Database Design with The Relational Normalization Theory

CSE 305 – Principles of Database Systems
Paul Fodor
Stony Brook University

http://www.cs.stonybrook.edu/~cse305
Limitations of E-R Designs

- Provides a set of guidelines, does not result in a unique database schema
- Does not provide a way of evaluating alternative schemas
- Normalization theory provides a mechanism for analyzing and refining the schema produced by an E-R design
Redundancy

- Dependencies between attributes cause redundancy
- Ex. All addresses in the same town have the same zip code

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Town</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234</td>
<td>Joe</td>
<td>Stony Brook</td>
<td>11790</td>
</tr>
<tr>
<td>4321</td>
<td>Mary</td>
<td>Stony Brook</td>
<td>11790</td>
</tr>
<tr>
<td>5454</td>
<td>Tom</td>
<td>Stony Brook</td>
<td>11790</td>
</tr>
</tbody>
</table>

………………….
Redundancy

Set attributes can also cause redundancy.

In the ER Model:

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Address</th>
<th>Hobby</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>{biking, hiking}</td>
</tr>
</tbody>
</table>

But, they are represented as multiple tuples in the Relational Model:

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Address</th>
<th>Hobby</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>biking</td>
</tr>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>hiking</td>
</tr>
</tbody>
</table>

Redundancy
Anomalies

- Redundancy leads to anomalies:
 - **Update anomaly**: A change in Address must be made in several places in the example with hobbies.
 - **Deletion anomaly**: Suppose a person gives up all hobbies. Do we:
 - Set Hobby attribute to null? No, since Hobby is part of key.
 - Delete the entire row? No, since we lose other information in the row.
 - So, we cannot represent this person.
 - **Insertion anomaly**: Hobby value must be supplied for any inserted row since Hobby is part of key.
 - So, we cannot inset a person without hobbies.
Decomposition

• Solution for eliminating redundancies: we use two relations to store Person information
 • Person1 (SSN, Name, Address)
 • Hobbies (SSN, Hobby)

• The decomposition is more general: people without hobbies can now be described

• No update anomalies:
 • Name and address stored once
 • A hobby can be separately supplied or deleted
Normalization Theory

• The result of E-R analysis need further refinement!
• Appropriate decomposition can solve problems!
• The underlying theory is referred to as normalization theory and is based on functional dependencies (and other kinds, like multivalued dependencies)
Functional Dependencies

- **Definition:** A *functional dependency* (FD) on a relation schema R is a *constraint* $X \rightarrow Y$, where X and Y are subsets of attributes of R.

- **Definition:** An FD $X \rightarrow Y$ is *satisfied* in an instance r of R if for every pair of tuples, t and s: if t and s agree on all attributes in X then they must agree on all attributes in Y.

- Key constraint is a special kind of functional dependency: all attributes of relation occur on the right-hand side of the FD:
 - $SSN \rightarrow SSN, Name, Address$
Functional Dependencies

- **Address** \rightarrow **ZipCode**
 - Stony Brook’s ZIP is 11733

- **ArtistName** \rightarrow **BirthYear**
 - Picasso was born in 1881

- **Autobrand** \rightarrow **Manufacturer, Engine type**
 - Pontiac is built by General Motors with gasoline engine
 - Volt is built by Chevy with electric engine

- **Author, Title** \rightarrow **PublicationDate**
 - Shakespeare’s Hamlet published in 1600
Consider a brokerage firm that allows multiple clients to share an account, but each account is managed from a single office and a client can have no more than one account in an office.

HasAccount\((AcctNum, ClientId, OfficeId)\)

- keys are: \((AcctNum, ClientId)\), \((ClientId, OfficeId)\)
- \(AcctNum, ClientId \rightarrow AcctNum, ClientId, OfficeId\)
- \(ClientId, OfficeId \rightarrow AcctNum, ClientId, OfficeId\)
- \(AcctNum \rightarrow OfficeId\)

Thus, attribute values need not depend only on key values.
Entailment, Closure, Equivalence

• **Definition:** If F is a set of FDs on schema R and f is another FD on R, then $F \text{ entails } f$ if every instance r of R that satisfies every FD in F also satisfies f

 • Example: $F = \{A \rightarrow B, B \rightarrow C\}$ and f is $A \rightarrow C$
 • If $\text{Town} \rightarrow \text{Zip}$ and $\text{Zip} \rightarrow \text{AreaCode}$ then $\text{Town} \rightarrow \text{AreaCode}$

• **Definition:** The *closure* of F, denoted F^+, is the set of all FDs entailed by F

• **Definition:** F and G are *equivalent* if F entails G and G entails F
Entailment, Closure, Equivalence

