
CSE 305 – Principles of Database Systems

Paul Fodor

Stony Brook University

http://www.cs.stonybrook.edu/~cse305

Relational Algebra and SQL

http://www.cs.stonybrook.edu/~cse305

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Relational Query Languages
Now that we know how to create a

database, the next step is to learn how to

query it to retrieve the information needed

for some particular application.

A database query language is a special-

purpose programming language designed

for retrieving information stored in a

database

2

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Relational Query Languages
 Languages for describing queries on a relational

databases:
 Structured Query Language (SQL)

 Predominant application-level query language

 Declarative

Relational Algebra

 Intermediate language used within DBMS

 Procedural

 the query optimizer converts the query algebraic
expression into an equivalent faster query execution
plan

3

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

What is an Algebra?
 A language based on operators and a domain of values

 Operators map values taken from the domain into
other domain values
Hence, an expression involving operators and

arguments produces a value in the domain

 When the domain is a set of all relations (and the
operators are as described later), we get the relational
algebra

 We refer to the expression as a query and the value
produced as the query result

4

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Relational Algebra
 Domain: set of relations

 Basic operators:

 select

project

union

 set difference

Cartesian product

 Derived operators:

 set intersection

division

 join 5

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Relational Algebra
 Procedural: Relational expression specifies query by

describing an algorithm (the sequence in which

operators are applied) for determining the result of an

expression.

6

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

The Role of Relational Algebra in a DBMS

7

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Select Operator
 Produces a table containing subset of rows of argument

table satisfying a condition

 condition (relation)
 Example:

 Person Hobby=‘stamps’(Person)

1123 John 123 Main stamps

1123 John 123 Main coins

5556 Mary 7 Lake Dr hiking

9876 Bart 5 Pine St stamps

1123 John 123 Main stamps

9876 Bart 5 Pine St stamps

 Id Name Address Hobby Id Name Address Hobby

8

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Selection Condition
Operators: <, , , >, =, 

 Simple selection condition:

<attribute> operator <constant>

<attribute> operator <attribute>

And Boolean expressions:

<condition> AND <condition>

<condition> OR <condition>

 NOT <condition>

9

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Selection Condition - Examples

 Id>3000 OR Hobby=‘hiking’ (Person)

 Id>3000 AND Id <3999 (Person)

 NOT(Hobby=‘hiking’) (Person)

 Hobby‘hiking’ (Person)

10

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Project Operator
 Produces table containing subset of columns of

argument table

 attribute list(relation)
 Example:

 Person Name,Hobby(Person)

 1123 John 123 Main stamps

1123 John 123 Main coins

5556 Mary 7 Lake Dr hiking

9876 Bart 5 Pine St stamps

John stamps

John coins

Mary hiking

Bart stamps

 Id Name Address Hobby Name Hobby

11

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Project Operator

1123 John 123 Main stamps

1123 John 123 Main coins

5556 Mary 7 Lake Dr hiking

9876 Bart 5 Pine St stamps

John 123 Main

Mary 7 Lake Dr

Bart 5 Pine St

The result is a relation/table (no duplicates by definition),

so the result can have fewer tuples than the original!

 Id Name Address Hobby Name Address

• Relational Algebra: No Duplicates!

 Person Name,Address(Person)

12

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Relational Algebra Expressions

1123 John 123 Main stamps

1123 John 123 Main coins

5556 Mary 7 Lake Dr hiking

9876 Bart 5 Pine St stamps

1123 John

9876 Bart

Id Name Address Hobby Id Name

Person

Result

 Id, Name ( Hobby=’stamps’ OR Hobby=’coins’ (Person))

13

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Set Operators
A Relation is a set of tuples, so set operations

should apply: , ,  (set difference)

The result of combining two relations with a set

operator is also a relation => all its elements

must be tuples having the same structure

Hence, scope of set operations limited to union

compatible relations

14

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Union Compatible Relations
Two relations are union compatible if

Both have same number of columns

Names of attributes are the same in both

Attributes with the same name in both

relations have the same domain

Union compatible relations can be combined

using union, intersection, and set difference

15

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Union Example
Tables:

 Person (SSN, Name, Address, Hobby)

 Professor (Id, Name, Office, Phone)

are not union compatible.

