
CSE 305 – Principles of Database Systems

Paul Fodor

Stony Brook University

http://www.cs.stonybrook.edu/~cse305

Database Design with The

Relational Normalization Theory

http://www.cs.stonybrook.edu/~cse305

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Limitations of E-R Designs
Provides a set of guidelines, does not result in a

unique database schema

Does not provide a way of evaluating alternative

schemas

Normalization theory provides a mechanism for

analyzing and refining the schema produced by

an E-R design

2

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Redundancy
Dependencies between attributes cause

redundancy

Ex. All addresses in the same town have the
same zip code

SSN Name Town Zip

1234 Joe Stony Brook 11790

4321 Mary Stony Brook 11790

5454 Tom Stony Brook 11790

………………….

Redundancy

3

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

SSN Name Address Hobby

1111 Joe 123 Main biking

1111 Joe 123 Main hiking

…………….

SSN Name Address Hobby

1111 Joe 123 Main {biking, hiking}

In the ER Model:

But, they are represented as multiple tuples in the Relational Model:

Redundancy

4

Set attributes can also cause redundancy.

Redundancy

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Anomalies
 Redundancy leads to anomalies:

Update anomaly: A change in Address must be
made in several places in the example with hobbies

Deletion anomaly: Suppose a person gives up all
hobbies. Do we:
 Set Hobby attribute to null? No, since Hobby is part of key

 Delete the entire row? No, since we lose other
information in the row.

 So, we cannot represent this person.

Insertion anomaly: Hobby value must be supplied
for any inserted row since Hobby is part of key.
 So, we cannot inset a person without hobbies.5

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Decomposition
 Solution for eliminating redundencies: we use

two relations to store Person information

Person1(SSN, Name, Address)

Hobbies(SSN, Hobby)
 The decomposition is more general: people

without hobbies can now be described

 No update anomalies:

Name and address stored once

A hobby can be separately supplied or
deleted

6

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Normalization Theory
The result of E-R analysis need further

refinement!

Appropriate decomposition can solve
problems!

The underlying theory is referred to as
normalization theory and is based on functional
dependencies (and other kinds, like
multivalued dependencies)

7

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Functional Dependencies
 Definition: A functional dependency (FD) on a relation

schema R is a constraint X Y, where X and Y are

subsets of attributes of R.

 Definition: An FD X Y is satisfied in an instance r

of R if for every pair of tuples, t and s: if t and s agree

on all attributes in X then they must agree on all

attributes in Y

 Key constraint is a special kind of functional dependency: all

attributes of relation occur on the right-hand side of the FD:

 SSN SSN, Name, Address

8

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 Address ZipCode

 Stony Brook’s ZIP is 11733

 ArtistName BirthYear

 Picasso was born in 1881

 Autobrand Manufacturer, Engine type

 Pontiac is built by General Motors with gasoline engine

 Volt is built by Chevy with electric engine

 Author, Title PublicationDate

 Shakespeare’s Hamlet published in 1600

9

Functional Dependencies

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Functional Dependency Running Example

Consider a brokerage firm that allows multiple

clients to share an account, but each account is

managed from a single office and a client can have

no more than one account in an office.

HasAccount(AcctNum, ClientId, OfficeId)

 keys are: (AcctNum, ClientId), (ClientId, OfficeId)

 AcctNum, ClientId AcctNum, ClientId, OfficeId

 ClientId, OfficeId AcctNum, ClientId, OfficeId

 AcctNum OfficeId

 Thus, attribute values need not depend only on key values
10

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Entailment, Closure, Equivalence

 Definition: If F is a set of FDs on schema R and f is

another FD on R, then F entails f if every instance r of

R that satisfies every FD in F also satisfies f

 Example: F = {A B, B C} and f is A C

 If Town Zip and Zip AreaCode thenTown AreaCode

 Definition: The closure of F, denoted F+, is the set of

all FDs entailed by F

 Definition: F and G are equivalent if F entails G and G

entails F

11

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 Satisfaction, entailment, and equivalence are
semantic concepts – defined in terms of the actual
relations in the “real world.”
They define what these notions are, not how to

compute them

Solution: find algorithmic, syntactic ways to
compute these notions

 Important: The syntactic solution must be “correct”
with respect to the semantic definitions