• Satisfaction, entailment, and equivalence are semantic concepts – defined in terms of the actual relations in the “real world.”
• They define what these notions are, not how to compute them
• Solution: find algorithmic, syntactic ways to compute these notions
 • Important: The syntactic solution must be “correct” with respect to the semantic definitions
 • Correctness has two aspects: soundness and completeness
Armstrong’s Axioms for FDs

- **Reflexivity**: If \(Y \subseteq X \) then \(X \rightarrow Y \) (trivial FD)
 - Name, Address \(\rightarrow \) Name

- **Augmentation**: If \(X \rightarrow Y \) then \(XZ \rightarrow YZ
 - If Town \(\rightarrow \) Zip then Town, Name \(\rightarrow \) Zip, Name

- **Transitivity**: If \(X \rightarrow Y \) and \(Y \rightarrow Z \) then \(X \rightarrow Z \)

- The Armstrong’s Axioms are the *syntactic* way of computing and testing the various properties of FDs.
Soundness

• Armstrong’s axioms are *sound*: If an FD \(f: X \rightarrow Y \) can be derived from a set of FDs \(F \) using the axioms, then \(f \) holds in every relation that satisfies every FD in \(F \).

• Example: Given \(X \rightarrow Y \) and \(X \rightarrow Z \) then

\[
\begin{align*}
X & \rightarrow XY & \text{Augmentation by } X \\
YX & \rightarrow YZ & \text{Augmentation by } Y \\
X & \rightarrow YZ & \text{Transitivity}
\end{align*}
\]

• Thus, \(X \rightarrowYZ \) is satisfied in every relation where both \(X \rightarrow Y \) and \(X \rightarrow Z \) are satisfied

• We have derived the *union rule* for FDs: we can take the union of the RHSs of FDs that have the same LHS
Completeness

- Armstrong’s Axioms are complete: If F entails f, then f can be derived from F using the axioms.
- A consequence of completeness is the following (naïve) algorithm to determining if F entails f:
 - **Algorithm**: Use the axioms in all possible ways to generate F^+ (the closure of F, i.e., the set of possible FD’s is finite so this can be done) and see if f is in F^+.
Correctness

- The notions of soundness and completeness link the syntax (Armstrong’s axioms) with semantics (the definitions in terms of relational instances).
- This is a precise way of saying that the algorithm for entailment based on the axioms is “correct” with respect to the definitions.
Thus, \(AB \rightarrow BD, AB \rightarrow BCD, AB \rightarrow BCDE, \) and \(AB \rightarrow CDE \) are all elements of \(F^+ \) (part-of, there are other FDs: \(AC \rightarrow CD, AE \rightarrow ED, \) etc.)

Very costly procedure for proving entailment.
Attribute Closure

• Calculating attribute closure leads to a more efficient way of checking entailment

• The attribute closure of a set of attributes, X, with respect to a set of functional dependencies, F, (denoted X^+_F) is the set of all attributes, A, such that $X \rightarrow A$ is entailed by F

• X^+_{F1} is not necessarily the same as X^+_{F2} if $F1 \neq F2$

• Attribute closure and entailment:
 • Algorithm: Given a set of FDs, F, F entails $X \rightarrow Y$ if and only if $X^+_F \supseteq Y$
Computation of the Attribute Closure X^+_F

closure := X; \quad // \text{since } X \subseteq X^+_F
repeat
 old := closure;
 if there is an FD $Z \rightarrow V$ in F such that
 $Z \subseteq \text{closure}$ and $V \cap \text{closure} \neq \emptyset$
 then closure := closure \cup V
until old = closure

Entailment algorithm:
If $T \subseteq X^+_F$ then $X \rightarrow T$ is entailed by F
Example: Computation of Attribute Closure

Example: Compute the attribute closure of AB with respect to the set of FDs F:

- $AB \rightarrow C$ (a)
- $A \rightarrow D$ (b)
- $D \rightarrow E$ (c)
- $AC \rightarrow B$ (d)

Solution:

Initially: $closure = \{AB\}$
Using (a): $closure = \{ABC\}$
Using (b): $closure = \{ABCD\}$
Using (c): $closure = \{ABCDE\}$
Computing Attribute Closure Examples

\[F: AB \rightarrow C \]
\[A \rightarrow D \]
\[D \rightarrow E \]
\[AC \rightarrow B \]

\[
\begin{array}{c|c}
F & X_F^+ \\
\hline
A & \{A, D, E\} \\
AB & \{A, B, C, D, E\} \\
B & \{B\} \\
D & \{D, E\} \\
\end{array}
\]

(Hence \(AB \) is a key)

Is \(AB \rightarrow E \) entailed by \(F \)? \(Yes \)
Is \(D \rightarrow C \) entailed by \(F \)? \(No \)

Result: \(X_F^+ \) allows us to determine FDs of the form \(X \rightarrow A \) entailed by \(F \).
Normal Forms

• The normal forms are conditions on schemas that guarantees certain properties relating to redundancy and update anomalies.

