Database Design with The Relational Normalization Theory

CSE 305 – Principles of Database Systems

Paul Fodor

Stony Brook University

http://www.cs.stonybrook.edu/~cse305

Limitations of E-R Designs

- Provides a set of guidelines, does not result in a unique database schema
- Does not provide a way of evaluating alternative schemas
- Normalization theory provides a mechanism for analyzing and refining the schema produced by an E-R design

Redundancy

- Dependencies between attributes cause redundancy
 - Ex. All addresses in the same town have the same zip code

SSN	Name	Town	Zip	_
		Stony Brook		Redundancy
4321	Mary	Stony Brook	11790	
5454	Tom	Stony Brook	11790	

Redundancy

Set attributes can also cause redundancy.

In the ER Model:

SSN	Name	Addres	s Hobby
1111	_		{biking, hiking}

But, they are represented as multiple tuples in the Relational Model:

Anomalies

- Redundancy leads to anomalies:
 - **Update anomaly**: A change in *Address* must be made in several places in the example with hobbies
 - **Deletion anomaly**: Suppose a person gives up all hobbies. Do we:
 - Set Hobby attribute to null? <u>No</u>, since *Hobby* is part of key
 - Delete the entire row? <u>No</u>, since we lose other information in the row.
 - So, we cannot represent this person.
 - **Insertion anomaly**: *Hobby* value must be supplied for any inserted row since *Hobby* is part of key.

• So, we cannot inset a person without hobbies.

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Decomposition

- Solution for eliminating redundencies: we use <u>two relations</u> to store Person information
 - Person1(<u>SSN</u>, Name, Address)
 - •Hobbies(<u>SSN, Hobby</u>)
- The decomposition is more general: people without hobbies can now be described
- No update anomalies:
 - •Name and address stored once
 - •A hobby can be separately supplied or deleted

Normalization Theory

- The result of E-R analysis need further refinement!
- Appropriate decomposition can solve problems!

 The underlying theory is referred to as normalization theory and is based on functional dependencies (and other kinds, like multivalued dependencies)

Functional Dependencies

- **Definition:** A *functional dependency* (FD) on a relation schema **R** is a <u>constraint</u> $X \rightarrow Y$, where *X* and *Y* are subsets of attributes of **R**.
- **Definition**: An FD $X \rightarrow Y$ is *satisfied* in an instance **r** of **R** if for <u>every</u> pair of tuples, *t* and s: if *t* and *s* agree on all attributes in *X* then they must agree on all attributes in *Y*
 - Key constraint is a special kind of functional dependency: all attributes of relation occur on the right-hand side of the FD:
 - SSN → SSN, Name, Address

Functional Dependencies

- Address \rightarrow ZipCode
 - Stony Brook's ZIP is 11733
- ArtistName → BirthYear
 - Picasso was born in 1881
- Autobrand \rightarrow Manufacturer, Engine type
 - Pontiac is built by General Motors with gasoline engine
 - Volt is built by Chevy with electric engine
- Author, Title → PublicationDate
 - Shakespeare's Hamlet published in 1600

Functional Dependency Running Example

- Consider a brokerage firm that allows multiple clients to share an account, but each account is managed from a single office and a client can have no more than one account in an office.
 - HasAccount(AcctNum, ClientId, OfficeId)
 - keys are: (AcctNum, ClientId), (ClientId, OfficeId)
 - AcctNum, ClientId \rightarrow AcctNum, ClientId, OfficeId
 - ClientId, OfficeId \rightarrow AcctNum, ClientId, OfficeId
 - $AcctNum \rightarrow OfficeId$
 - Thus, attribute values need not depend only on key values

Entailment, Closure, Equivalence

- Definition: If *F* is a set of FDs on schema **R** and *f* is another FD on **R**, then *F* entails *f* if every instance **r** of **R** that satisfies every FD in *F* also satisfies *f*
 - Example: $F = \{A \rightarrow B, B \rightarrow C\}$ and f is $A \rightarrow C$
 - If $Town \rightarrow Zip$ and $Zip \rightarrow AreaCode$ then $Town \rightarrow AreaCode$
- **Definition**: The *closure* of *F*, denoted *F*⁺, is the set of all FDs entailed by *F*
- **Definition**: *F* and *G* are *equivalent* if *F* entails *G* and *G* entails *F*

Entailment, Closure, Equivalence

- Satisfaction, entailment, and equivalence are <u>semantic</u> concepts – defined in terms of the actual relations in the "real world."
 - They define *what these notions are*, **not** how to compute them
 - **Solution**: find algorithmic, *syntactic* ways to compute these notions
 - *Important*: The syntactic solution must be "correct" with respect to the semantic definitions
 - Correctness has two aspects: *soundness* and *completeness*

Armstrong's Axioms for FDs

- **Reflexivity**: If $Y \subseteq X$ then $X \rightarrow Y$ (trivial FD)
 - Name, Address \rightarrow Name
- Augmentation: If $X \rightarrow Y$ then $XZ \rightarrow YZ$
 - If *Town* \rightarrow *Zip* then *Town*, *Name* \rightarrow *Zip*, *Name*
- **Transitivity**: If $X \to Y$ and $Y \to Z$ then $X \to Z$
- The Armstrong's Axioms are the *syntactic* way of computing and testing the various properties of FDs.

