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Limitations of E-R Designs
Provides a set of guidelines, does not result in a 

unique database schema

Does not provide a way of evaluating alternative 

schemas

Normalization theory provides a mechanism for 

analyzing and refining the schema produced by 

an E-R design
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Redundancy
Dependencies between attributes cause 

redundancy

Ex.  All addresses in the same town have the 
same zip code

SSN Name Town Zip

1234     Joe       Stony Brook     11790

4321     Mary    Stony Brook     11790

5454     Tom     Stony Brook     11790

………………….

Redundancy
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SSN      Name          Address          Hobby

1111    Joe        123 Main     biking

1111    Joe        123 Main     hiking

…………….

SSN     Name          Address              Hobby

1111    Joe        123 Main    {biking, hiking}

In the ER Model:

But, they are represented as multiple tuples in the Relational Model:

Redundancy
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Set attributes can also cause redundancy.

Redundancy
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Anomalies
 Redundancy leads to anomalies:

Update anomaly: A change in Address must be 
made in several places in the example with hobbies

Deletion anomaly: Suppose a person gives up all 
hobbies.  Do we:
 Set Hobby attribute to null?  No, since Hobby is part of key

 Delete the entire row?  No, since we lose other 
information in the row. 

 So, we cannot represent this person.

Insertion anomaly: Hobby value must be supplied 
for any inserted row since Hobby is part of key.
 So, we cannot inset a person without hobbies.5
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Decomposition
 Solution for eliminating redundencies: we use 

two relations to store Person information

Person1(SSN, Name, Address)

Hobbies(SSN, Hobby)
 The decomposition is more general: people 

without hobbies can now be described 

 No update anomalies:

Name and address stored once

A hobby  can  be separately supplied or 
deleted
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Normalization Theory
The result of E-R analysis need further 

refinement!

Appropriate decomposition can solve 
problems!

The underlying theory is referred to as 
normalization theory and is based on functional 
dependencies (and other kinds, like 
multivalued dependencies)
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Functional Dependencies
 Definition: A functional dependency (FD) on a relation 

schema R is a constraint X Y, where X and Y are 

subsets of attributes of R.

 Definition: An FD X Y is satisfied in an instance r

of  R if for every pair of tuples, t and s:  if t and s agree 

on all attributes in X then they must agree on all 

attributes in Y

 Key constraint is a special kind of functional dependency:  all 

attributes of relation occur on the right-hand side of the FD:

 SSN  SSN, Name, Address
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 Address  ZipCode

 Stony Brook’s ZIP is 11733

 ArtistName  BirthYear

 Picasso was born in 1881

 Autobrand Manufacturer, Engine type

 Pontiac is built by General Motors with gasoline engine

 Volt is built by Chevy with electric engine

 Author, Title  PublicationDate

 Shakespeare’s Hamlet published in 1600

9

Functional Dependencies
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Functional Dependency Running Example

Consider a brokerage firm that allows multiple 

clients to share an account, but each account is 

managed from a single office and a client can have 

no more than one account in an office.

HasAccount(AcctNum, ClientId, OfficeId)

 keys  are: (AcctNum, ClientId), (ClientId, OfficeId)

 AcctNum, ClientId AcctNum, ClientId, OfficeId

 ClientId, OfficeId  AcctNum, ClientId, OfficeId

 AcctNum OfficeId

 Thus, attribute values need not depend only on key values
10
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Entailment, Closure, Equivalence

 Definition: If F is a set of FDs on schema R and f is 

another FD on R, then F entails f if every instance r of 

R that satisfies every FD in F also satisfies f

 Example: F = {A  B, B C} and  f  is A  C

 If Town Zip and Zip  AreaCode thenTown  AreaCode

 Definition: The closure of F, denoted F+, is the set of 

all FDs entailed by F

 Definition: F and G are equivalent if F entails G and G

entails F
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 Satisfaction, entailment, and equivalence are 
semantic concepts – defined in terms of the actual 
relations in the “real world.”  
They define what these notions are, not how to 

compute them

Solution:  find algorithmic, syntactic ways to 
compute these notions

 Important:  The syntactic solution must be “correct” 
with respect to the semantic definitions