Correctness has two aspects: soundness and
completeness

12

Entailment, Closure, Equivalence

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Armstrong’s Axioms for FDs

Reflexivity: If Y X then X Y (trivial FD)

Name, Address Name

Augmentation: If X Y then XZYZ

If Town Zip then Town, Name Zip, Name

Transitivity: If X Y and Y Z then X Z

The Armstrong’s Axioms are the syntactic way of
computing and testing the various properties of
FDs.

13

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Soundness
 Armstrong’s axioms are sound: If an FD f: XY can be

derived from a set of FDs F using the axioms, then f

holds in every relation that satisfies every FD in F.

 Example: Given XY and X Z then

 Thus, XY Z is satisfied in every relation where both XY

and XZ are satisfied

 We have derived the union rule for FDs: we can take the union of the

RHSs of FDs that have the same LHS

X XY Augmentation by X

YX YZ Augmentation by Y

X YZ Transitivity

14

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Completeness
Armstrong’s Axioms are complete: If F entails f ,

then f can be derived from F using the axioms

A consequence of completeness is the following

(naïve) algorithm to determining if F entails f:

Algorithm: Use the axioms in all possible ways

to generate F+ (the closure of F, i.e., the set of

possible FD’s is finite so this can be done) and

see if f is in F+

15

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Correctness
The notions of soundness and completeness link

the syntax (Armstrong’s axioms) with

semantics (the definitions in terms of

relational instances)

This is a precise way of saying that the

algorithm for entailment based on the

axioms is “correct” with respect to the

definitions

16

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Generating F+

Thus, AB BD, AB BCD, AB BCDE, and AB CDE

are all elements of F+ (part-of, there are other FDs: AC CD,

AE ED, etc.)

Very costly procedure for proving entailment.

F

ABC

AB BCD

A D AB BD AB BCDE AB CDE

D E BCD BCDE

union
aug

trans

aug

decomp

17

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Attribute Closure
 Calculating attribute closure leads to a more efficient way

of checking entailment

 The attribute closure of a set of attributes, X, with respect
to a set of functional dependencies, F, (denoted X+

F) is
the set of all attributes, A, such that X A is entailed by
F

X +F1 is not necessarily the same as X +F2 if F1 F2

Attribute closure and entailment:
Algorithm: Given a set of FDs, F, F entails X Y if

and only if X+
F Y

18

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Computation of the Attribute Closure X+
F

closure := X; // since X X+
F

repeat

old := closure;

if there is an FD Z V in F such that

Z closure and V ∩ closure ≠ Ø

then closure := closure ∪ V

until old = closure

Entailment algorithm:

If T X+
F then X T is entailed by F

19

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Example: Computation of Attribute Closure

AB C (a)

A D (b)

D E (c)

AC B (d)

Example: Compute the attribute closure of AB with

respect to the set of FDs F:

Initially: closure = {AB}

Using (a): closure = {ABC}

Using (b): closure = {ABCD}

Using (c): closure = {ABCDE}

Solution:

20

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Computing Attribute Closure Examples

F: AB C

A D

D E

AC B

X XF
+

A {A, D, E}

AB {A, B, C, D, E}

(Hence AB is a key)

B {B}

D {D, E}

Is AB E entailed by F? Yes

Is D C entailed by F? No

Result: XF
+ allows us to determine FDs

of the form X A entailed by F
21

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Normal Forms
 The normal forms are conditions on schemas that guarantees

certain properties relating to redundancy and update anomalies

 First normal form (1NF) is the same as the definition of relational
model (relations = sets of tuples; each tuple = sequence of
atomic values)

 Second normal form (2NF):
 no non prime attribute is dependent on any proper subset of any candidate key of the

table (where a non prime attribute of a table is an attribute that is not a part of any
candidate key of the table): every non-prime attribute is either dependent on the whole
of a candidate key, or on another non prime attribute.