But

  Name (Person) and  Name (Professor)

are union compatible so

  Name (Person) -  Name (Professor)

makes sense.

16

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Cartesian Product

 If R and S are two relations, R  S is the set of all
concatenated tuples <x,y>, where x is a tuple in R and y
is a tuple in S
 R and S need not be union compatible

 R  S is expensive to compute:
 Quadratic in the number of rows

 A B C D A B C D

 x1 x2 y1 y2 x1 x2 y1 y2

 x3 x4 y3 y4 x1 x2 y3 y4

 x3 x4 y1 y2

 R S x3 x4 y3 y4

 R S
17

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Renaming
 The result of expression evaluation is a relation

 The attributes of relation must have distinct names.

This is not guaranteed with Cartesian product

 e.g., suppose in previous example a and c have the same

name

 Renaming operator tidies this up. To assign the names A1,

A2,… An to the attributes of the n column relation

produced by expression expr use

 expr [A1, A2, … An]

18

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Renaming Example

This is a relation with 4 attributes:

 StudId, CrsCode1, ProfId, CrsCode2

Transcript (StudId, CrsCode, Semester, Grade)

Teaching (ProfId, CrsCode, Semester)

 StudId, CrsCode (Transcript)[StudId, CrsCode1]

   ProfId, CrsCode(Teaching) [ProfId, CrsCode2]

19

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 Derived Operation: Join
A (general or theta) join of R and S is the expression

 R join-condition S

where join-condition is a conjunction of terms:

 Ai operator Bi

in which Ai is an attribute of R; Bi is an attribute of S;

and operator is one of =, <, >,  , .

The meaning is:

  join-condition´ (R  S)

where join-condition and join-condition´ are the same,

except for possible renamings of attributes (next)

20

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Join and Renaming
 Problem: R and S might have attributes with the

same name – in which case the Cartesian product is
not defined

 Solutions:
1. Rename attributes prior to forming the product and use

new names in join-condition´.

2. Qualify common attribute names with relation names
(thereby disambiguating the names). For instance:
Transcript.CrsCode or Teaching.CrsCode

– This solution is nice, but doesn’t always work: consider

R join_condition R

In R.A, how do we know which R is meant?

21

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Theta Join – Example
 Employee(Name,Id,MngrId,Salary)

 Manager(Name,Id,Salary)

Output the names of all employees that earn

more than their managers.

Employee.Name (Employee MngrId=Id AND Salary>Salary Manager)

The join yields a table with attributes:

 Employee.Name, Employee.Id, Employee.Salary, MngrId

 Manager.Name, Manager.Id, Manager.Salary

22

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Equijoin Join - Example

 Name,CrsCode(Student
Id=StudId Grade=‘A’ (Transcript))

Id Name Addr Status

111 John ….. …..

222 Mary ….. …..

333 Bill ….. …..

444 Joe ….. …..

StudId CrsCode Sem Grade

 111 CSE305 S00 B

 222 CSE306 S99 A

 333 CSE304 F99 A

Mary CSE306

Bill CSE304

The equijoin is used very

frequently since it combines

related data in different relations.

Student Transcript

Equijoin: Join condition is a conjunction of equalities.

23

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Natural Join
 Special case of equijoin:

 join condition equates all and only those attributes with the same

name (condition doesn’t have to be explicitly stated)

 duplicate columns eliminated from the result

Transcript (StudId, CrsCode, Sem, Grade)

Teaching (ProfId, CrsCode, Sem)

Transcript Teaching =
StudId, Transcript.CrsCode, Transcript.Sem, Grade, ProfId

 (Transcript CrsCode=CrsCode AND Sem=Sem Teaching)

 [StudId, CrsCode, Sem, Grade, ProfId]

24

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 More generally:

R S = attr-list (join-cond (R × S))

where

 attr-list = attributes (R)  attributes (S)

(duplicates are eliminated) and join-cond has

the form:

 R.A1 = S.A1 AND … AND R.An = S.An

where

 {A1 … An} = attributes(R)  attributes(S)

25

Natural Join

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

List all Ids of students who took at least two
different courses:

StudId (CrsCode  CrsCode2 (

 Transcript

 Transcript [StudId, CrsCode2, Sem2, Grade2]))

We don’t want to join on CrsCode, Sem, and Grade attributes,

hence renaming!