Soundness

- Armstrong's axioms are *sound*: If an FD $f: X \rightarrow Y$ can be derived from a set of FDs F using the axioms, then f holds in every relation that satisfies every FD in F.
- Example: Given $X \rightarrow Y$ and $X \rightarrow Z$ then

 $\begin{array}{ll} X \rightarrow XY & Augmentation \ by X \\ YX \rightarrow YZ & Augmentation \ by Y \\ X \rightarrow YZ & Transitivity \end{array}$

- Thus, $X \rightarrow YZ$ is satisfied in every relation where both $X \rightarrow Y$ and $X \rightarrow Z$ are satisfied
 - We have derived the <u>union rule</u> for FDs: we can take the union of the RHSs of FDs that have the same LHS

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Completeness

- Armstrong's Axioms are *complete*: If *F* entails *f*, then *f* can be derived from *F* using the axioms
- A consequence of completeness is the following (naïve) algorithm to determining if *F* entails *f*:
 Algorithm: Use the axioms in all possible ways to generate *F*⁺ (the closure of *F*, i.e., the set of possible FD's is finite so this can be done) and see if *f* is in *F*⁺

Correctness

- The notions of *soundness* and *completeness* link the syntax (Armstrong's axioms) with semantics (the definitions in terms of relational instances)
- This is a precise way of saying that the algorithm for entailment based on the axioms is "*correct*" with respect to the definitions

Thus, $AB \rightarrow BD$, $AB \rightarrow BCD$, $AB \rightarrow BCDE$, and $AB \rightarrow CDE$ are all elements of F^+ (part-of, there are other FDs: $AC \rightarrow CD$, $AE \rightarrow ED$, etc.)

Very costly procedure for proving entailment.

Attribute Closure

- Calculating *attribute closure* leads to a more efficient way of checking entailment
- The *attribute closure* of a set of attributes, *X*, with respect to a set of functional dependencies, *F*, (denoted X^+_F) is the set of all attributes, *A*, such that $X \rightarrow A$ is entailed by *F*
- X^+_{F1} is not necessarily the same as X^+_{F2} if $F1 \neq F2$
- Attribute closure and entailment:
 - Algorithm: Given a set of FDs, *F*, *F* entails $X \rightarrow Y$ if and only if $X^+_F \supseteq Y$

Computation of the Attribute Closure X_{F}^{+}

closure := X; // since $X \subseteq X^+_F$ repeat old := closure;if there is an FD $Z \rightarrow V$ in F such that $Z \subseteq closure$ and $V \cap closure \neq \emptyset$ then $closure := closure \cup V$ until old = closure

Entailment algorithm: If $T \subseteq X^+_F$ then $X \to T$ is entailed by F **Example: Computation of Attribute Closure**

Example: Compute the attribute closure of *AB* with respect to the set of FDs **F**: $AB \rightarrow C$ (a) $A \rightarrow D$ (b) $D \rightarrow E$ (c) $AC \rightarrow B$ (d)

Solution:

Initially: *closure* = {*AB*} Using (a): *closure* = {*ABC*} Using (b): *closure* = {*ABCD*} Using (c): *closure* = {*ABCDE*}

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Computing Attribute Closure Examples

	X	X_F
$F: AB \to C$ $A \to D$ $D \to E$	$A \\ AB$	{A, D, E} {A, B, C, D, E} (Hence AB is a key)
$AC \rightarrow B$	В	<i>{B}</i>
	D	$\{D, E\}$

 \mathbf{V}

V +

Is $AB \to E$ entailed by F? Yes Is $D \to C$ entailed by F? No Result: X_F^+ allows us to determine FDs of the form $X \to A$ entailed by F

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Normal Forms

- The *normal forms* are conditions on schemas that guarantees certain properties relating to redundancy and update anomalies
- First normal form (1NF) is the same as the definition of relational model (relations = sets of tuples; each tuple = sequence of atomic values)
- Second normal form (2NF):
 - no non prime attribute is dependent on any proper subset of any candidate key of the table (where a non prime attribute of a table is an attribute that is not a part of any candidate key of the table): every non-prime attribute is either dependent on the whole of a candidate key, or on another non prime attribute.
- The two commonly used normal forms are *third normal form* (3NF) and *Boyce-Codd normal form* (BCNF)