• First normal form (1NF) is the same as the definition of relational model (relations = sets of tuples; each tuple = sequence of atomic values).

• Second normal form (2NF):
 - no non prime attribute is dependent on any proper subset of any candidate key of the table (where a non prime attribute of a table is an attribute that is not a part of any candidate key of the table): every non-prime attribute is either dependent on the whole of a candidate key, or on another non prime attribute.

• The two commonly used normal forms are third normal form (3NF) and Boyce-Codd normal form (BCNF).
Definition: A relation schema R is in BCNF if for every FD $X \rightarrow Y$ associated with R either

- $Y \subseteq X$ (i.e., the FD is trivial) or
- X is a superkey of R

Remember: a superkey is a combination of attributes that can be used to uniquely identify a database record. A table might have many superkeys.

Remember: a candidate key is a special subset of superkeys that do not have any extraneous information in them: it is a minimal superkey.

Example: Person1($SSN, Name, Address$)

- The only FD is: $SSN \rightarrow Name, Address$
- Since SSN is a key, Person1 is in BCNF
(non) BCNF Examples

- **Person**(SSN, Name, Address, Hobby)
 - The FD: \(SSN \rightarrow Name, Address \) does not satisfy requirements of BCNF
 - since the (SSN) is not a key
 - the key is (SSN, Hobby)

- **HasAccount**(AcctNum, ClientId, OfficeId)
 - The FD \(AcctNum \rightarrow OfficeId \) does not satisfy BCNF requirements
 - since keys are (ClientId, OfficeId) and (AcctNum, ClientId); not AcctNum.
What Redundancy?

• Suppose R has a FD A → B, and A is not a superkey.
• If an instance has 2 rows with same value in A, they must also have same value in B (⇒ redundancy, because the B-value repeats twice):

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Address</th>
<th>Hobby</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>stamps</td>
</tr>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>coins</td>
</tr>
</tbody>
</table>

• If A is a superkey, there cannot be two rows with same value of A
• Hence, BCNF eliminates redundancy
Third Normal Form (3NF)

- A relational schema R is in 3NF if for every FD $X \rightarrow Y$ associated with R either:
 - $Y \subseteq X$ (i.e., the FD is trivial); or
 - X is a superkey of R; OR
 - Every $A \in Y$ is part of some key of R

- 3NF is weaker than BCNF (every schema that is in BCNF is also in 3NF), but not vice-versa.
3NF Example

- **HasAccount** \((AcctNum, ClientId, OfficeId)\) is in 3NF:
 - \(ClientId, OfficeId \rightarrow AcctNum\)
 - OK since LHS is a superkey
 - \(AcctNum \rightarrow OfficeId\)
 - OK since \(OfficeId\) (RHS) is part of a key \((ClientId, OfficeId)\)

- **HasAccount** is in 3NF but it might still contain redundant information due to \(AcctNum \rightarrow OfficeId\) (which is not allowed by BCNF)
3NF (Non)-Example

- **Person** \((SSN, \ Name, \ Address, \ Hobby)\):
 - \((SSN, \ Hobby)\) is the only key
 - \(SSN \rightarrow Name\) violates 3NF conditions since:
 - it is not a trivial FD,
 - \(SSN\) (LHS) is not a superkey, and
 - \(Name\) (RHS) is not part of a key.
Decompositions

• **Goal**: Eliminate redundancy by decomposing a relation into several relations in a higher normal form

• Decomposition MUST be *lossless*: it must be possible to reconstruct the original relation from the relations in the decomposition.
Normal Forms

1NF 2NF 3NF BCNF 4NF

Weaker restrictions Less redundancy

Achievable without loss Achievable with some loss
Decomposition

- Consider a relation schema: $R = (R, F)$
 - R is a set of attributes
 - F is a set of functional dependencies over R
 - Each key is described by a FD

- The *decomposition of the (relation) schema* R is a collection of (relation) schemas $R_i = (R_i, F_i)$ where
 - $R = \bigcup_i R_i$ for all i (*no new attributes*)
 - F_i is a set of functional dependences involving only attributes of R_i
 - F entails F_i for all i (*no new FDs*)

- The *decomposition of an instance*, r, of R is a set of relations $r_i = \pi_{R_i}(r)$ for all i
Example Decomposition