Correctness has two aspects: soundness and 
completeness

12
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Armstrong’s Axioms for FDs

Reflexivity:  If Y  X then X Y  (trivial FD)

Name, Address Name

Augmentation:  If X Y  then XZYZ

If Town  Zip then Town, Name  Zip, Name

Transitivity: If X Y  and Y  Z then  X  Z

The Armstrong’s Axioms are the syntactic way of 
computing and testing the various properties of 
FDs.
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Soundness
 Armstrong’s axioms are sound: If an FD  f: XY can be 

derived from a set of FDs  F using the axioms, then  f

holds in every relation that satisfies every FD in F.

 Example: Given  XY and  X Z then

 Thus, XY Z is satisfied in every relation where both XY 

and XZ are satisfied

 We have derived the union rule for FDs: we can take the union of the 

RHSs of FDs that have the same LHS

X  XY      Augmentation by X

YX  YZ    Augmentation by Y

X  YZ      Transitivity
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Completeness
Armstrong’s Axioms are complete: If F entails f , 

then f can be derived from F using the axioms

A consequence of completeness is the following 

(naïve) algorithm to determining if F entails f: 

Algorithm: Use the axioms in all possible ways 

to generate F+ (the closure of F, i.e., the set of 

possible FD’s is finite so this can be done) and 

see if  f  is in F+
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Correctness
The notions of soundness and completeness link 

the syntax (Armstrong’s axioms) with 

semantics (the definitions in terms of 

relational instances)

This is a precise way of saying that the 

algorithm for entailment based on the 

axioms is “correct” with respect to the 

definitions

16



(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Generating F+

Thus, AB BD, AB  BCD, AB  BCDE, and AB  CDE 

are all elements of F+ (part-of, there are other FDs: AC CD, 

AE ED, etc.)

Very costly procedure for proving entailment.

F

ABC

AB BCD        

A D        AB BD                                 AB BCDE      AB CDE

D E           BCD  BCDE

union
aug

trans

aug

decomp
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Attribute Closure
 Calculating attribute closure leads to a more efficient way 

of checking entailment

 The attribute closure of a set of attributes,  X, with respect 
to a set of functional dependencies, F, (denoted X+

F) is 
the set of all attributes,  A, such that X  A is entailed by 
F

X +F1 is not necessarily the same as X +F2 if F1  F2

Attribute closure and entailment: 
Algorithm: Given a set of FDs, F, F entails X Y if 

and only if  X+
F  Y
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Computation of the Attribute Closure  X+
F

closure := X;               // since X  X+
F

repeat

old := closure;

if there is an FD  Z  V in F such that  

Z  closure and V ∩ closure ≠ Ø

then closure := closure ∪ V

until old = closure

Entailment algorithm:

If T  X+
F then X  T is entailed by F
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Example: Computation of Attribute Closure

AB  C    (a)         

A  D      (b)

D  E      (c)

AC  B    (d)

Example: Compute the attribute closure of AB with 

respect to the set of FDs F:

Initially: closure = {AB}

Using (a): closure = {ABC}

Using (b): closure = {ABCD}

Using (c): closure = {ABCDE}

Solution:
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Computing Attribute Closure Examples 

F: AB  C            

A  D

D  E

AC  B

X                 XF
+

A            {A, D, E}

AB         {A, B, C, D, E}

(Hence AB is a key)

B            {B}

D            {D, E}

Is  AB  E entailed by F?    Yes

Is  D C  entailed by F?      No

Result:  XF
+ allows us to determine FDs  

of the form X  A entailed by F
21
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Normal Forms
 The normal forms are conditions on schemas that guarantees 

certain properties relating to redundancy and update anomalies

 First normal form (1NF) is the same as the definition of relational 
model (relations = sets of tuples; each tuple = sequence of 
atomic values)

 Second normal form (2NF):
 no non prime attribute is dependent on any proper subset of any candidate key of the 

table (where a non prime attribute of a table is an attribute that is not a part of any 
candidate key of the table): every non-prime attribute is either dependent on the whole 
of a candidate key, or on another non prime attribute.