26

Natural Join Example

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Division (/,÷)
 Goal: Produce the tuples in one relation, r, that match all tuples in

another relation, s

 r (A1, …An, B1, …Bm)

 s (B1 …Bm)

 r/s, with attributes A1, …An, is the set of all tuples <a> such that for

every tuple in s, <a,b> is in r

 Can be expressed in terms of projection, set difference, and cross-

product:

let t := πA1,...,An(r) × s

let u := t − r

let v := πA1,...,An(u)

r/s = πA1,...,An(r) − v

27

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
28

Division (/,÷)

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 List the Ids of students who have passed all courses that
were taught in Fall 2016

 Numerator:

StudId and CrsCode for every course passed by every
student:

 StudId, CrsCode (Grade ‘F’ (Transcript))

 Denominator:

 CrsCode of all courses taught in Fall 2016

 CrsCode (Semester=‘F2016’ (Teaching))

 Result is Numerator/Denominator

29

Division Example

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Remember the Schema for the

Student Registration System

Student (Id, Name, Addr, Status)

Professor (Id, Name, DeptId)

Course (DeptId, CrsCode, CrsName, Descr)

Transcript (StudId, CrsCode, Semester, Grade)

Teaching (ProfId, CrsCode, Semester)

Department (DeptId, Name)

30

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Query Sublanguage of SQL

 Evaluation strategy:

 FROM clause produces Cartesian product of listed tables
 Tuple variable (alias for the relation) C ranges over rows of Course.

WHERE clause assigns rows to C in sequence and produces

table containing only rows satisfying condition

 SELECT clause retains listed columns

 Equivalent to: CrsNameDeptId=‘CSE’(Course)

SELECT C.CrsName

FROM Course C

WHERE C.DeptId = ‘CSE’

31

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Join Queries

 List courses taught in F2016
 Join condition “C.CrsCode=T.CrsCode”

 relates facts to each other

 Selection condition “ T.Semester=‘F2016’
 eliminates irrelevant rows

SELECT C.CrsName

FROM Course C, Teaching T

WHERE C.CrsCode=T.CrsCode AND T.Semester=‘F2016’

32

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Correspondence Between SQL and
Relational Algebra

SELECT C.CrsName

FROM Course C, Teaching T

WHERE C.CrsCode = T.CrsCode AND T.Semester = ‘F2016’

CrsName C_CrsCode=T_CrsCode AND Semester=‘F2016’

 (Course [C_CrsCode, DeptId, CrsName, Desc]

  Teaching [ProfId, T_CrsCode, Semester])

• Relational algebra expressions are procedural.
 Which of the equivalent expressions is more easily evaluated?

33

CrsName(Course Semester=‘F2016’ (Teaching))

CrsName (Sem=‘F2016’ (Course Teaching))

Equivalent relational algebra expressions:

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Self-join Queries
Find Ids of all professors who taught at least two

courses in the same semester:

SELECT T1.ProfId

FROM Teaching T1, Teaching T2

WHERE T1.ProfId = T2.ProfId

 AND T1.Semester = T2.Semester

 AND T1.CrsCode <> T2.CrsCode

Tuple variables are essential in this query!

 Equivalent to:

 ProfId (T1.CrsCodeT2.CrsCode(Teaching[ProfId, T1.CrsCode, Semester]

 Teaching[ProfId, T2.CrsCode, Semester]))
34

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Duplicates
 Duplicate rows not allowed in a relation

 However, duplicate elimination from query result is

costly and not done by default; must be explicitly

requested:

 SELECT DISTINCT …..

FROM …..

35

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Equality and comparison operators apply to

strings (based on lexical ordering)

 WHERE S.Name < ‘P’

Use of Expressions

Concatenate operator applies to strings

WHERE S.Name || ‘--’ || S.Address = ….

Expressions can also be used in SELECT clause:

SELECT S.Name || ‘--’ || S.Address AS NmAdd

FROM Student S

36

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Set Operators
 SQL provides UNION, EXCEPT (set difference),

and INTERSECT for union compatible tables

 Example: Find all professors in the CS Department
and all professors that have taught CS courses

(SELECT P.Name

 FROM Professor P, Teaching T

 WHERE P.Id=T.ProfId AND T.CrsCode LIKE ‘CSE%’)

UNION
(SELECT P.Name

 FROM Professor P

 WHERE P.DeptId = ‘CSE’)

37

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Nested Queries
List all courses that were not taught in F2016

SELECT C.CrsName

FROM Course C

WHERE C.CrsCode NOT IN

 (SELECT T.CrsCode --subquery

 FROM Teaching T

 WHERE T.Sem = ‘F2016’)

Evaluation strategy: subquery evaluated once to

produces set of courses taught in F2016. Each row

(as C) tested against this set.