BCNF

- **Definition**: A relation schema **R** is in BCNF if for every FD $X \rightarrow Y$ associated with **R** either
 - $Y \subseteq X$ (i.e., the FD is trivial) or
 - X is a superkey of **R**
 - Remember: a *superkey* is a combination of attributes that can be used to uniquely identify a database record. A table might have many superkeys.
 - Remember: a *candidate* key is a special subset of superkeys that do not have any extraneous information in them: it is a **minimal** superkey.
- **Example**: Person1(<u>SSN</u>, Name, Address)
 - The only FD is: $SSN \rightarrow Name$, Address
 - Since *SSN* is a key, Person1 is in BCNF

(non) BCNF Examples

Person(<u>SSN</u>, Name, Address, <u>Hobby</u>)

- The FD: $SSN \rightarrow Name$, *Address* does <u>not</u> satisfy requirements of BCNF
 - since the (SSN) is not a key
 - the key is (SSN, Hobby)
- HasAccount(AcctNum, ClientId, OfficeId)
 - The FD $AcctNum \rightarrow OfficeId$ does <u>not</u> satisfy BCNF requirements
 - since keys are (*ClientId*, *OfficeId*) and (*AcctNum*, *ClientId*); not *AcctNum*.

What Redundancy?

- Suppose **R** has a FD $A \rightarrow B$, and A is not a superkey.
 - If an instance has 2 rows with same value in *A*, they *must* also have same value in *B* (=> redundancy, because the B-*value* repeats

• If *A* is a superkey, there cannot be two rows with same value of *A*

• Hence, BCNF eliminates redundancy

Third Normal Form (3NF)

- A relational schema **R** is in 3NF if for every FD $X \rightarrow Y$ associated with **R** either:
 - $Y \subseteq X$ (i.e., the FD is trivial); or
 - X is a superkey of **R**; OR

• Every $A \in Y$ is part of some key of **R**

• 3NF is weaker than BCNF (every schema that is in BCNF is also in 3NF), but not vice-versa.

BCNF

conditions

3NF Example

- HasAccount (AcctNum, ClientId, OfficeId) is in 3NF:
 - ClientId, OfficeId \rightarrow AcctNum
 - OK since LHS is a superkey
 - $AcctNum \rightarrow OfficeId$
 - OK since *OfficeId* (RHS) is part of a key (*ClientId*, *OfficeId*)
- HasAccount is in 3NF but it might still contain redundant information due to *AcctNum* → *OfficeId* (which is not allowed by BCNF)

3NF (Non)-Example

- Person (SSN, Name, Address, Hobby):
 - •(*SSN*, *Hobby*) is the only key
 - SSN→Name violates 3NF
 conditions since:
 - •it is not a trivial FD,
 - *SSN* (LHS) is not a superkey, and*Name* (RHS) is not part of a key.

Decompositions

- •Goal: Eliminate redundancy by decomposing a relation into several relations in a higher normal form
- Decomposition MUST be <u>lossless</u>: <u>it</u> <u>must be possible to reconstruct the</u> <u>original relation from the relations in</u> <u>the decomposition.</u>

Normal Forms						
	1NF	2NF	3NF	BCNF	4NF	
 Weaker restrictions 				Les	ss redundancy	
Achievable without loss			Achievable with some loss			

Decomposition

- Consider a relation schema: $\mathbf{R} = (R, F)$
 - *R* is set a of attributes
 - **F** is a set of functional dependencies over R
 - Each key is described by a FD
- The *decomposition of the (relation) schema* **R** is a collection of (relation) schemas $\mathbf{R}_i = (R_i, F_i)$ where
 - $R = \bigcup_i R_i$ for all *i* (no new attributes)
 - F_i is a set of functional dependences involving only attributes of R_i
 - F entails F_i for all i (no new FDs)
- The *decomposition of an instance*, **r**, of **R** is a set of relations $\mathbf{r}_i = \pi_{R_i}(\mathbf{r})$ for all *i*

Example Decomposition

Schema (R, F) where

 $R = \{\underline{SSN}, Name, Address, \underline{Hobby}\}$

 $F = \{SSN \rightarrow Name, Address\}$

can be decomposed into:

 $R_{1} = \{\underline{SSN}, Name, Address\}$ $F_{1} = \{SSN \rightarrow Name, Address\}$ and

$$R_2 = \{\underline{SSN, Hobby}\}$$
$$F_2 = \{ \}$$

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Lossless Schema Decomposition

