the Back-End

• What's the Java Persistence API (JPA)?

• What's an Enterprise Java Bean (EJB)?

– server-side component

– encapsulates business logic

– Ex:

•check inventory

•order products

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Java Persistence API (JPA)

• Provides object/relational mapping to

relational DB

• What does that mean?

–makes it easy to talk to Dbs

• Why?

–separate roles and employ abstraction

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

The JPA Entity

• A JSP Domain

• It represents a DB Table

–an Entity Instance would be a row

• Mapping done via annotations

@Entity

public class Book

{

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Why use EJBs?

• Simplify development of large, distributed apps

• Scalability

• EJB Containers provide system-level services to EJBs:

– transaction management

– concurrency

– security features

• Again, separation of roles

– thinner clients

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Two types of EJBs

• Session EJBs

– performs a task for a client

• Message-Driven EJBs

– acts as message listener (like for JMS)

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Session Beans

• Clients (i.e. facelets) invoke session bean methods

• Does its work on the server

• Not persistent

– its data not saved to database

• Three Types:

– stateful, stateless, & singleton

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Stateful Session Beans

• Not shared

– belongs to a single client

– can store info about clients

• Lasts for duration of client/server session

– when client terminates, bean terminates

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Stateless Session Beans

• Support multiple clients

• Methods do not “remember” clients

• Scalability advantages over stateful beans

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Singleton Session Beans

• Lives for duration of application

• Only one of them

• Shared among clients

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Why use stateful beans?

• The bean's state represents the interaction between the

bean and a specific client

• The bean needs to hold info about the client across

method invocations

• The bean mediates between the client and the other

components of the application, presenting a simplified

view to the client

• Behind the scenes the bean manages the workflow of

several EJBs

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Why use stateless beans?

• The bean has no data for a specific client

• In a single method invocation, the bean performs a

generic task for all clients

• The bean implements a web service

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Why use singleton beans?

• State needs to be shared across the application

• A single enterprise bean needs to be accessed by

multiple threads concurrently

• The application needs an enterprise bean to perform

tasks upon application startup and shutdown

• The bean implements a web service

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

How does a client use EJBs?

• Dependency injection

– i.e. @EJB

OR

• JNDI Lookup

– for non Java EE apps

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

The IDE

• We want EVERYTHING!

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Hook-Up NetBeans to MySQL

• Services Tab

• New Connection

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Hook-Up NetBeans to MySQL

• Now we can start building databases

• Connect to it

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

CRUD?

• Create Read Update Delete

• Basic functions of persistent storage

• Create or add new entries

• Read, retrieve, search, or view existing entries

• Update or edit existing entries

• Delete/deactivate existing entries

• If you have these, you can make any complex Web app

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Generating a JavaServer Faces 2.x CRUD

Application from a Database
• https://netbeans.org/kb/docs/web/jsf20-crud.html

JavaServer Faces (JSF) 2.x for front-end web pages, validation

handling, and management of the request-response cycle.

Java Persistence API (JPA) 2.0 using EclipseLink to generate entity

classes from the database, and manage transactions. (EclipseLink

is the reference implementation for JPA, and is the default

persistence provider for the GlassFish server.)

Enterprise JavaBeans (EJB) 3.1, which provides you with stateless

EJBs that access the entity classes, and contain the business logic

for the application.

https://netbeans.org/kb/docs/web/jsf20-crud.html
https://netbeans.org/kb/docs/web/jsf20-crud.html
https://netbeans.org/kb/docs/web/jsf20-crud.html
https://netbeans.org/kb/docs/web/jsf20-crud.html
https://netbeans.org/kb/docs/web/jsf20-crud.html

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

First create the database

• Download mysql-consult.zip from

https://netbeans.org/projects/samples/downloads/directory/Sampl

es/Java%20Web/ConsultingAgencySolution

• mysql_create_consult.sql

• mysql_insert_data_consult.sql

• Start the database server

• Create Database (called consult)

• Connect to database

• File Open File mysql_create_consult.sql

https://netbeans.org/projects/samples/downloads/directory/Samples/Java Web/ConsultingAgencySolution
https://netbeans.org/projects/samples/downloads/directory/Samples/Java Web/ConsultingAgencySolution

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Run the SQL script

• This will build the tables

…

Executed successfully in 0.316 s, 0 rows affected.

Line 100, column 1

…

Executed successfully in 1.193 s, 0 rows affected.

Line 101, column 1

Executed successfully in 0 s, 0 rows affected.

Line 108, column 1

Execution finished after 17.665 s, 0 error(s) occurred.

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Examine the Database

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Create the Web App

• File New Project ConsultingAgency

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Project Setup

• Specify your server

• GlassFish 4.0

• Select your Framework

• we’ll use JavaServerFaces

• note the other choices

• Now what?

• We want our Web app to

be able to talk to the DB

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Generate Entity Classes from the Database

• We’ll need to create a New Data Source

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

New Data Source: jdbc/consult

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Add All >> to jpa.entities package

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Examine the generated Entity Classes

• Note the generated SQL & Annotations

• DB Note:

• no entity class generated for join tables

• additional classes generated for tables with composite primary keys

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Generate JSF Pages from Entity Classes

• What are the JSF Pages for?

• viewing & modifying the data

• that’s what web apps do

• For each entity class:

• a stateless session bean that extends AbstractFacade.java

• a JSF session-scoped, managed bean

• a directory containing four Facelets files for CRUD capabilities

• Also:

• AbstractFacade.java class that contains the business logic for creation,

retrieval, modification and removal of entity instances

• utility classes, default stylesheet, localized message properties, etc.

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Generate JSF Pages from Entity Classes

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Add All >> to jpa.session package

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Add All >> to jpa.session package

• Note the JSF classes package and /resources/Bundle

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Facelets & JSF Managed Beans

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

You can change the langauge

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Run the Project

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

So what are the pieces & what are they doing?

• Entity classes

• map Java data to database

• provides queries for getting querying table

• Facade Bean classes

• provides means for Creating, Retreiving, Updating, Deleting elements

• Done through JPA’s EntityManager

• Session Scoped managed bean controller classes:

• AbstractFacade.java class that contains the business logic for creation,

retrieval, modification and removal of entity instances

• utility classes, default stylesheet, localized message properties, etc.