 The two commonly used normal forms are third normal form
(3NF) and Boyce-Codd normal form (BCNF)

22

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

BCNF
 Definition: A relation schema R is in BCNF if for every FD XY

associated with R either

Y X (i.e., the FD is trivial) or

X is a superkey of R
 Remember: a superkey is a combination of attributes that can be used

to uniquely identify a database record. A table might have many
superkeys.

 Remember: a candidate key is a special subset of superkeys that do
not have any extraneous information in them: it is a minimal
superkey.

Example: Person1(SSN, Name, Address)
The only FD is: SSN Name, Address
 Since SSN is a key, Person1 is in BCNF

23

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

(non) BCNF Examples
Person(SSN, Name, Address, Hobby)

The FD: SSN Name, Address does not satisfy
requirements of BCNF
since the (SSN) is not a key

 the key is (SSN, Hobby)

HasAccount(AcctNum, ClientId, OfficeId)

The FD AcctNum OfficeId does not satisfy
BCNF requirements
since keys are (ClientId, OfficeId) and (AcctNum,

ClientId); not AcctNum.
24

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

What Redundancy?
 Suppose R has a FD A B, and A is not a superkey.

 If an instance has 2 rows with same value in A, they must also have
same value in B (=> redundancy, because the B-value repeats
twice):

 If A is a superkey, there cannot be two rows with same value of A

 Hence, BCNF eliminates redundancy

SSN Name, Address

SSN Name Address Hobby

1111 Joe 123 Main stamps

1111 Joe 123 Main coins

redundancy

25

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Third Normal Form (3NF)
 A relational schema R is in 3NF if for every FD X Y

associated with R either:

Y X (i.e., the FD is trivial); or

X is a superkey of R; OR

Every AY is part of some key of R
 3NF is weaker than BCNF (every schema that is in BCNF

is also in 3NF), but not vice-versa.

BCNF

conditions

26

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

3NF Example
HasAccount (AcctNum, ClientId, OfficeId) is in 3NF:

ClientId, OfficeId AcctNum

 OK since LHS is a superkey

AcctNum OfficeId

 OK since OfficeId (RHS) is part of a key (ClientId, OfficeId)

HasAccount is in 3NF but it might still contain

redundant information due to AcctNum OfficeId

(which is not allowed by BCNF)

27

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

3NF (Non)-Example

Person (SSN, Name, Address, Hobby):

(SSN, Hobby) is the only key

 SSN Name violates 3NF

conditions since:

it is not a trivial FD,

SSN (LHS) is not a superkey, and

Name (RHS) is not part of a key.
28

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Decompositions

Goal: Eliminate redundancy by

decomposing a relation into several

relations in a higher normal form

Decomposition MUST be lossless: it
must be possible to reconstruct the

original relation from the relations in

the decomposition.

29

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
30

Normal Forms

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Decomposition
 Consider a relation schema: R = (R, F)

 R is set a of attributes

 F is a set of functional dependencies over R
 Each key is described by a FD

 The decomposition of the (relation) schema R is a collection
of (relation) schemas Ri = (Ri, Fi) where
 R = i Ri for all i (no new attributes)

 Fi is a set of functional dependences involving only attributes
of Ri

 F entails Fi for all i (no new FDs)

 The decomposition of an instance, r, of R is a set of
relations ri = Ri

(r) for all i
31

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Example Decomposition
Schema (R, F) where

R = {SSN, Name, Address, Hobby}

F = {SSN Name, Address}

can be decomposed into:

R1 = {SSN, Name, Address}

F1 = {SSN Name, Address}

and

R2 = {SSN, Hobby}

F2 = { }
32

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

A decomposition should not lose information

A decomposition (R1,…,Rn) of a schema, R,
is lossless if every valid instance, r, of R can
be reconstructed from its components:

where each ri = Ri(r)

