
CSE 305 – Principles of Database Systems

Paul Fodor

Stony Brook University

http://www.cs.stonybrook.edu/~cse305

The Relational Data Model

1

http://www.cs.stonybrook.edu/~cse305

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

What Is a Data Model? Data and Its Structure
 All data is recorded as bits and bytes on a disk, but it is difficult

to work with data at that level.

 It is convenient to view data at different levels of abstraction.

 Programmers prefer to work with data stored in files.

 Files belong to the physical level of data modeling.

 File structures:

 Sequential files are best for applications that access records in the order in which

they are stored.

 Direct access (or random access) files are best when records are accessed in

unpredictable order. Files have indices (auxiliary data structures that enable

applications to retrieve records based on the value of a search key).

 Schema: Description of data at some abstraction level.

 Each level has its own schema.

 We will be concerned with three schemas: physical, conceptual, and external.
2

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Physical Data Level
 Physical schema describes details of how data is stored:

cylinders, tracks, indices etc.

 Early applications worked at this level – explicitly dealt

with the details above (physical cylinders, tracks).

 Problem: Routines were hard-coded to deal with

physical representation

Changes to data structure are difficult and very expensive to

make.

Application code becomes complex since it must deal with

details.

Rapid implementation of new features is impossible.
3

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Conceptual Data Level
The Conceptual Data Level hides the details of the

physical data representation and instead describes

data in terms of higher-level concepts that are

closer to the way humans view it.

 In the relational model, the conceptual schema

presents data as a set of tables:
Student (Id: INT, Name: STRING, Address: STRING, Status: STRING)

DBMS maps from conceptual to physical schema

automatically.

4

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Conceptual Data Level
 Physical schema can be changed without changing

application:

DBMS would change mapping from conceptual to physical

transparently

This property is referred to as physical data independence

5

Application

DBMS

Conceptual view

of data

Physical view of

data

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

External Data Level
 The External Data Level customize the conceptual

schema to the needs of various classes of users (it also

plays a role in database security).

 In the relational model, the external schema also presents

data as a set of relations.

An external schema specifies a view of the data in terms
of the conceptual level.

 The external schema looks and feels like a conceptual schema,

and both are defined in essentially the same way in modern

DBMSs.

 There might be several external schemas (i.e., views on the conceptual

schema), usually one per user category.

6

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

External Data Level
It is tailored to the needs of a particular

category of users.
Portions of stored data should not be seen by some

users:

Students should not see their colleagues data
(HWs, IDs, grades).

Faculty should not see billing data.

 Information that can be derived from stored data
might be viewed as if it were stored:

GPA not stored, but calculated when needed.

7

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

External Data Level
 Applications are written in terms of external schemas.

 A view is computed when accessed (not stored).

 Translation from external to conceptual done

automatically by DBMS at run time.

8

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

External Data Level
 Conceptual schema can be changed without changing

application (referred to as conceptual data independence):

Then, only the mapping from external to conceptual

must be changed.

9

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Data Model
A data model consists of a set of concepts and

languages for describing:
The conceptual and external schema

Data definition language (DDL)

The integrity constraints and domains (also DDL)

The operations on data
Data manipulation language (DML)

The directives that influence the physical schema
(affects performance, not semantics)
 Storage definition language (SDL)

10

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
11

The Relational Model
A particular way of structuring data (using

relations) proposed in 1970 by E. F. Codd

Mathematically based

Expressions (queries) can be analyzed by DBMS

Queries are transformed to equivalent expressions

automatically (query optimization)

Optimizers have limits (=> programmer needs

to know how queries are evaluated and

optimized)

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
12

Relation Instance
A relation instance is a set of tuples:

Tuple ordering immaterial

No duplicates

 Cardinality of relation = number of tuples

All tuples in a relation have the same structure;
constructed from the same set of attributes:
Attributes are named (ordering is immaterial)

Value of an attribute is drawn from the attribute’s
domain.

Arity of relation = number of attributes.

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
13

Relation Instance
 There is also a special value NULL (commonly referred

to as a null value, value unknown or undefined), which we

use a placeholder and store it in place of an attribute

until more information becomes available

null values arise because of a lack of information

null values arise by design sometimes

 For instance, the attribute MaidenName is applicable to

females but not to males

Employee(Id:INT, Name:STRING, MaidenName:STRING)

We do not allow null values in certain sensitive places,

such as the primary key.