Schema \((R, F)\) where
\[R = \{ \text{SSN}, \text{Name}, \text{Address}, \text{Hobby} \} \]
\[F = \{ \text{SSN} \rightarrow \text{Name, Address} \} \]

can be decomposed into:
\[R_1 = \{ \text{SSN}, \text{Name}, \text{Address} \} \]
\[F_1 = \{ \text{SSN} \rightarrow \text{Name, Address} \} \]

and
\[R_2 = \{ \text{SSN, Hobby} \} \]
\[F_2 = \{ \} \]
Lossless Schema Decomposition

- A decomposition should not lose information.
- A decomposition \((R_1, \ldots, R_n)\) of a schema, \(R\), is *lossless* if every valid instance, \(r\), of \(R\) can be reconstructed from its components:

\[
r = r_1 \Join r_2 \Join \ldots \Join r_n
\]

where each \(r_i = \pi_{R_i}(r)\)
Lossy Decomposition

The following is always the case:

\[r \subseteq r_1 \Join r_2 \Join \ldots \Join r_n \]

But the following is not always true:

\[r \supseteq r_1 \Join r_2 \Join \ldots \Join r_n \]

Example:

\[r \quad \not\supseteq \quad r_1 \Join r_2 \]

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>Joe</td>
<td>1 Pine</td>
</tr>
<tr>
<td>2222</td>
<td>Alice</td>
<td>2 Oak</td>
</tr>
<tr>
<td>3333</td>
<td>Alice</td>
<td>3 Pine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>Joe</td>
<td>1 Pine</td>
</tr>
<tr>
<td>2222</td>
<td>Alice</td>
<td>2 Oak</td>
</tr>
<tr>
<td>3333</td>
<td>Alice</td>
<td>3 Pine</td>
</tr>
</tbody>
</table>

The tuples \((2222, Alice, 3 Pine)\) and \((3333, Alice, 2 Oak)\) are in the join, but not in the original.
Lossy Decompositions: What is Actually Lost?

- In the previous example, the tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) were gained, not lost!
- Why do we say that the decomposition was lossy?

- **What was lost is information:**
 - That 2222 lives at 2 Oak:

 In the decomposition, 2222 can live at either 2 Oak or 3 Pine
 - That 3333 lives at 3 Pine:

 In the decomposition, 3333 can live at either 2 Oak or 3 Pine
Testing for Losslessness

• A (binary) decomposition of \(R = (R, F) \) into \(R_1 = (R_1, F_1) \) and \(R_2 = (R_2, F_2) \) is \textit{lossless} if and only if:

 • either the FD

 • \((R_1 \cap R_2) \rightarrow R_1\) is in \(F^+ \)

 • or the FD

 • \((R_1 \cap R_2) \rightarrow R_2\) is in \(F^+ \)
Testing for Losslessness Example

Consider the schema \((R, F)\) where
\[
R = \{ \text{SSN, Name, Address, Hobby} \}
\]
\[
F = \{ \text{SSN} \rightarrow \text{Name, Address} \}
\]
It can be decomposed into
\[
R_1 = \{ \text{SSN, Name, Address} \}
\]
\[
F_1 = \{ \text{SSN} \rightarrow \text{Name, Address} \}
\]
and
\[
R_2 = \{ \text{SSN, Hobby} \}
\]
\[
F_2 = \{ \}
\]
\[
R_1 \cap R_2 = \text{SSN} \quad \text{and}
\]
\[
\text{SSN} \rightarrow \{ \text{SSN, Name, Address} \} = R_1
\]

\(\Rightarrow\) the decomposition is lossless!
Intuition Behind the Test for Losslessness

- Suppose \(R_1 \cap R_2 \rightarrow R_2 \).
- Then a row of \(r_1 \) can combine with exactly one row of \(r_2 \) in the natural join (since in \(r_2 \) a particular set of values for the attributes in \(R_1 \cap R_2 \) defines a unique row):

\[
\begin{array}{ccc}
\ldots \ldots \ldots \ldots & a & \ldots \ldots \ldots \\
\ldots \ldots \ldots & a & \ldots \ldots \ldots \\
\ldots \ldots \ldots & b & \ldots \ldots \ldots \\
\ldots \ldots \ldots & c & \ldots \ldots \ldots \\
\end{array}
\]

- The join will have exactly the number of tuples in \(r_1 \) and \(r_2 \)
Proof of Lossless Condition

• \(r \subseteq r_1 \Join r_2 \) — this is true for any decomposition by definition of a decomposition

• \(r \supseteq r_1 \Join r_2 \) — we need to prove this for lossless

If \(R_1 \cap R_2 \rightarrow R_2 \) then

\[
\text{card} (r_1 \Join r_2) = \text{card} (r_1)
\]

(since each row of \(r_1 \) joins with exactly one row of \(r_2 \))