A decomposition <u>should not lose information</u>
A decomposition (**R**₁,...,**R**_n) of a schema, **R**, is *lossless* if every valid instance, **r**, of **R** can

be reconstructed from its components:

 $\mathbf{r} = \mathbf{r}_{1} \bowtie \mathbf{r}_{2} \bowtie \dots \bowtie \mathbf{r}_{n}$ where each $\mathbf{r}_{i} = \pi_{\mathbf{R}_{i}}(\mathbf{r})$

Lossy Decomposition The following is always the case: $\mathbf{r} \subseteq \mathbf{r}_1 \ \bowtie \ \mathbf{r}_2 \ \bowtie$ \mathbf{r}_{n} But the following is **not always true**: $\mathbf{r} \supseteq \mathbf{r}_1 \bowtie \mathbf{r}_2 \bowtie \ldots$ \mathbf{r}_n *Example*: \square \mathbf{r}_2 r $\mathbf{r}_1 \otimes$ SSN Name SSN Name Address Name Address 1111 Joe 1111 Joe 1 Pine Joe 1 Pine 2222 Alice 2 Oak 2222 Alice Alice 2 Oak 3333 Alice 3333 Alice Alice 3 Pine 3 Pine

The tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) are in the join, but not in the original (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Lossy Decompositions: What is Actually Lost?

- In the previous example, the tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) were *gained*, not lost!
 - Why do we say that the decomposition was lossy?
- •What was lost is *information*:

• That 2222 lives at 2 Oak:

In the decomposition, 2222 can live at either 2 Oak or 3 Pine

• That 3333 lives at 3 Pine:

In the decomposition, 3333 can live at either 2 Oak or 3 Pine

Testing for Losslessness •A (binary) decomposition of $\mathbf{R} = (R, F)$ into $\mathbf{R}_1 \equiv (R_1, F_1)$ and $\mathbf{R}_2 \equiv (R_2, F_2)$ is *lossless* if and only if : •either the FD • $(R_1 \cap R_2) \rightarrow R_1$ is in F^+ •or the FD • $(R_1 \cap R_2) \rightarrow R_2$ is in F^+

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Testing for Losslessness Example Consider the schema (R, F) where $R = \{SSN, Name, Address, Hobby\}$ $F = \{SSN \rightarrow Name, Address\}$ It can be decomposed into $R_1 = \{\underline{SSN}, Name, Address\}$ $F_1 = \{SSN \rightarrow Name, Address\}$ and $R_2 = \{\underline{SSN, Hobby}\}$ $F_{2} = \{ \}$ $R_1 \cap R_2 = SSN$ and $SSN \rightarrow \{SSN, Name, Address\} = R_1$ => the decomposition is lossless! 37

Intuition Behind the Test for Losslessness

- Suppose $R_1 \cap R_2 \rightarrow R_2$.
- Then a row of \mathbf{r}_1 can combine with <u>exactly</u> one row of \mathbf{r}_2 in the natural join (since in \mathbf{r}_2 a particular set of values for the attributes in $R_1 \cap R_2$ defines a unique row):

• The join will have exactly the number of tuples in \mathbf{r}_1 and \mathbf{r} (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Proof of Lossless Condition

- $\mathbf{r} \subseteq \mathbf{r}_1 \quad \bowtie \quad \mathbf{r}_2 \quad -$ this is true for any decomposition by definition of a decomposition
- $\mathbf{r} \supseteq \mathbf{r}_1 \quad \bowtie \quad \mathbf{r}_2 \quad we \text{ need to prove this for lossless}$
 - If $R_1 \cap R_2 \rightarrow R_2$ then *card* ($\mathbf{r}_1 \bowtie \mathbf{r}_2$) = *card* (\mathbf{r}_1) *(since each row of* r_1 *joins with exactly one row of* r_2)

But *card* (\mathbf{r}) \geq *card* (\mathbf{r}_{1}) (*since* \mathbf{r}_{1} *is a projection of* \mathbf{r}) and therefore *card* (\mathbf{r}) \geq *card* ($\mathbf{r}_{1} \bowtie \mathbf{r}_{2}$) From the join (Cartesian product) we have: *card* (\mathbf{r}) \leq *card* ($\mathbf{r}_{1} \bowtie \mathbf{r}_{2}$) Hence $\mathbf{r} = \mathbf{r}_{1} \bowtie \mathbf{r}_{2}$ must be true