 The two commonly used normal forms are third normal form
(3NF) and Boyce-Codd normal form (BCNF)

22
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BCNF
 Definition: A relation schema R is in BCNF if for every FD XY 

associated with R either

Y  X (i.e., the FD is trivial) or

X is a superkey of R
 Remember: a superkey is a combination of attributes that can be used 

to uniquely identify a database record. A table might have many 
superkeys.

 Remember: a candidate key is a special subset of superkeys that do 
not have any extraneous information in them: it is a minimal
superkey.

Example:  Person1(SSN, Name, Address)
The only FD is: SSN Name, Address
 Since SSN is a key, Person1 is in BCNF

23
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(non) BCNF Examples
Person(SSN, Name, Address, Hobby)

The FD:  SSN  Name, Address does not satisfy 
requirements of BCNF 
since the (SSN) is not a key 

 the key is (SSN, Hobby)

HasAccount(AcctNum, ClientId, OfficeId)

The FD AcctNum OfficeId does not satisfy 
BCNF requirements 
since keys are (ClientId, OfficeId) and (AcctNum, 

ClientId); not AcctNum.
24
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What Redundancy?
 Suppose R has a FD A  B, and A is not a superkey.  

 If an instance has 2 rows with same value in A, they must also have 
same value in B (=> redundancy, because the B-value repeats 
twice):

 If A is a superkey, there cannot be two rows with same value of A

 Hence, BCNF eliminates redundancy

SSN  Name, Address

SSN     Name     Address       Hobby

1111   Joe      123 Main   stamps

1111   Joe      123 Main   coins

redundancy
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Third Normal Form (3NF)
 A relational schema R is in 3NF if for every FD  X Y  

associated with R either:

Y  X (i.e., the FD is trivial); or

X is a superkey of R; OR

Every AY is part of some key of R
 3NF is weaker than BCNF (every schema that is in BCNF 

is also in 3NF), but not vice-versa.

BCNF 

conditions

26
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3NF Example
HasAccount (AcctNum, ClientId, OfficeId) is in 3NF:

ClientId, OfficeId  AcctNum

 OK since LHS is a superkey

AcctNum  OfficeId

 OK since OfficeId (RHS) is part of a key (ClientId, OfficeId)

HasAccount is in 3NF but it might still contain 

redundant information due to AcctNum  OfficeId

(which is not allowed by BCNF)

27
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3NF (Non)-Example

Person (SSN, Name, Address, Hobby):

(SSN, Hobby) is the only key

 SSN Name violates 3NF 

conditions since:

it is not a trivial FD,

SSN (LHS) is not a superkey, and 

Name (RHS) is not part of a key.
28
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Decompositions

Goal:  Eliminate redundancy by 

decomposing a relation into several 

relations in a higher normal form

Decomposition MUST be lossless: it 
must be possible to reconstruct the 

original relation from the relations in 

the decomposition.

29
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Decomposition
 Consider a relation schema: R = (R, F)

 R is set a of attributes

 F is a set of functional dependencies over R
 Each key is described by a FD

 The decomposition of the (relation) schema R is a collection 
of (relation) schemas Ri = (Ri, Fi) where
 R = i Ri for all i (no new attributes)

 Fi is a set of functional dependences involving only attributes 
of  Ri

 F entails Fi for all i (no new FDs)

 The decomposition of an instance, r, of R is a set of 
relations ri = Ri

(r) for all i
31
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Example Decomposition
Schema (R, F) where

R = {SSN, Name, Address, Hobby}

F = {SSN  Name, Address}

can be decomposed into:

R1 = {SSN, Name, Address}

F1 = {SSN  Name, Address}

and 

R2 = {SSN, Hobby}

F2 = { }
32
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A decomposition should not lose information

A decomposition (R1,…,Rn) of a schema, R, 
is lossless if every valid instance, r, of R can 
be reconstructed from its components:

where each  ri = Ri(r)