But \(\text{card} (r) \geq \text{card} (r_1) \) (since \(r_1 \) is a projection of \(r \)) and therefore \(\text{card} (r) \geq \text{card} (r_1 \Join r_2) \)

From the join (Cartesian product) we have:

\[
\text{card} (r) \leq \text{card} (r_1 \Join r_2)
\]

Hence \(r = r_1 \Join r_2 \) must be true
Dependency Preservation

- Consider a decomposition of $R = (R, F)$ into $R_1 = (R_1, F_1)$ and $R_2 = (R_2, F_2)$

 - An FD $X \rightarrow Y$ of F^+ is in F_i iff $X \cup Y \subseteq R_i$ (all the attributes of the functional dependency are in R_i)

 - An FD, $f \in F^+$ may be in neither F_1, nor F_2, nor even $(F_1 \cup F_2)^+$
 - Checking that f is true in r_1 or r_2 is (relatively) easy
 - Checking f in $r_1 \bowtie r_2$ is harder – requires a join
 - Ideally: want to check FDs locally, in r_1 and r_2, and have a guarantee that every $f \in F$ holds in $r_1 \bowtie r_2$

- The decomposition is **dependency preserving** iff the FD sets F and $F_1 \cup F_2$ are equivalent: $F^+ = (F_1 \cup F_2)^+$

 - Then checking all FDs in F, as r_1 and r_2 are updated, can be done by checking F_1 in r_1 and F_2 in r_2
If \(f \) is an FD in \(F \), but \(f \) is not in \(F_1 \cup F_2 \), there are two possibilities:

\(f \in (F_1 \cup F_2)^+ \)

If the constraints in \(F_1 \) and \(F_2 \) are maintained, \(f \) will be maintained automatically.

\(f \not\in (F_1 \cup F_2)^+ \)

\(f \) can be checked only by first taking the join of \(r_1 \) and \(r_2 \).
Example 1

Schema \((R, F)\) where
\[
R = \{SSN, Name, Address, Hobby\}
\]
\[
F = \{SSN \rightarrow Name, Address\}
\]
can be decomposed into
\[
R_1 = \{SSN, Name, Address\}
\]
\[
F_1 = \{SSN \rightarrow Name, Address\}
\]
and
\[
R_2 = \{SSN, Hobby\}
\]
\[
F_2 = \{\}
\]
Since \(F = F_1 \cup F_2\) the decomposition is dependency preserving
Example 2

- Schema: \((ABC; F)\), \(F = \{A \rightarrow B, B \rightarrow C, C \rightarrow B\}\)
- Decomposition:
 - \((AC, F_1)\), \(F_1 = \{A \rightarrow C\}\)
 - Note: \(A \rightarrow C \not\in F\), but in \(F^+\)
 - \((BC, F_2)\), \(F_2 = \{B \rightarrow C, C \rightarrow B\}\)

- \(A \rightarrow B \not\in (F_1 \cup F_2)\), but \(A \rightarrow B \in (F_1 \cup F_2)^+\)
- So \(F^+ = (F_1 \cup F_2)^+\) and thus the decomposition is still dependency preserving
Example 3

- **HasAccount** \((\text{AcctNum}, \text{ClientId}, \text{OfficeId})\)

 \[f_1: \text{AcctNum} \rightarrow \text{OfficeId} \]

 \[f_2: \text{ClientId}, \text{OfficeId} \rightarrow \text{AcctNum} \]

- **Decomposition:**

 \[R_1 = (\text{AcctNum}, \text{OfficeId}; \{\text{AcctNum} \rightarrow \text{OfficeId}\}) \]

 \[R_2 = (\text{AcctNum}, \text{ClientId}; \{\}) \]

- **Decomposition is lossless:**

 \[R_1 \cap R_2 = \{\text{AcctNum}\} \text{ and } \text{AcctNum} \rightarrow \text{AcctNum}, \text{OfficeId} = R_1 \]

- **This decomposition is in BCNF** (we showed that before).

- **But it is Not dependency preserving:** \(f_2 \notin (F_1 \cup F_2)^+ \)

- **HasAccount** does not have BCNF decompositions that are both lossless and dependency preserving! (Check, eg, by enumeration of all decompositions)

- **Hence:** BCNF+lossless+dependency preserving decompositions are not always achievable!
BCNF Decomposition Algorithm

Input: \(R = (R; F) \)

\[\text{Decomp} := \{ R \} \]

while there is \(S = (S; F') \in \text{Decomp} \) and \(S \) not in BCNF do

Find \(X \rightarrow Y \in F' \) that violates BCNF // \(X \) isn’t a superkey in \(S \)