Lossless Schema Decomposition

r = r1 r2 rn…

33

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Lossy Decomposition

r r1 r2 ... rn

SSN Name Address SSN Name Name Address

1111 Joe 1 Pine 1111 Joe Joe 1 Pine

2222 Alice 2 Oak 2222 Alice Alice 2 Oak

3333 Alice 3 Pine 3333 Alice Alice 3 Pine

r r1 r2 rn...

r1 r2r

The following is always the case:

But the following is not always true:

Example:

The tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) are in the join,

but not in the original
34

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Lossy Decompositions:

What is Actually Lost?
 In the previous example, the tuples (2222, Alice, 3

Pine) and (3333, Alice, 2 Oak) were gained, not lost!

 Why do we say that the decomposition was lossy?

What was lost is information:
 That 2222 lives at 2 Oak:

In the decomposition, 2222 can live at either 2 Oak or 3 Pine

 That 3333 lives at 3 Pine:

In the decomposition, 3333 can live at either 2 Oak or 3 Pine

35

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Testing for Losslessness

A (binary) decomposition of R = (R, F)

into R1 = (R1, F1) and R2 = (R2, F2) is

lossless if and only if :

either the FD

(R1 R2) R1 is in F+

or the FD

(R1 R2) R2 is in F+

36

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Testing for Losslessness Example
Consider the schema (R, F) where

R = {SSN, Name, Address, Hobby}

F = {SSN Name, Address}

It can be decomposed into

R1 = {SSN, Name, Address}

F1 = {SSN Name, Address}

and

R2 = {SSN, Hobby}

F2 = { }

R1 R2 = SSN and

SSN {SSN, Name, Address} = R1

=> the decomposition is lossless!37

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Intuition Behind the Test for
Losslessness
 Suppose R1 R2 R2 .

 Then a row of r1 can combine with exactly one row of
r2 in the natural join (since in r2 a particular set of
values for the attributes in R1 R2 defines a unique
row):

 The join will have exactly the number of tuples in r1

and r

R1 R2 R1 R2

…………. a a ………...

………… a b ………….

………… b c ………….

………… c

r1 r2

38

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

If R1 R2 R2 then

card (r1

Proof of Lossless Condition

• r r1 r2 – this is true for any decomposition by

definition of a decomposition

r2) = card (r1)

But card (r) card (r1) (since r1 is a projection of r)

and therefore card (r) card (r1 r2)

From the join (Cartesian product) we have:

card (r) ≤ card (r1 r2)

Hence r = r1 r2 must be true

• r r1 r2

(since each row of r1 joins with exactly one row of r2)

39

– we need to prove this for lossless

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Dependency Preservation
 Consider a decomposition of R = (R, F) into R1 = (R1, F1) and

R2 = (R2, F2)

 An FD XY of F+ is in Fi iff X Y Ri (all the attributes of
the functional dependency are in Ri)

 An FD, f F+ may be in neither F1, nor F2, nor even (F1F2)
+

 Checking that f is true in r1 or r2 is (relatively) easy

 Checking f in r1 ⋈ r2 is harder – requires a join

 Ideally: want to check FDs locally, in r1 and r2, and have a guarantee
that every fF holds in r1 ⋈ r2

 The decomposition is dependency preserving iff the FD
sets F and F1 F2 are equivalent: F+ = (F1 F2)

+

 Then checking all FDs in F, as r1 and r2 are updated, can be done by
checking F1 in r1 and F2 in r2

40

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

If f is an FD in F, but f is not in F1 F2,

there are two possibilities:

f (F1 F2)
+

If the constraints in F1 and F2 are maintained,

f will be maintained automatically.

f (F1 F2)
+

f can be checked only by first taking the join

of r1 and r2.