Dependency Preservation

- Consider a decomposition of $\mathbf{R} = (R, F)$ into $\mathbf{R}_1 = (R_1, F_1)$ and $\mathbf{R}_2 = (R_2, F_2)$
 - An FD $X \rightarrow Y$ of F^+ is in F_i iff $X \cup Y \subseteq R_i$ (all the attributes of the functional dependency are in R_i)
 - An FD, $f \in F^+$ may be in neither F_1 , nor F_2 , nor even $(F_1 \cup F_2)^+$
 - Checking that f is true in \mathbf{r}_1 or \mathbf{r}_2 is (relatively) easy
 - Checking f in $\mathbf{r}_1 \bowtie \mathbf{r}_2$ is harder requires a join
 - *Ideally*: want to check FDs <u>locally</u>, in \mathbf{r}_1 and \mathbf{r}_2 , and have a guarantee that every $f \in F$ holds in $\mathbf{r}_1 \bowtie \mathbf{r}_2$
- The decomposition is <u>dependency preserving</u> iff the FD sets <u>*F* and $F_1 \cup F_2$ are equivalent</u>: $F^+ = (F_1 \cup F_2)^+$
 - Then checking all FDs in *F*, as r₁ and r₂ are updated, can be done by checking F₁ in r₁ and F₂ in r₂

Dependency Preservation

• If *f* is an FD in *F*, but *f* is not in $F_1 \cup F_2$, there are two possibilities:

$$\bullet f \in (F_1 \cup F_2)^+$$

• If the constraints in F_1 and F_2 are maintained, f will be maintained automatically.

•
$$f \notin (\boldsymbol{F}_1 \cup \boldsymbol{F}_2)^+$$

• f can be checked only by first taking the join of \mathbf{r}_1 and \mathbf{r}_2 .

Example 1 Schema (R, F) where $R = \{SSN, Name, Address, Hobby\}$ $F = \{SSN \rightarrow Name, Address\}$ can be decomposed into $R_1 = \{SSN, Name, Address\}$ $F_1 = \{SSN \rightarrow Name, Address\}$ and $R_2 = \{SSN, Hobby\}$ $F_{2} = \{ \}$ Since $\mathbf{F} = \mathbf{F}_1 \cup \mathbf{F}_2$ the decomposition is dependency preserving

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Example 2

- Schema: (ABC; F), $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow B\}$
- Decomposition:
 - • $(AC, F_1), F_1 = \{A \rightarrow C\}$ • Note: $A \rightarrow C \notin F$, but in F^+
 - • $(BC, F_2), F_2 = \{B \rightarrow C, C \rightarrow B\}$

•
$$A \rightarrow B \notin (F_1 \cup F_2)$$
, but $A \rightarrow B \in (F_1 \cup F_2)^+$
• So $F^+ = (F_1 \cup F_2)^+$ and thus the decomposition is still dependency preserving

Example 3

- HasAccount (AcctNum, ClientId, OfficeId) $f_1: AcctNum \rightarrow OfficeId$ $f_2: ClientId, OfficeId \rightarrow AcctNum$
- Decomposition:

 $R_1 = (AcctNum, OfficeId; \{AcctNum \rightarrow OfficeId\})$ $R_2 = (AcctNum, ClientId; \{\})$

• Decomposition <u>is</u> lossless:

 $R_1 \cap R_2 = \{AcctNum\} \text{ and } AcctNum \rightarrow AcctNum, OfficeId = R_1$

- This decomposition is in BCNF (we showed that before).
- <u>But it is Not dependency preserving</u>: $f_2 \notin (\mathbf{F}_1 \cup \mathbf{F}_2)^+$
- HasAccount *does not* have BCNF decompositions that are both lossless and dependency preserving! (Check, eg, by enumeration of all decompositions)
- Hence: BCNF+lossless+dependency preserving decompositions are not always achievable!

BCNF Decomposition Algorithm

Input: $\mathbf{R} = (R; F)$

 $Decomp := {\mathbf{R}}$ while there is $\mathbf{S} = (S; \mathbf{F'}) \in Decomp$ and \mathbf{S} not in BCNF **do** Find $X \rightarrow Y \in F'$ that violates BCNF // X isn't a superkey in S Replace S in *Decomp* with $\mathbf{S}_1 = (XY; \mathbf{F}_1)$ and $S_{2} = (S - (Y - X); F_{2})$ where $F_1 = all FDs \ of F'$ involving only attributes of XY and $\mathbf{F}_2 = all \ FDs \ of \ \mathbf{F'}$ involving only attributes of S - (Y - X)end

return Decomp

Simple Example

• HasAccount :

(ClientId, OfficeId, AcctNum) Keys: (ClientId,OfficeId) and (ClientId,AcctNum) ClientId,OfficeId \rightarrow AcctNum AcctNum \rightarrow OfficeId