Lossless Schema Decomposition

r = r1 r2 rn…

33



(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Lossy Decomposition

r  r1 r2 ... rn

SSN     Name       Address SSN    Name Name      Address

1111  Joe        1 Pine         1111 Joe          Joe        1 Pine

2222  Alice     2 Oak         2222  Alice      Alice     2 Oak

3333  Alice     3 Pine         3333 Alice      Alice     3 Pine

r  r1 r2 rn...

r1 r2r 

The following is always the case:

But the following is not always true:

Example:

The tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) are  in the join, 

but not in the original
34
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Lossy Decompositions: 

What is Actually Lost?
 In the previous example, the tuples (2222, Alice, 3 

Pine) and (3333, Alice, 2 Oak) were gained, not lost!  

 Why do we say that the decomposition was lossy?

What was lost is information:
 That  2222 lives at  2 Oak:  

In the decomposition, 2222 can live at either 2 Oak or 3 Pine

 That  3333 lives at  3 Pine:  

In the decomposition, 3333 can live at either 2 Oak or 3 Pine

35
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Testing for Losslessness

A (binary) decomposition of  R = (R, F)

into R1 = (R1, F1) and R2 = (R2, F2) is 

lossless if and only if :

either the FD

(R1  R2 ) R1 is in  F+

or the FD

(R1  R2 ) R2 is in  F+

36
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Testing for Losslessness Example
Consider the schema (R, F) where

R = {SSN, Name, Address, Hobby}

F = {SSN  Name, Address}

It can be decomposed into

R1 = {SSN, Name, Address}

F1 = {SSN  Name, Address} 

and 

R2 = {SSN, Hobby}

F2 = { }

R1  R2 = SSN  and 

SSN  {SSN, Name, Address} = R1

=> the decomposition is lossless!37
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Intuition Behind the Test for 
Losslessness
 Suppose R1  R2  R2 .  

 Then a row of r1 can combine with exactly one row of 
r2  in the natural join (since in  r2 a particular set of 
values for the attributes in R1  R2 defines a unique 
row):

 The join will have exactly the number of tuples in r1

and r

R1  R2 R1  R2

………….   a               a   ………...

…………    a               b   ………….

…………    b               c   ………….

…………    c

r1 r2

38
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If R1  R2  R2 then 

card (r1 

Proof of Lossless Condition

• r  r1 r2  – this is true for any decomposition by 

definition of a decomposition

r2) = card (r1)  

But card (r)  card (r1)  (since r1  is a projection of  r)

and therefore card (r)  card (r1         r2)

From the join (Cartesian product) we have:

card (r)  ≤ card (r1         r2)

Hence r = r1 r2 must be true

• r  r1 r2

(since each row of   r1 joins with exactly one row of  r2)

39
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Dependency Preservation
 Consider a decomposition of R = (R, F) into R1 = (R1, F1) and 

R2 = (R2, F2)

 An FD XY of F+ is in Fi  iff X Y  Ri (all the attributes of 
the functional dependency are in Ri)

 An FD,  f F+ may be in neither F1, nor F2, nor even (F1F2)
+

 Checking that  f is true in r1 or r2 is (relatively) easy

 Checking  f in  r1 ⋈ r2 is harder – requires a join

 Ideally:  want to check FDs locally, in r1 and r2, and have a guarantee 
that every fF holds in r1 ⋈ r2

 The decomposition is dependency preserving iff the FD 
sets F and F1 F2 are equivalent:  F+ = (F1  F2)

+

 Then checking all FDs in F, as r1 and r2 are updated, can  be done by 
checking F1 in r1 and F2 in r2

40
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If  f is an FD in F, but f is not in F1  F2,

there are two possibilities:

f  (F1  F2)
+  

If the constraints in  F1 and F2 are maintained,  

f will be maintained automatically.

f (F1  F2)
+  

f can be checked only by first taking the join 

of r1 and r2.