41

Dependency Preservation

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Example 1
Schema (R, F) where

R = {SSN, Name, Address, Hobby}

F = {SSN Name, Address}

can be decomposed into

R1 = {SSN, Name, Address}

F1 = {SSN Name, Address}

and

R2 = {SSN, Hobby}

F2 = { }

Since F = F1 F2 the decomposition is

dependency preserving
42

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 Schema: (ABC; F) , F = {A B, B C, C B}

Decomposition:

(AC, F1), F1 = {AC}
Note: AC F, but in F+

(BC, F2), F2 = {B C, C B}

A B (F1 F2), but A B (F1 F2)
+

So F+ = (F1 F2)
+ and thus the

decomposition is still dependency preserving

43

Example 2

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Example 3

 HasAccount (AcctNum, ClientId, OfficeId)
f1: AcctNum OfficeId
f2: ClientId, OfficeId AcctNum

 Decomposition:
R1 = (AcctNum, OfficeId; {AcctNum OfficeId})

R2 = (AcctNum, ClientId; {})

 Decomposition is lossless:
R1 R2= {AcctNum} and AcctNum AcctNum,OfficeId =R1

 This decomposition is in BCNF (we showed that before).

 But it is Not dependency preserving: f2 (F1 F2)
+

 HasAccount does not have BCNF decompositions that are both lossless and
dependency preserving! (Check, eg, by enumeration of all decompositions)

 Hence: BCNF+lossless+dependency preserving decompositions are not
always achievable!

44

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

BCNF Decomposition Algorithm

Input: R = (R; F)

Decomp := {R}

while there is S = (S; F’) Decomp and S not in BCNF do

Find X Y F’ that violates BCNF // X isn’t a superkey in S

Replace S in Decomp with

S1 = (XY; F1) and

S2 = (S - (Y - X); F2)

where F1 = all FDs of F’ involving only attributes of XY

and F2 = all FDs of F’ involving only attributes of S - (Y - X)

end

return Decomp

45

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Simple Example

 HasAccount :

(ClientId, OfficeId, AcctNum)

Keys: (ClientId,OfficeId) and (ClientId,AcctNum)

(ClientId , AcctNum)

Is in BCNF (only trivial FDs)

• Decompose using AcctNum OfficeId :

(OfficeId, AcctNum)

FD: AcctNum OfficeId

is in BCNF: AcctNum is key

ClientId,OfficeId AcctNum

AcctNum OfficeId

46

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

A Larger Example
Given: R = (R; F) where R = ABCDEGHK and

F = {ABH C, A DE, BGH K, K ADH, BH GE}

step 1: Find a FD that violates BCNF

Not ABH C since (ABH)+ includes all attributes

(BH is a key (minimal superkey))

A DE violates BCNF since A is not a superkey (A+ =ADE)

step 2: Split R into:

R1 = (ADE, F1={A DE })

R2 = (ABCGHK; F1={ABHC, BGHK, KAH, BHG})

Note 1: R1 is in BCNF

Note 2: Decomposition is lossless since A is a key of R1.

Note 3: FDs K D and BH E are not in F1 or F2. But

both can be derived from F1 F2

(E.g., K A and A D implies K D)

Hence, the decomposition is dependency preserving.

Is R2 in BCNF?47

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Given: R2 = (ABCGHK; {ABHC, BGHK, KAH, BHG})

step 1: Find a FD that violates BCNF.

Not ABH C or BGH K, since BH is a key of R2

K AH violates BCNF since K is not a superkey (K+ =AH)

step 2: Split R2 into:

R21 = (KAH, F21={K AH})

R22 = (BCGK; F22={})

Note 1: Both R21 and R22 are in BCNF.

Note 2: The decomposition is lossless (since K is a key of R21)

Note 3: FDs ABH C, BGH K, BH G are not in F21

or F22 , and they can’t be derived from F1 F21 F22 .

Hence the decomposition is not dependency-preserving

48

A Larger Example (con’t)

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 Let X Y violate BCNF in R = (R,F).