Replace \(S \) in \(\text{Decomp} \) with

\[S_1 = (XY; F_1) \] and
\[S_2 = (S - (Y - X); F_2) \]

where \(F_1 = all \text{ FDs of } F' \text{ involving only attributes of } XY \)
and \(F_2 = all \text{ FDs of } F' \text{ involving only attributes of } S - (Y - X) \)

end

return \(\text{Decomp} \)
Simple Example

- **HasAccount**:

 \((ClientId, OfficeId, AcctNum)\)

 Keys: \((ClientId, OfficeId)\) and \((ClientId, AcctNum)\)

 \(ClientId, OfficeId \rightarrow AcctNum\)

 \(AcctNum \rightarrow OfficeId\)

- **Decompose using** \(AcctNum \rightarrow OfficeId\):

 \((OfficeId, AcctNum)\)

 FD: \(AcctNum \rightarrow OfficeId\)

 is in BCNF: \(AcctNum\) is key

 \((ClientId, AcctNum)\)

 Is in BCNF (only trivial FDs)
A Larger Example

Given: $R = (R; F)$ where $R = ABCDEGHK$ and
$$F = \{ ABH \rightarrow C, A \rightarrow DE, BGH \rightarrow K, K \rightarrow ADH, BH \rightarrow GE \}$$

step 1: Find a FD that violates BCNF
- Not $ABH \rightarrow C$ since $(ABH)^+ \text{ includes all attributes}$

 $(BH \text{ is a key (minimal superkey)})$

- $A \rightarrow DE \text{ violates BCNF since } A \text{ is not a superkey } (A^+ = ADE)$

step 2: Split R into:

 $R_1 = (ADE, F_1 = \{ A \rightarrow DE \})$

 $R_2 = (ABC\text{GHK}; F_2 = \{ ABH \rightarrow C, BGH \rightarrow K, K \rightarrow AH, BH \rightarrow G \})$

Note 1: R_1 is in BCNF
Note 2: Decomposition is lossless since A is a key of R_1.
Note 3: FDs $K \rightarrow D$ and $BH \rightarrow E$ are not in F_1 or F_2. But both can be derived from $F_1 \cup F_2$

 $(E.g., K \rightarrow A \text{ and } A \rightarrow D \text{ implies } K \rightarrow D)$

Hence, the decomposition is dependency preserving.

Is R_2 in BCNF?
Given: \(R_2 = (ABCGHK; \{ ABH \rightarrow C, BGH \rightarrow K, K \rightarrow AH, BH \rightarrow G \}) \)

step 1: Find a FD that violates BCNF.

Not \(ABH \rightarrow C \) or \(BGH \rightarrow K \), since \(BH \) is a key of \(R_2 \)

\(K \rightarrow AH \) violates BCNF since \(K \) is not a superkey (\(K^+ = AH \))

step 2: Split \(R_2 \) into:

\(R_{21} = (KAH, F_{21} = \{ K \rightarrow AH \}) \)

\(R_{22} = (BCGK; F_{22} = \{ \}) \)

Note 1: Both \(R_{21} \) and \(R_{22} \) are in BCNF.

Note 2: The decomposition is *lossless* (since \(K \) is a key of \(R_{21} \)).

Note 3: FDs \(ABH \rightarrow C, BGH \rightarrow K, BH \rightarrow G \) are not in \(F_{21} \)

or \(F_{22} \), and they can’t be derived from \(F_1 \cup F_{21} \cup F_{22} \).

Hence the decomposition is *not* dependency-preserving.
Properties of BCNF Decomposition Algorithm

- Let $X \rightarrow Y$ violate BCNF in $R = (R, F)$.
- $R_1 = (R_1, F_1)$ and $R_2 = (R_2, F_2)$ is the resulting decomposition. Then:
 - There are fewer violations of BCNF in R_1 and R_2 than there were in R
 - $X \rightarrow Y$ implies X is a key of R_1
 - Hence $X \rightarrow Y \in F_1$ does not violate BCNF in R_1 and, since $X \rightarrow Y \notin F_2$, does not violate BCNF in R_2 either
 - Suppose f is $X' \rightarrow Y'$ and $f \in F$ doesn’t violate BCNF in R. If $f \in F_1$ or F_2 it does not violate BCNF in R_1 or R_2 either since X' is a superkey of R and hence also of R_1 and R_2.
Properties of BCNF Decomposition Algorithm

- A BCNF decomposition is *not necessarily* dependency preserving.
- But *always* lossless:

 $$R_1 \cap R_2 = X, \quad X \rightarrow Y, \text{ and } R_1 = XY$$

- BCNF + lossless + dependency preserving is sometimes unachievable.
Third Normal Form