38

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Correlated Nested Queries
Output a row <prof, dept> if prof has taught a course

 in dept.

(SELECT T.ProfId --subquery

 FROM Teaching T, Course C

 WHERE T.CrsCode=C.CrsCode AND

 C.DeptId=D.DeptId --correlation

)

SELECT P.Name, D.Name --outer query

 FROM Professor P, Department D

 WHERE P.Id IN

 -- set of all ProfId’s who have taught a course in D.DeptId

39

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Tuple variables T and C are local to subquery

Tuple variables P and D are global to subquery

Correlation: subquery uses a global variable, D

The value of D.DeptId parameterizes an
evaluation of the subquery

 Subquery must be re-evaluated for each distinct
value of D.DeptId

Correlated queries can be expensive to
evaluate!!!

40

Correlated Nested Queries

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Division in SQL
 Query type: Find the subset of items in one set that are

related to all items in another set

 Example:

 Find professors who taught courses in all departments
 Why does this involve division?

ProfId DeptId DeptId

All department Ids Contains row

<p,d> if professor

p taught a

course in

department d

 ProfId, DeptId(Teaching Course) / DeptId(Department)

41

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 Strategy for implementing division in SQL:

Find set, A, of all departments in which a particular

professor, p, has taught a course

Find set, B, of all departments

Output p if A  B, or, equivalently, if B–A is empty

42

Division in SQL

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

SELECT P.Id

FROM Professor P

WHERE

 NOT EXISTS
 (SELECT D.DeptId -- set B of all dept Ids

 FROM Department D

 EXCEPT

 SELECT C.DeptId -- set A of dept Ids of depts in

 -- which P taught a course

 FROM Teaching T, Course C

 WHERE T.ProfId=P.Id -- global variable

 AND T.CrsCode=C.CrsCode)

 43

Division in SQL

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Aggregates

Functions that operate on sets:

COUNT, SUM, AVG, MAX, MIN

Produce numbers (not tables)

Not part of relational algebra (but not hard to

add)

SELECT COUNT(*)
FROM Professor P

SELECT MAX (Salary)

FROM Employee E

44

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

SELECT COUNT (T.CrsCode)

FROM Teaching T

WHERE T.Semester = ‘F2016’

SELECT COUNT (DISTINCT T.CrsCode)

FROM Teaching T

WHERE T.Semester = ‘F2016’

Count the number of courses taught in F2016:

But if multiple sections of same course are

taught, use:

45

Aggregates

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Grouping
 But how do we compute the number of courses taught in

F2016 per professor?

 Strategy 1: Fire off a separate query for each professor:
 SELECT COUNT(T.CrsCode)

 FROM Teaching T

 WHERE T.Semester = ‘F2016’ AND T.ProfId = 123456789

 Cumbersome

 What if the number of professors changes? Add another query?

 Strategy 2: define a special grouping operator:

 SELECT T.ProfId, COUNT(T.CrsCode)

 FROM Teaching T

 WHERE T.Semester = ‘F2016’

 GROUP BY T.ProfId

46

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

GROUP BY

47

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

GROUP BY – Example 2

SELECT T.StudId, AVG(T.Grade), COUNT (*)

FROM Transcript T

GROUP BY T.StudId

Transcript

Find the: student’s Id, avg grade and number of courses

1234 3.3 4 1234

1234

1234

1234

48

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

HAVING Clause
 Eliminates unwanted groups (analogous to WHERE clause, but

works on groups instead of individual tuples)

 HAVING condition is constructed from attributes of
GROUP BY list and aggregates on attributes not in that list

 Filter the previous example for students with GPA > 3.5

SELECT T.StudId,

 AVG(T.Grade) AS CumGpa,

 COUNT (*) AS NumCrs

FROM Transcript T

WHERE T.CrsCode LIKE ‘CS%’