• Decompose using $AcctNum \rightarrow OfficeId$:

(OfficeId, <u>AcctNum</u>)

FD: $AcctNum \rightarrow OfficeId$ is in BCNF: AcctNum is key (*ClientId*, *AcctNum*) Is in BCNF (only trivial FDs)

A Larger Example

Given: $\mathbf{R} = (R; F)$ where R = ABCDEGHK and $F = \{ABH \rightarrow C, A \rightarrow DE, BGH \rightarrow K, K \rightarrow ADH, BH \rightarrow GE\}$ **step 1:** Find a FD that violates BCNF Not $ABH \rightarrow C$ since $(ABH)^+$ includes all attributes (*BH* is a key (minimal superkey)) $A \rightarrow DE$ violates BCNF since A is not a superkey ($A^+ = ADE$) step 2: Split **R** into: $\mathbf{R}_1 = (ADE, \mathbf{F}_1 = \{A \rightarrow DE\})$ $\mathbf{R}_2 = (ABCGHK; \mathbf{F}_1 = \{ABH \rightarrow C, BGH \rightarrow K, K \rightarrow AH, BH \rightarrow G\})$ Note 1: \mathbf{R}_1 is in BCNF Note 2: Decomposition is *lossless* since A is a key of \mathbf{R}_1 Note 3: FDs $K \rightarrow D$ and $BH \rightarrow E$ are not in F_1 or F_2 . But both can be derived from $F_1 \cup F_2$ $(E.g., K \rightarrow A \text{ and } A \rightarrow D \text{ implies } K \rightarrow D)$ Hence, the decomposition <u>is</u> dependency preserving. Is **R**₂ in BCNF? 47 (c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

A Larger Example (con't)

Given: $\mathbf{R}_2 = (ABCGHK; \{ABH \rightarrow C, BGH \rightarrow K, K \rightarrow AH, BH \rightarrow G\})$ **step 1:** Find a FD that violates BCNF.

Not $ABH \rightarrow C$ or $BGH \rightarrow K$, since BH is a key of \mathbf{R}_2

 $K \rightarrow AH$ violates BCNF since *K* is not a superkey ($K^+ = AH$) step 2: Split \mathbf{R}_2 into:

$$\mathbf{R_{21}} = (KAH, \mathbf{F}_{21} = \{K \rightarrow AH\})$$
$$\mathbf{R_{22}} = (BCGK; \mathbf{F}_{22} = \{\})$$

Note 1: Both \mathbf{R}_{21} and \mathbf{R}_{22} are in BCNF. Note 2: The decomposition is *lossless* (since K is a key of \mathbf{R}_{21}) Note 3: FDs $ABH \rightarrow C$, $BGH \rightarrow K$, $BH \rightarrow G$ are not in \mathbf{F}_{21} or \mathbf{F}_{22} , and they can't be derived from $\mathbf{F}_{1} \cup \mathbf{F}_{21} \cup \mathbf{F}_{22}$. Hence the decomposition is *not* dependency-preserving

Properties of BCNF Decomposition Algorithm • Let $X \rightarrow Y$ violate BCNF in $\mathbf{R} = (R, F)$.

- $\mathbf{R}_1 = (R_1, F_1)$ and $\mathbf{R}_2 = (R_2, F_2)$ is the resulting decomposition. Then:
 - There are *fewer violations* of BCNF in \mathbf{R}_1 and \mathbf{R}_2 than there were in \mathbf{R}
 - $X \rightarrow Y$ implies *X* is a key of **R**₁
 - Hence $X \rightarrow Y \in F_1$ does not violate BCNF in \mathbf{R}_1 and, since $X \rightarrow Y \notin F_2$, does not violate BCNF in \mathbf{R}_2 either
- Suppose f is $X' \rightarrow Y'$ and $f \in F$ doesn't violate BCNF in **R**. If $f \in F_1$ or F_2 it does not violate BCNF in \mathbf{R}_1 or \mathbf{R}_2 either since X' is a superkey of **R** and hence also of \mathbf{R}_1 and \mathbf{R}_2 .