41
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Example 1
Schema (R, F) where

R = {SSN, Name, Address, Hobby}

F = {SSN  Name, Address}

can be decomposed into

R1 = {SSN, Name, Address}

F1 = {SSN  Name, Address}

and 

R2 = {SSN, Hobby}

F2 = { }

Since F = F1  F2 the decomposition is

dependency preserving
42
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 Schema: (ABC;  F) ,  F = {A  B, B C, C B}

Decomposition:

(AC, F1),  F1 = {AC}
Note:  AC  F, but in F+

(BC, F2),  F2 = {B C, C B}

A  B  (F1   F2),  but  A  B  (F1   F2)
+

So  F+ = (F1   F2)
+  and thus the 

decomposition is still dependency preserving

43
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Example 3

 HasAccount (AcctNum, ClientId, OfficeId)
f1: AcctNum OfficeId
f2: ClientId, OfficeId  AcctNum

 Decomposition:
R1 = (AcctNum, OfficeId;  {AcctNum OfficeId})

R2 = (AcctNum, ClientId;   {})

 Decomposition is lossless: 
R1  R2= {AcctNum} and AcctNum AcctNum,OfficeId =R1

 This decomposition is in BCNF (we showed that before).

 But it is Not dependency preserving:  f2  (F1  F2)
+

 HasAccount does not have BCNF decompositions that are both lossless and 
dependency preserving! (Check, eg, by enumeration of all decompositions)

 Hence:    BCNF+lossless+dependency preserving  decompositions are not 
always achievable!

44



(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

BCNF Decomposition Algorithm

Input:  R = (R; F)

Decomp := {R}

while there is S = (S; F’)  Decomp and S not in BCNF do 

Find X  Y  F’ that violates BCNF // X isn’t a superkey in S

Replace S in Decomp with  

S1 = (XY; F1) and 

S2 = (S - (Y - X); F2)

where F1 = all FDs of F’ involving only attributes of  XY 

and F2 = all FDs of F’ involving only attributes of  S - (Y - X)

end

return  Decomp
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Simple Example

 HasAccount :

(ClientId,  OfficeId,  AcctNum)

Keys: (ClientId,OfficeId) and (ClientId,AcctNum)

(ClientId ,  AcctNum)

Is in BCNF (only trivial FDs)

• Decompose using  AcctNum  OfficeId :

(OfficeId,  AcctNum)

FD: AcctNum  OfficeId

is in BCNF: AcctNum is key

ClientId,OfficeId AcctNum

AcctNum  OfficeId

46
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A Larger Example
Given: R = (R; F) where R = ABCDEGHK and 

F = {ABH C, A DE, BGH K, K ADH, BH GE}

step 1:  Find a FD that violates BCNF

Not ABH  C since (ABH)+ includes all attributes 

(BH is a key (minimal superkey))

A  DE violates BCNF since A is not a superkey (A+ =ADE)

step 2:  Split R into: 

R1 = (ADE, F1={A DE })

R2 = (ABCGHK; F1={ABHC, BGHK, KAH, BHG})

Note 1:  R1 is in BCNF

Note 2:  Decomposition is lossless since A is a key of R1.

Note 3:  FDs K  D and BH  E are not in F1 or F2. But

both can be derived from F1 F2

(E.g., K A  and A D implies K D)

Hence, the decomposition is dependency preserving.

Is R2 in BCNF?47
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Given: R2 = (ABCGHK; {ABHC, BGHK, KAH, BHG})

step 1:  Find a FD that violates BCNF.

Not ABH  C or BGH  K, since BH is a key of R2

K AH  violates BCNF since K is not a superkey (K+ =AH)

step 2:  Split R2 into: 

R21 = (KAH, F21={K  AH})

R22 = (BCGK; F22={})

Note 1: Both R21 and R22 are in BCNF.

Note 2: The decomposition is lossless (since K is a key of R21)

Note 3: FDs  ABH C, BGH K, BH G  are not in F21

or  F22 , and they can’t be derived from F1  F21  F22 .

Hence the decomposition is not dependency-preserving

48

A Larger Example (con’t)
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 Let X Y violate BCNF in R = (R,F).