GROUP BY T.StudId

HAVING AVG (T.Grade) > 3.5

49

Find the: student’s Id, avg grade and number of courses

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Order of Operations with GroupBy&Having

50

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Example

 Output the name and address of all seniors on the Dean’s List

SELECT S.Id, S.Name

FROM Student S, Transcript T

WHERE S.Id = T.StudId AND S.Status = ‘senior’

GROUP BY

HAVING AVG (T.Grade) > 3.5 AND SUM (T.Credit) > 90

S.Id -- wrong

S.Id, S.Name -- right

Every attribute that occurs in
SELECT clause must also
occur in GROUP BY or it
must be an aggregate.
S.Name does not.

51

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Aggregates: Proper and Improper Usage

SELECT COUNT (T.CrsCode), T. ProfId

 – makes no sense (in the absence of

 GROUP BY clause)

SELECT COUNT (*), AVG (T.Grade)

 – but this is OK since it is for the whole

 relation

SELECT … FROM …
WHERE T.Grade > COUNT (SELECT ….)

 – aggregate cannot be applied to

 the result of a SELECT statement

52

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

ORDER BY Clause

Causes rows to be output in a specified order

SELECT T.StudId, COUNT (*) AS NumCrs,

 AVG(T.Grade) AS CumGpa

FROM Transcript T

WHERE T.CrsCode LIKE ‘CS%’

GROUP BY T.StudId

HAVING AVG (T.Grade) > 3.5

ORDER BY DESC CumGpa, ASC StudId

Descending Ascending

53

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Query Evaluation with GROUP BY,

HAVING, ORDER BY

1 Evaluate FROM: produces Cartesian product, A, of tables in
FROM list

2 Evaluate WHERE: produces table, B, consisting of rows of A that
satisfy WHERE condition

3 Evaluate GROUP BY: partitions B into groups that agree on
attribute values in GROUP BY list

4 Evaluate HAVING: eliminates groups in B that do not satisfy
HAVING condition

5 Evaluate SELECT: produces table C containing a row for each
group. Attributes in SELECT list limited to those in GROUP BY
list and aggregates over group

6 Evaluate ORDER BY: orders rows of C

A
 s

 b

 e
 f

 o
 r

 e

54

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Views
 Used as a relation, but rows are not physically stored.

 The contents of a view is computed when it is used within an

SQL statement

 View is the result of a SELECT statement over other

views and base relations

 When used in an SQL statement, the view definition is

substituted for the view name in the statement

As SELECT statement nested in FROM clause

55

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

CREATE VIEW CumGpa (StudId, Cum) AS

 SELECT T.StudId, AVG (T.Grade)

 FROM Transcript T

 GROUP BY T.StudId

SELECT S.Name, C.Cum

FROM CumGpa C, Student S

WHERE C.StudId = S.StudId AND C.Cum > 3.5

56

View Example

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

View Benefits
Access Control: Users not granted access to

base tables. Instead they are granted access
to the view of the database appropriate to
their needs.

External schema is composed of views.

View allows owner to provide SELECT
access to a subset of columns (analogous
to providing UPDATE and INSERT
access to a subset of columns)

57

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Views – Limiting Visibility

CREATE VIEW PartOfTranscript (StudId, CrsCode, Semester) AS

 SELECT T. StudId, T.CrsCode, T.Semester -- limit columns

 FROM Transcript T

 WHERE T.Semester = ‘F2016’ -- limit rows

Give permissions to access data through view:

 GRANT SELECT ON PartOfTranscript TO joe

This would have been analogous to:

 GRANT SELECT (StudId,CrsCode,Semester)
 ON Transcript TO joe

on regular tables, if SQL allowed attribute lists in GRANT
 SELECT

Grade projected out

58

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Customization: Users need not see full

complexity of database. View creates the

illusion of a simpler database customized to the

needs of a particular category of users

A view is similar in many ways to a subroutine in

standard programming

Can be reused in multiple queries

59

View Benefits

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Nulls
 Conditions: x op y (where op is <, >, <>, =, etc.) has

value unknown (U) when either x or y is null
WHERE T.cost > T.price

 Arithmetic expression: x op y (where op is +, –, *, etc.) has
value NULL if x or y is NULL

WHERE (T. price/T.cost) > 2

 Aggregates: COUNT counts NULLs like any other value;
other aggregates ignore NULLs