- The Third Normal Form is the Compromise
 - Not all redundancy removed, but dependency preserving decompositions are always possible (and, of course, lossless)

- 3NF decomposition is based on a minimal cover
Minimal Cover

• A **minimal cover** of a set of functional dependencies F is a set of dependencies U such that:

 • U is equivalent to F (i.e., $F^+ = U^+$)

 • All FDs in U have the form $X \rightarrow A$ where A is a single attribute

 • It is not possible to make U smaller (while preserving equivalence) by

 • Deleting an FD

 • Deleting an attribute from an FD (either from LHS or RHS)

 • FDs and attributes that can be deleted in this way are called **redundant**
Computing the Minimal Cover

- **Example:** $F = \{ABH \rightarrow CK, A \rightarrow D, C \rightarrow E, BGH \rightarrow L, L \rightarrow AD, E \rightarrow L, BH \rightarrow E\}$

- **step 1:** Make RHS of each FD into a single attribute:
 - $ABH \rightarrow CK$ is replaced by $ABH \rightarrow C$ and $ABH \rightarrow K$
 - $L \rightarrow AD$ is replaced by $L \rightarrow A$ and $L \rightarrow D$

- **step 2:** Eliminate redundant attributes from LHS:
 - **Algorithm:** If FD $XB \rightarrow A \in F$ (where B is a single attribute) and $X \rightarrow A$ is entailed by F, then B was unnecessary.
 - **Example:** Can an attribute be deleted from $ABH \rightarrow C$?
 - Compute AB^+_F, AH^+_F, BH^+_F.
 - Since $C \in (BH)^+_F$, $BH \rightarrow C$ is entailed by F and A is redundant in $ABH \rightarrow C$.

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
Computing the Minimal Cover

- **step 3**: Delete redundant FDs from F
 - *Algorithm*: If $F - \{f\}$ entails f, then f is redundant
 - Alternative: If f is $X \rightarrow A$ then check if $A \in X_{F-\{f\}}^+$
 - Example: $BGH \rightarrow L$ is entailed by $E \rightarrow L$, $BH \rightarrow E$, so it is redundant.
Synthesizing a 3NF Schema

Starting with a schema $R = (R, F)$

- **step 1**: Compute a minimal cover, U, of F (the decomposition is based on U, but since $U^+ = F^+$ the same functional dependencies will hold)

- A minimal cover for
 $$F = \{ABH \rightarrow CK, \ A \rightarrow D, \ C \rightarrow E, \ BGH \rightarrow L, \ L \rightarrow AD, \ E \rightarrow L, \ BH \rightarrow E\}$$

 is

 $$U = \{BH \rightarrow C, \ BH \rightarrow K, \ A \rightarrow D, \ C \rightarrow E, \ L \rightarrow A, \ E \rightarrow L\}$$
Synthesizing a 3NF schema (con’t)

• The minimal cover was:

\[U = \{BH \rightarrow C, BH \rightarrow K, A \rightarrow D, C \rightarrow E, L \rightarrow A, E \rightarrow L\} \]

• step 2: Partition \(U \) into sets \(U_1, U_2, \ldots U_n \) such that the LHS of all elements of \(U_i \) are the same

\[U_1 = \{BH \rightarrow C, BH \rightarrow K\} \]
\[U_2 = \{A \rightarrow D\} \]
\[U_3 = \{C \rightarrow E\} \]
\[U_4 = \{L \rightarrow A\} \]
\[U_5 = \{E \rightarrow L\} \]
Synthesizing a 3NF schema (con’t)

\[U_1 = \{ BH \rightarrow C, BH \rightarrow K \} , \quad U_2 = \{ A \rightarrow D \} , \]
\[U_3 = \{ C \rightarrow E \} , \quad U_4 = \{ L \rightarrow A \} , \quad U_5 = \{ E \rightarrow L \} \]

• **step 3**: For each \(U_i \) form a schema \(R_i = (R_i, U_i) \), where \(R_i \) is the set of all attributes mentioned in \(U_i \)

• Each FD of \(U \) will be in some \(R_i \). Hence the decomposition is dependency preserving:

\[R_1 = (BHCK; BH \rightarrow C, BH \rightarrow K) , \quad R_2 = (AD; A \rightarrow D) , \]
\[R_3 = (CE; C \rightarrow E) , \quad R_4 = (AL; L \rightarrow A) , \]
\[R_5 = (EL; E \rightarrow L) \]

• Unify relations that have the same set of attributes.

• Add to each \(R_i \) all dependencies \(f \) entailed by the original set \(F \) where all the attributes are in \(R_i \)
Synthesizing a 3NF schema (con’t)

- **Step 4**: If no \(R_i \) is a superkey of \(R \), add schema \(R_0 = (R_0, \{\}) \) where \(R_0 \) is a key of \(R \).