Properties of BCNF Decomposition Algorithm

- A BCNF decomposition is *not necessarily* dependency preserving
- But *always* lossless:

since $R_1 \cap R_2 = X$, $X \rightarrow Y$, and $R_1 = XY$

• BCNF+lossless+dependency preserving is sometimes unachievable

Third Normal Form

- The Third Normal Form is the Compromise
 - = Not all redundancy removed, but

dependency preserving decompositions are <u>always</u> possible (and, of course, lossless)

• 3NF decomposition is based on a *minimal*

cover

Minimal Cover

- A *minimal cover* of a set of functional dependencies
 F is a set of dependencies *U* such that:
 - U is equivalent to F (i.e., $F^+ = U^+$)
 - All FDs in U have the form $X \rightarrow A$ where A is a single attribute
 - It is not possible to make *U* smaller (while preserving equivalence) by
 - Deleting an FD
 - Deleting an attribute from an FD (either from LHS or RHS)
 - FDs and attributes that can be deleted in this way are called *redundant*

Computing the Minimal Cover

• **Example**: $F = \{ABH \rightarrow CK, A \rightarrow D, C \rightarrow E, \}$

 $BGH \rightarrow L, L \rightarrow AD, E \rightarrow L, BH \rightarrow E$

- **step 1**: Make RHS of each FD into a single attribute:
 - $ABH \rightarrow CK$ is replaced by $ABH \rightarrow C$ and $ABH \rightarrow K$
 - $L \rightarrow AD$ is replaced by $L \rightarrow A$ and $L \rightarrow D$
- **step 2**: Eliminate redundant attributes from LHS:
 - *Algorithm*: If FD $XB \rightarrow A \in F$ (where *B* is a single attribute) and $X \rightarrow A$ is entailed by *F*, then *B* was unnecessary
 - Example: Can an attribute be deleted from $ABH \rightarrow C$?
 - Compute AB^+_{F} , AH^+_{F} , BH^+_{F} .
 - Since $C \in (BH)^+{}_F$, $BH \to C$ is entailed by F and A is redundant in $ABH \to C$.

Computing the Minimal Cover

- step 3: Delete redundant FDs from *F*
 - Algorithm: If $\mathbf{F} \{f\}$ entails f, then f is redundant
 - Alternative: If f is $X \rightarrow A$ then check if $A \in X^+_{F-\{f\}}$
 - Example: $BGH \rightarrow L$ is entailed by $E \rightarrow L$, $BH \rightarrow E$, so it is redundant.

Synthesizing a 3NF Schema

Starting with a schema $\mathbf{R} = (R, F)$

- step 1: Compute a minimal cover, U, of F (the decomposition is based on U, but since U⁺ = F⁺ the same functional dependencies will hold)
 - A minimal cover for

 $F = \{ABH \rightarrow CK, A \rightarrow D, C \rightarrow E, BGH \rightarrow L, L \rightarrow AD, E \rightarrow L, BH \rightarrow E\}$ is

 $U = \{BH \rightarrow C, BH \rightarrow K, A \rightarrow D, C \rightarrow E, L \rightarrow A, E \rightarrow L\}$

Synthesizing a 3NF schema (con't)

• The minimal cover was:

 $\boldsymbol{U} = \{BH \rightarrow C, BH \rightarrow K, A \rightarrow D, C \rightarrow E, L \rightarrow A, E \rightarrow L\}$

step 2: Partition U into sets U₁, U₂, ... U_n such that the LHS of all elements of U_i are the same

$$U_{1} = \{BH \rightarrow C, BH \rightarrow K\}$$
$$U_{2} = \{A \rightarrow D\}$$
$$U_{3} = \{C \rightarrow E\}$$
$$U_{4} = \{L \rightarrow A\}$$
$$U_{5} = \{E \rightarrow L\}$$

Synthesizing a 3NF schema (con't) $U_1 = \{BH \rightarrow C, BH \rightarrow K\}, \quad U_2 = \{A \rightarrow D\},$ $U_3 = \{C \rightarrow E\}, \quad U_4 = \{L \rightarrow A\}, \quad U_5 = \{E \rightarrow L\}$

- step 3: For each U_i form a schema R_i = (R_i, U_i), where R_i is the set of all attributes mentioned in U_i
 - Each FD of *U* will be in some R_i. Hence the decomposition is *dependency preserving:*

$$\mathbf{R}_{1} = (BHCK; BH \rightarrow C, BH \rightarrow K), \qquad \mathbf{R}_{2} = (AD; A \rightarrow D),$$

$$\mathbf{R}_{3} = (CE; C \rightarrow E), \qquad \mathbf{R}_{4} = (AL; L \rightarrow A),$$

$$\mathbf{R}_{5} = (EL; E \rightarrow L)$$

- Unify relations that have the same set of attributes.
- Add to each \mathbf{R}_i all dependencies f entailed by the original set F where all the attributes are in \mathbf{R}_i $C \longrightarrow F \longrightarrow L \longrightarrow A \longrightarrow D$

Synthesizing a 3NF schema (con't)