SELECT COUNT (T.CrsCode), AVG (T.Grade)

FROM Transcript T

WHERE T.StudId = ‘1234’

60

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 WHERE clause uses a three-valued logic – T, F, U(ndefined) – to

filter rows. Portion of truth table:

 Rows are discarded if WHERE condition is F(alse) or

U(nknown)

Example: WHERE T.CrsCode = ‘CS305’ AND T.Grade > 2.5

C1 C2 C1 AND C2 C1 OR C2

T U U T

F U F U

U U U U

61

Nulls

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 INNER JOIN keyword selects all rows from both tables as

long as there is a match between the columns in both tables.

 or:

 INNER JOIN is the same as JOIN

62

SQL INNER JOIN Keyword

SELECT column_name(s)

FROM table1

INNER JOIN table2

ON table1.column_name=table2.column_name;

SELECT column_name(s)

FROM table1

JOIN table2

ON table1.column_name=table2.column_name;

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 INNER JOIN: if there is no match between the columns in

both tables, then those rows are not returned.

 The LEFT JOIN keyword returns all rows from the left table

(table1), with the matching rows in the right table (table2).

 The result is NULL in the right side when there is no match.

63

SQL LEFT JOIN Keyword

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 or:

 INNER JOIN is the same as JOIN

64

SQL LEFT JOIN Keyword

SELECT column_name(s)

FROM table1

LEFT JOIN table2

ON table1.column_name=table2.column_name;

SELECT column_name(s)

FROM table1

LEFT OUTER JOIN table2

ON table1.column_name=table2.column_name;

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 The RIGHT JOIN keyword returns all rows from the right

table (table2), with the matching rows in the left table

(table1).

 The result is NULL in the left side when there is no match.

 or:

65

SQL RIGHT JOIN Keyword

SELECT column_name(s)

FROM table1

RIGHT JOIN table2

ON table1.column_name=table2.column_name;

SELECT column_name(s)

FROM table1

RIGHT OUTER JOIN table2

ON table1.column_name=table2.column_name;

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 SQL FULL OUTER JOIN Keyword: combines the result of

both LEFT and RIGHT joins.

66

SQL FULL OUTER JOIN

SELECT column_name(s)

FROM table1

FULL OUTER JOIN table2

ON table1.column_name=table2.column_name;

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 The LIKE operator is used to search for a specified pattern in

a column.

 selects all customers with a City starting with the letter "s" AND a

Country containing the pattern "land" AND the Country NOT LIKE

'%green%':

67

SQL LIKE Operator

SELECT column_name(s)

FROM table_name

WHERE column_name LIKE pattern;

SELECT * FROM Customers

WHERE City LIKE '%s'

AND Country LIKE '%land%'

AND Country NOT LIKE '%green%';

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 A wildcard character can be used to substitute for any other

character(s) in a string.

68

SQL Wildcard Characters

SELECT * FROM Customers

WHERE City LIKE 'L_n_on';

Wildcard Description

% A substitute for zero or more characters

_ A substitute for a single character

[charlist] Sets and ranges of characters to match

[^charlist]

or

[!charlist]

Matches only a character NOT specified within the brackets

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 The BETWEEN operator is used to select values within a

range.

69

SQL BETWEEN Operator

SELECT column_name(s)

FROM table_name

WHERE column_name BETWEEN value1 AND value2;

SELECT * FROM Products

WHERE Price BETWEEN 10 AND 20;

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 The IN operator allows you to specify multiple values in a

WHERE clause.

70

SQL IN Operator

SELECT column_name(s)

FROM table_name

WHERE column_name IN (value1,value2,...);

SELECT * FROM Customers

WHERE City IN ('Paris','London');

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 INNER JOIN keyword selects all rows from both tables as

long as there is a match between the columns in both tables.