 - \(R_0 = (BGH, \{\}) \)

 - \(R_0 \) might be needed when not all attributes are necessarily contained in \(R_1 \cup R_2 \ldots \cup R_n \)

 - A missing attribute, \(A \), must be part of all keys
 (since it’s not in any FD of \(U \), deriving a key constraint from \(U \) involves the augmentation axiom)

 - \(R_0 \) might be needed even if all attributes are accounted for in \(R_1 \cup R_2 \ldots \cup R_n \)

 - Example: \((ABCD; \{A \rightarrow B, C \rightarrow D\})\).

 - Step 3 decomposition: \(R_1 = (AB; \{A \rightarrow B\}) \), \(R_2 = (CD; \{C \rightarrow D\}) \).

 Lossy! Need to add \((AC; \{\})\), for losslessness

- Step 4 guarantees **lossless** decomposition.
BCNF Design Strategy

• The resulting decomposition, $R_0, R_1, \ldots R_n$, is
 • Dependency preserving (since every FD in U is a FD of some schema)
 • Lossless
 • In 3NF

• Strategy for decomposing a relation:
 • Use 3NF decomposition first to get lossless, dependency preserving decomposition
 • If any resulting schema is not in BCNF, split it using the BCNF algorithm (but this may yield a non-dependency preserving result)
Normalization Drawbacks

• By limiting redundancy, normalization helps maintain consistency and saves space

• But performance of querying can suffer because related information that was stored in a single relation is now distributed among several

• Example: A join is required to get the names and grades of all students taking CSE305 in F2016.

SELECT S.Name, T.Grade
FROM Student S, Transcript T
WHERE S.Id = T.StudId AND
 T.CrsCode = 'CSE305' AND T.Semester = 'F2016'
Denormalization

• **Tradeoff**: *Judiciously* introduce redundancy to improve performance of certain queries

• **Example**: Add attribute *Name* to *Transcript*

  ```sql
  SELECT T.Name, T.Grade
  FROM Transcript T
  WHERE T.CrsCode = 'CSE305' AND T.Semester = 'F2016'
  ```

 • Join is avoided
 • If queries are asked more frequently than *Transcript* is modified, added redundancy might improve average performance
 • But, *Transcript* is no longer in BCNF since key is *(StudId, CrsCode, Semester)* and *StudId* → *Name*
Fourth Normal Form

- Relation has redundant data
- Yet it is in BCNF (since there are no non-trivial FDs)
- Redundancy is due to set valued attributes (in the E-R sense)
Multi-Valued Dependency

- **Problem**: multi-valued (or binary join) dependency

- **Definition**: If every instance of schema R can be (losslessly) decomposed using attribute sets (X,Y) such that:

$$ r = \pi_X(r) \bowtie \pi_Y(r) $$

then a *multi-valued dependency*

$$ R = \pi_X(R) \bowtie \pi_Y(R) $$

holds in r

Ex: $\text{Person} = \pi_{SSN,PhoneN}(\text{Person}) \bowtie \pi_{SSN,ChildSSN}(\text{Person})$
Fourth Normal Form (4NF)

- A schema is in \textit{fourth normal form} (4NF) if for every multi-valued dependency

\[R = X \bowtie Y \]

in that schema, either:
- \(X \subseteq Y \) or \(Y \subseteq X \) (trivial case); or
- \(X \cap Y \) is a superkey of \(R \) (i.e., \(X \cap Y \rightarrow R \)).
Fourth Normal Form (Cont’d)

• **Intuition**: if \(X \cap Y \rightarrow R \), there is a unique row in relation \(r \) for each value of \(X \cap Y \) (hence no redundancy)
 - Ex: SSN does not uniquely determine PhoneN or ChildSSN, thus Person is not in 4NF.

• **Solution**: Decompose \(R \) into \(X \) and \(Y \)
 - Decomposition is lossless – but not necessarily dependency preserving (since 4NF implies BCNF – next)
4NF Implies BCNF

• Suppose \(R \) is in 4NF and \(X \rightarrow Y \) is an FD.

• \(R_1 = XY, \ R_2 = R - Y \) is a lossless decomposition of \(R \)

• Thus \(R \) has the multi-valued dependency:

\[
R = R_1 \Join \ R_2
\]

– Since \(R \) is in 4NF, one of the following must hold:
 – \(XY \subseteq R - Y \) (an impossibility)
 – \(R - Y \subseteq XY \) (i.e., \(R = XY \) and \(X \) is a superkey) or
 – \(XY \cap R - Y \) (\(= X \)) is a superkey

Hence \(X \rightarrow Y \) satisfies BCNF condition