 R1 = (R1,F1) and R2 = (R2,F2) is the resulting 

decomposition. Then:

There are fewer violations of BCNF in R1 and R2 than there 

were in R

 X Y  implies X is a key of R1

 Hence X Y  F1 does not violate BCNF in R1 and, since XYF2, 

does not violate BCNF in R2 either

 Suppose f  is X’Y’ and  f  F doesn’t violate BCNF in R.

If  f  F1 or F2 it does not violate BCNF in R1 or R2 either 

since X’ is a superkey of R and hence also of R1 and R2 .
49

Properties of BCNF Decomposition Algorithm



(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Properties of BCNF Decomposition Algorithm

A BCNF decomposition is not necessarily

dependency preserving 

But always lossless:

since R1  R2 = X,    X Y,  and R1 = XY

BCNF+lossless+dependency preserving is 

sometimes unachievable

50
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Third Normal Form
The Third Normal Form is the Compromise  

=  Not all redundancy removed, but 

dependency preserving decompositions are 

always possible (and, of course, lossless)

3NF decomposition is based on a minimal 

cover

51
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Minimal Cover
A minimal cover of a set of functional dependencies 

F is a set of dependencies U such that:

U is equivalent to F (i.e., F+ = U+)

All FDs in U have the form X  A where A is a single 

attribute

 It is not possible to make U smaller (while preserving 

equivalence) by

 Deleting an FD

 Deleting an attribute from an FD  (either from LHS or RHS)

FDs and attributes that can be deleted in this way are 

called redundant
52
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Computing the Minimal Cover
 Example: F = {ABH  CK, A  D, C  E,

BGH  L, L  AD, E  L, BH  E}

 step 1: Make RHS of each FD into a single attribute:

 ABH CK  is replaced by ABH C and ABH K

 L  AD  is replaced by L  A and L  D 

 step 2: Eliminate redundant attributes from LHS:  
 Algorithm: If FD XB  A  F (where B is a single attribute) and X  A is

entailed by F, then B was unnecessary 

 Example: Can an attribute be deleted from ABH  C ?  

 Compute AB+
F, AH+

F, BH+
F. 

 Since C  (BH)+
F , BH  C  is entailed by F and A is 

redundant in ABH  C.

53
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 step 3: Delete redundant FDs from F
Algorithm:  If F – {f} entails  f, then  f  is redundant
 Alternative: If f  is X  A then check if A  X+

F-{f}

Example: BGH  L is entailed by E  L,  BH  E,
so it is redundant.

54

Computing the Minimal Cover
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Synthesizing a 3NF Schema

 step 1: Compute a minimal cover, U, of F (the decomposition is 

based on U, but since U+ = F+ the same functional dependencies 

will hold)

 A minimal cover for

F={ABHCK,  AD,  CE,  BGHL,  LAD,  E L,  BH  E} 

is

U={BHC,  BHK, AD,  CE,  LA,  EL}

Starting with a schema R = (R, F)
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Synthesizing a 3NF schema (con’t)

 The minimal cover was:

U={BHC,  BHK, AD,  CE,  LA,  EL}

 step 2: Partition U into sets U1, U2, … Un such that 

the LHS of all elements of Ui are the same

U1 = {BH C, BH K}

U2 = {A D}

U3 = {C E}

U4 = {L A}

U5 = {E L}
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Synthesizing a 3NF schema (con’t)
U1 = {BH C, BH K}, U2 = {A D}, 

U3 = {C E}, U4 = {L A}, U5 = {E L}

 step 3: For each Ui form a schema Ri = (Ri, Ui), where Ri  is the set of all 

attributes mentioned in Ui

 Each FD of U will be in some Ri.  Hence the decomposition is 

dependency preserving:
R1 = (BHCK;  BHC, BH K),  R2 = (AD;  AD),              

R3 = (CE;  C  E),  R4 = (AL;  LA),                      

R5 = (EL;  E  L)

 Unify relations that have the same set of attributes.