 R1 = (R1,F1) and R2 = (R2,F2) is the resulting

decomposition. Then:

There are fewer violations of BCNF in R1 and R2 than there

were in R

 X Y implies X is a key of R1

 Hence X Y F1 does not violate BCNF in R1 and, since XYF2,

does not violate BCNF in R2 either

 Suppose f is X’Y’ and f F doesn’t violate BCNF in R.

If f F1 or F2 it does not violate BCNF in R1 or R2 either

since X’ is a superkey of R and hence also of R1 and R2 .
49

Properties of BCNF Decomposition Algorithm

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Properties of BCNF Decomposition Algorithm

A BCNF decomposition is not necessarily

dependency preserving

But always lossless:

since R1 R2 = X, X Y, and R1 = XY

BCNF+lossless+dependency preserving is

sometimes unachievable

50

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Third Normal Form
The Third Normal Form is the Compromise

= Not all redundancy removed, but

dependency preserving decompositions are

always possible (and, of course, lossless)

3NF decomposition is based on a minimal

cover

51

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Minimal Cover
A minimal cover of a set of functional dependencies

F is a set of dependencies U such that:

U is equivalent to F (i.e., F+ = U+)

All FDs in U have the form X A where A is a single

attribute

 It is not possible to make U smaller (while preserving

equivalence) by

 Deleting an FD

 Deleting an attribute from an FD (either from LHS or RHS)

FDs and attributes that can be deleted in this way are

called redundant
52

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Computing the Minimal Cover
 Example: F = {ABH CK, A D, C E,

BGH L, L AD, E L, BH E}

 step 1: Make RHS of each FD into a single attribute:

 ABH CK is replaced by ABH C and ABH K

 L AD is replaced by L A and L D

 step 2: Eliminate redundant attributes from LHS:
 Algorithm: If FD XB A F (where B is a single attribute) and X A is

entailed by F, then B was unnecessary

 Example: Can an attribute be deleted from ABH C ?

 Compute AB+
F, AH+

F, BH+
F.

 Since C (BH)+
F , BH C is entailed by F and A is

redundant in ABH C.

53

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 step 3: Delete redundant FDs from F
Algorithm: If F – {f} entails f, then f is redundant
 Alternative: If f is X A then check if A X+

F-{f}

Example: BGH L is entailed by E L, BH E,
so it is redundant.

54

Computing the Minimal Cover

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Synthesizing a 3NF Schema

 step 1: Compute a minimal cover, U, of F (the decomposition is

based on U, but since U+ = F+ the same functional dependencies

will hold)

 A minimal cover for

F={ABHCK, AD, CE, BGHL, LAD, E L, BH E}

is

U={BHC, BHK, AD, CE, LA, EL}

Starting with a schema R = (R, F)

55

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Synthesizing a 3NF schema (con’t)

 The minimal cover was:

U={BHC, BHK, AD, CE, LA, EL}

 step 2: Partition U into sets U1, U2, … Un such that

the LHS of all elements of Ui are the same

U1 = {BH C, BH K}

U2 = {A D}

U3 = {C E}

U4 = {L A}

U5 = {E L}

56

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Synthesizing a 3NF schema (con’t)
U1 = {BH C, BH K}, U2 = {A D},

U3 = {C E}, U4 = {L A}, U5 = {E L}

 step 3: For each Ui form a schema Ri = (Ri, Ui), where Ri is the set of all

attributes mentioned in Ui

 Each FD of U will be in some Ri. Hence the decomposition is

dependency preserving:
R1 = (BHCK; BHC, BH K), R2 = (AD; AD),

R3 = (CE; C E), R4 = (AL; LA),

R5 = (EL; E L)

 Unify relations that have the same set of attributes.