71

MySQL Date Functions

Function Description

NOW() Returns the current date and time

CURDATE() Returns the current date

CURTIME() Returns the current time

DATE() Extracts the date part of a date or date/time expression

EXTRACT() Returns a single part of a date/time

DATE_ADD() Adds a specified time interval to a date

DATE_SUB() Subtracts a specified time interval from a date

DATEDIFF() Returns the number of days between two dates

DATE_FORMAT() Displays date/time data in different formats

http://www.w3schools.com/sql/func_now.asp
http://www.w3schools.com/sql/func_curdate.asp
http://www.w3schools.com/sql/func_curtime.asp
http://www.w3schools.com/sql/func_date.asp
http://www.w3schools.com/sql/func_extract.asp
http://www.w3schools.com/sql/func_date_add.asp
http://www.w3schools.com/sql/func_date_sub.asp
http://www.w3schools.com/sql/func_datediff_mysql.asp
http://www.w3schools.com/sql/func_date_format.asp

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Modifying Tables – Insert
 Inserting a single row into a table

Attribute list can be omitted if it is the same as in

CREATE TABLE (but do not omit it)

NULL and DEFAULT values can be specified

 INSERT INTO Transcript(StudId, CrsCode, Semester, Grade)

VALUES (12345, ‘CSE305’, ‘F2016’, NULL)

72

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Bulk Insertion
 Insert the rows output by a SELECT

INSERT INTO DeansList (StudId, Credits, CumGpa)

SELECT T.StudId, 3 * COUNT (*), AVG(T.Grade)

FROM Transcript T

GROUP BY T.StudId

HAVING AVG (T.Grade) > 3.5 AND COUNT(*) > 30

CREATE TABLE DeansList (

 StudId INTEGER,

 Credits INTEGER,

 CumGpa FLOAT,

 PRIMARY KEY StudId)

73

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Modifying Tables – Delete
 Similar to SELECT except:

 No project list in DELETE clause

 No Cartesian product in FROM clause (only 1 table name)

 Rows satisfying WHERE clause (general form, including
subqueries, allowed) are deleted instead of output

DELETE FROM Transcript T

WHERE T.Grade IS NULL AND T.Semester <> ‘F2016’

74

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Modifying Data - Update

 Updates rows in a single table

 All rows satisfying WHERE clause (general form, including

subqueries, allowed) are updated

UPDATE Employee E

SET E.Salary = E.Salary * 1.05

WHERE E.Department = ‘R&D’

75

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Updating Views
 Question: Since views look like tables to users, can they be

updated?

 Answer: Yes – a view update changes the underlying base
table to produce the requested change to the view

CREATE VIEW CsReg (StudId, CrsCode, Semester) AS

SELECT T.StudId, T. CrsCode, T.Semester

FROM Transcript T

WHERE T.CrsCode LIKE ‘CS%’ AND T.Semester=‘F2016’

76

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Updating Views - Problem 1

 Question: What value should be placed in attributes of
underlying table that have been projected out (e.g., Grade)?

 Answer: NULL (assuming null allowed in the missing
attribute) or DEFAULT

INSERT INTO CsReg (StudId, CrsCode, Semester)

VALUES (1111, ‘CSE305’, ‘F2016’)

77

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Updating Views - Problem 2

 Problem: New tuple not in view

 Solution: Allow insertion (assuming the WITH CHECK

OPTION clause has not been appended to the CREATE
VIEW statement)

INSERT INTO CsReg (StudId, CrsCode, Semester)

VALUES (1111, ‘ECO105’, ‘F2016’)

78

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Updating Views - Problem 3

 Update to a view might not uniquely specify the change to

the base table(s) that results in the desired modification of

the view (ambiguity)

CREATE VIEW ProfDept (PrName, DeName) AS

SELECT P.Name, D.Name

FROM Professor P, Department D

WHERE P.DeptId = D.DeptId

79

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 Tuple <Smith, CS> can be deleted from ProfDept by:

Deleting row for Smith from Professor (but this is
inappropriate if he is still at the University)

Deleting row for CS from Department (not what is
intended)

Updating row for Smith in Professor by setting
DeptId to null (seems like a good idea, but how
would the computer know?)

80

Updating Views - Problem 3

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Updating Views - Restrictions
 Updatable views are restricted to those in which

 No Cartesian product in FROM clause

 no aggregates, GROUP BY, HAVING

For example, if we allowed:

 CREATE VIEW AvgSalary (DeptId, Avg_Sal) AS

 SELECT E.DeptId, AVG(E.Salary)

 FROM Employee E

 GROUP BY E.DeptId

then how do we handle:

 UPDATE AvgSalary

 SET Avg_Sal = 1.1 * Avg_Sal

81