 Add to each Ri all dependencies f entailed by the original set F where all the attributes 

are in Ri
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Synthesizing a 3NF schema (con’t)

 step 4: If no Ri is a superkey of R, add schema R0 = (R0,{}) 
where R0 is a key of R.
 R0 = (BGH, {})

 R0  might be needed when not all attributes are necessarily contained in 
R1R2…Rn

 A missing attribute, A, must be part of all keys 

(since it’s not in any FD of U, deriving a key constraint from U involves the 
augmentation axiom)

 R0  might be needed even if all attributes are accounted for in R1R2 …Rn

 Example:    (ABCD; {AB, CD}).  

Step 3 decomposition: R1 = (AB; {AB}),  R2 = (CD; {CD}).  

Lossy! Need to add (AC; { }), for losslessness

 Step 4 guarantees lossless decomposition.
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BCNF Design Strategy

The resulting decomposition, R0, R1, … Rn , is 
Dependency preserving (since every FD in U is a FD 

of some schema)

Lossless 

 In 3NF 

Strategy for decomposing a relation:
Use 3NF decomposition first to get lossless, 

dependency preserving decomposition

 If any resulting schema is not in BCNF, split it using 
the BCNF algorithm (but this may yield a non-
dependency preserving result)
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Normalization Drawbacks

 By limiting redundancy, normalization  helps maintain 
consistency and saves space

 But performance of querying can suffer because related 
information that was stored in a single relation is now 
distributed among several

 Example:  A join is required to get the names and 
grades of all students taking CSE305 in F2016.

SELECT S.Name, T.Grade

FROM Student S, Transcript T

WHERE S.Id = T.StudId AND

T.CrsCode = ‘CSE305’  AND T.Semester = ‘F2016’ 
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Denormalization

 Tradeoff:  Judiciously introduce redundancy to improve 
performance of certain queries

 Example:  Add attribute Name to Transcript

 Join is avoided
 If queries are asked more frequently than Transcript is modified, 

added redundancy might  improve average performance
 But, Transcript’ is no longer in BCNF since key is (StudId, 

CrsCode, Semester) and StudId Name

SELECT T.Name, T.Grade

FROM  Transcript’ T

WHERE  T.CrsCode = ‘CSE305’  AND T.Semester = ‘F2016’
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Fourth Normal Form

 Relation has redundant data 

 Yet it is in BCNF (since there are no non-trivial FDs)

 Redundancy is due to set valued attributes (in the E-R sense)

SSN            PhoneN         ChildSSN

111111       123-4444        222222

111111       123-4444        333333

111111       321-5555        222222

111111       321-5555        333333

222222       987-6666        444444

222222       777-7777        444444

222222       987-6666        555555

222222       777-7777        555555

redundancy
Person
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Multi-Valued Dependency

 Problem: multi-valued (or binary join) dependency

 Definition: If every instance of schema R can be (losslessly) 

decomposed using attribute sets (X, Y) such that:

r =  X (r)           Y (r)

then a multi-valued dependency

R =  X (R)          Y (R)

holds in r

Ex: Person=SSN,PhoneN (Person)            SSN,ChildSSN (Person)
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Fourth Normal Form (4NF)

A schema is in fourth normal form (4NF) if for 

every multi-valued dependency

R = X       Y

in that schema, either:

- X  Y or Y  X  (trivial case); or

- X  Y is a superkey of R  (i.e., X  Y R )
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Fourth Normal Form (Cont’d)

 Intuition: if X Y R, there is a unique row in 
relation r for each value of X Y (hence no 
redundancy)

Ex: SSN does not uniquely determine PhoneN or 
ChildSSN, thus Person is not in 4NF.

 Solution: Decompose R into X and Y

Decomposition is lossless – but not necessarily 
dependency preserving (since 4NF implies 
BCNF – next)
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4NF Implies BCNF

 Suppose R is in 4NF and X Y is an FD.

R1 = XY,  R2 = R –Y is a lossless decomposition of  R

Thus R has the multi-valued dependency:

R = R1          R2

– Since R is in 4NF, one of the following must hold :

– XY R – Y    (an impossibility)

– R – Y  XY  (i.e.,  R = XY and X is a superkey) or

– XY  R – Y   (= X)   is a superkey

Hence X  Y satisfies BCNF condition
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