 Add to each Ri all dependencies f entailed by the original set F where all the attributes

are in Ri

57

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Synthesizing a 3NF schema (con’t)

 step 4: If no Ri is a superkey of R, add schema R0 = (R0,{})
where R0 is a key of R.
 R0 = (BGH, {})

 R0 might be needed when not all attributes are necessarily contained in
R1R2…Rn

 A missing attribute, A, must be part of all keys

(since it’s not in any FD of U, deriving a key constraint from U involves the
augmentation axiom)

 R0 might be needed even if all attributes are accounted for in R1R2 …Rn

 Example: (ABCD; {AB, CD}).

Step 3 decomposition: R1 = (AB; {AB}), R2 = (CD; {CD}).

Lossy! Need to add (AC; { }), for losslessness

 Step 4 guarantees lossless decomposition.

58

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

BCNF Design Strategy

The resulting decomposition, R0, R1, … Rn , is
Dependency preserving (since every FD in U is a FD

of some schema)

Lossless

 In 3NF

Strategy for decomposing a relation:
Use 3NF decomposition first to get lossless,

dependency preserving decomposition

 If any resulting schema is not in BCNF, split it using
the BCNF algorithm (but this may yield a non-
dependency preserving result)

59

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Normalization Drawbacks

 By limiting redundancy, normalization helps maintain
consistency and saves space

 But performance of querying can suffer because related
information that was stored in a single relation is now
distributed among several

 Example: A join is required to get the names and
grades of all students taking CSE305 in F2016.

SELECT S.Name, T.Grade

FROM Student S, Transcript T

WHERE S.Id = T.StudId AND

T.CrsCode = ‘CSE305’ AND T.Semester = ‘F2016’

60

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Denormalization

 Tradeoff: Judiciously introduce redundancy to improve
performance of certain queries

 Example: Add attribute Name to Transcript

 Join is avoided
 If queries are asked more frequently than Transcript is modified,

added redundancy might improve average performance
 But, Transcript’ is no longer in BCNF since key is (StudId,

CrsCode, Semester) and StudId Name

SELECT T.Name, T.Grade

FROM Transcript’ T

WHERE T.CrsCode = ‘CSE305’ AND T.Semester = ‘F2016’

61

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Fourth Normal Form

 Relation has redundant data

 Yet it is in BCNF (since there are no non-trivial FDs)

 Redundancy is due to set valued attributes (in the E-R sense)

SSN PhoneN ChildSSN

111111 123-4444 222222

111111 123-4444 333333

111111 321-5555 222222

111111 321-5555 333333

222222 987-6666 444444

222222 777-7777 444444

222222 987-6666 555555

222222 777-7777 555555

redundancy
Person

62

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Multi-Valued Dependency

 Problem: multi-valued (or binary join) dependency

 Definition: If every instance of schema R can be (losslessly)

decomposed using attribute sets (X, Y) such that:

r = X (r) Y (r)

then a multi-valued dependency

R = X (R) Y (R)

holds in r

Ex: Person=SSN,PhoneN (Person) SSN,ChildSSN (Person)

63

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Fourth Normal Form (4NF)

A schema is in fourth normal form (4NF) if for

every multi-valued dependency

R = X Y

in that schema, either:

- X Y or Y X (trivial case); or

- X Y is a superkey of R (i.e., X Y R)

64

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Fourth Normal Form (Cont’d)

 Intuition: if X Y R, there is a unique row in
relation r for each value of X Y (hence no
redundancy)

Ex: SSN does not uniquely determine PhoneN or
ChildSSN, thus Person is not in 4NF.

 Solution: Decompose R into X and Y

Decomposition is lossless – but not necessarily
dependency preserving (since 4NF implies
BCNF – next)

65

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

4NF Implies BCNF

 Suppose R is in 4NF and X Y is an FD.

R1 = XY, R2 = R –Y is a lossless decomposition of R

Thus R has the multi-valued dependency:

R = R1 R2

– Since R is in 4NF, one of the following must hold :

– XY R – Y (an impossibility)

– R – Y XY (i.e., R = XY and X is a superkey) or

– XY R – Y (= X) is a superkey

Hence X Y satisfies BCNF condition

66