- **step 4**: If no R_i is a superkey of **R**, add schema $\mathbf{R}_0 = (R_0, \{\})$ where R_0 is a key of **R**.
 - $\mathbf{R}_0 = (BGH, \{\})$
 - \mathbf{R}_0 might be needed when not all attributes are necessarily contained in $R_1 \cup R_2 \ldots \cup R_n$
 - A missing attribute, *A*, must be part of all keys (since it's not in any FD of *U*, deriving a key constraint from *U* involves the augmentation axiom)

• \mathbf{R}_0 might be needed even if all attributes are accounted for in $R_1 \cup R_2 \ldots \cup R_n$

- Example: $(ABCD; \{A \rightarrow B, C \rightarrow D\})$. Step 3 decomposition: $R_1 = (AB; \{A \rightarrow B\}), R_2 = (CD; \{C \rightarrow D\})$. Lossy! Need to add (AC; $\{ \}$), for losslessness
- Step 4 guarantees **lossless** decomposition.

BCNF Design Strategy

- The resulting decomposition, $\mathbf{R}_0, \mathbf{R}_1, \dots, \mathbf{R}_n$, is
 - Dependency preserving (since every FD in *U* is a FD of some schema)
 - Lossless
 - •In 3NF
- Strategy for decomposing a relation:
 - Use 3NF decomposition first to get lossless, dependency preserving decomposition
 - If any resulting schema is not in BCNF, split it using the BCNF algorithm (but this may yield a nondependency preserving result)

Normalization Drawbacks

- By limiting redundancy, normalization helps maintain consistency and saves space
- But performance of querying can suffer because related information that was stored in a single relation is now distributed among several
- **Example**: A join is required to get the names and grades of all students taking CSE305 in F2016.

SELECT S.*Name*, T.*Grade* FROM Student S, Transcript T WHERE S.*Id* = T.*StudId* AND T.*CrsCode* = 'CSE305' AND T.*Semester* = 'F2016'

Denormalization

- **Tradeoff**: *Judiciously* introduce redundancy to improve performance of certain queries
- Example: Add attribute *Name* to Transcript

SELECT T.*Name*, T.*Grade* FROM Transcript' T WHERE T.*CrsCode* = 'CSE305' AND T.*Semester* = 'F2016'

- Join is avoided
- If queries are asked more frequently than Transcript is modified, added redundancy might improve average performance
- But, Transcript' is no longer in BCNF since key is (*StudId*, *CrsCode*, *Semester*) and *StudId* \rightarrow *Name*

Fourth Normal Form

- Relation has redundant data
- Yet it is in BCNF (since there are no non-trivial FDs)
- Redundancy is due to set valued attributes (in the E-R sense)

Multi-Valued Dependency

- **Problem**: multi-valued (or binary join) dependency
 - **Definition**: If every instance of schema **R** can be (losslessly) decomposed using attribute sets (*X*,*Y*) such that:

 $\mathbf{r} = \pi_X(\mathbf{r}) \quad \bowtie \quad \pi_Y(\mathbf{r})$

then a *multi-valued dependency* $\mathbf{R} = \pi_X(\mathbf{R}) \Join \pi_Y(\mathbf{R})$ holds in **r**

Ex: Person= $\pi_{SSN,PhoneN}$ (Person) $\bowtie \pi_{SSN,ChildSSN}$ (Person)

Fourth Normal Form (4NF)

• A schema is in *fourth normal form* (4NF) if for every multi-valued dependency $R = X \bowtie Y$

in that schema, either:

- $X \subseteq Y$ or $Y \subseteq X$ (trivial case); or
- $-X \cap Y$ is a superkey of R (*i.e.*, $X \cap Y \rightarrow R$)

Fourth Normal Form (Cont'd)

- *Intuition*: if $X \cap Y \rightarrow R$, there is a unique row in relation **r** for each value of $X \cap Y$ (hence no redundancy)
 - Ex: SSN does not uniquely determine *PhoneN* or *ChildSSN*, thus Person is not in 4NF.
- Solution: Decompose R into X and Y
 - Decomposition is lossless but not necessarily dependency preserving (since 4NF implies BCNF – next)

4NF Implies BCNF

• Suppose *R* is in 4NF and $X \rightarrow Y$ is an FD.

- $R_1 = XY$, $R_2 = R Y$ is a lossless decomposition of R
- Thus R has the multi-valued dependency:

$$R = R_1 \bowtie R_2$$

- Since *R* is in 4NF, one of the following must hold :

- $XY \subseteq R Y$ (an impossibility)
- $-R Y \subseteq XY$ (i.e., R = XY and X is a superkey) or
- $-XY \cap R Y$ (= X) is a superkey
 - Hence $X \rightarrow Y$ satisfies BCNF condition