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Relation Instance of the Student relation

11111111 John 123 Main freshman

12345678 Mary 456 Cedar sophmore

44433322 Art 77 So. 3rd senior

87654321 Pat 88 No. 4th sophmore

 Id Name Address Status

Student
14

A relation instance can be represented as a table: the attributes are the
column headers and the tuples are the rows:

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
15

Relation Schema
 A relation schema is the heading of that table and the

applicable constraints (integrity constraints).

 A relation schema is composed of:
Relation name

Attribute names & domains

 Integrity constraints like:

The values of a particular attribute in all tuples are unique
(e.g., PRIMARY KEY)

The values of a particular attribute in all tuples are greater
than 0 (although, the domain can be bigger)

Default values for some attributes

 A relation consists of a relation schema and a relation
instance.

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
16

Relational Database
A database schema = the set of relation

schemas and constraints among relations
(inter-relational constraints)

A relational database (or database instance) = a
set of (corresponding) relation instances

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
17

Database Schema Example
 Student (Id: INT, Name: STRING, Address: STRING,

 Status: STRING)

 Professor (Id: INT, Name: STRING, DeptId: STRING)

 Course (DeptId:STRING, CrsCode:STRING,

CrsName:STRING, Descr:STRING)

 Transcript (StudId:INTEGER, CrsCode:STRING,

Semester:STRING, Grade:STRING)

 Department(DeptId: STRING, Name: STRING)

 Teaching (ProfId:INTEGER, CrsCode:STRING,

Semester:STRING)

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
18

Integrity Constraints
 An integrity constraint (IC) is a statement about all legal

instances of a database:

Restriction on a state (or of sequence of states) of a database
(it is a part of the schema)

 Enforced/checked automatically by the DBMS

 Protects database from errors

 Enforces enterprise rules

 Intra-relational - involve only one relation
 e.g., all Student Ids are unique (key)

 Inter-relational - involve several relations
 e.g., the value of the attribute Id of each professor shown as Teaching a

course must appear as the value of the Id attribute of some row of the
table Professor (foreign-key)

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
19

Kinds of Integrity Constraints
 Static – restricts legal states of database

Syntactic (structural constraints)

e.g., all values in a column must be unique

Semantic (involve meaning of attributes)

e.g., cannot register for more than 18 credits

Dynamic constraints – limitation on sequences

of database states

e.g., cannot raise salary by more than 5% in one

transaction

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
20

Kinds of Integrity Constraints
Syntactic constraint example:

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Key Constraint
 A key constraint (or candidate key) is a sequence of attributes

A1,…,An (n=1 is possible) of a relation schema, S, with the

following property:

 A relation instance s of S satisfies the key constraint iff at most

one row in s can contain a particular set of values, a1,…,an, for

the attributes A1,…,An

Minimality property: no subset of A1,…,An is a key constraint

 Key examples:

 Set of attributes mentioned in a key constraint
 e.g., {Id} in Student,

 e.g., {StudId, CrsCode, Semester} in Transcript

 It is minimal: no subset of a key is a key
 {Id, Name} is not a key of Student

21

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Key Constraint
 Student(Id:INTEGER, Name:STRING, Address:STRING, Status:STRING)

 Key: {Id}

 Professor(Id:INTEGER, Name:STRING, DeptId:STRING)

 Key: {Id}

 Course(CrsCode:STRING, DeptId:STRING, CrsName:STRING,

Descr:STRING)

 Keys: {CrsCode}, {DeptId,CrsName}

 Transcript(StudId:INTEGER, CrsCode:STRING, Semester:STRING,

Grade:STRING)

 Key: {StudId,CrsCode,Semester}

 Teaching(ProfId:INTEGER, CrsCode:STRING, Semester:STRING)

 Key: {CrsCode,Semester}

22

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Key Constraint
One of the keys of a relation is designated as the

primary key.

 Superkey - set of attributes containing key

{Id, Name} is a superkey of Student

23

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Key Constraint
Every relation has a key:

the set of all attributes in a schema, S, is always a

superkey because if a legal instance of S has a pair

of tuples that agree on all attributes in S, then

these must be identical tuples: since relations are

sets, they cannot have identical elements

24

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Key Constraint
A schema can have several different keys.

Example:

 in the Course relation:

{CrsCode} can be one key.

{DeptId, CrsName} is also a key in the same

relation because because it is unlikely that the

same department will offer two different courses

with the same name.

25

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Foreign Key Constraint
Referential integrity: an item named in one

relation must refer to tuples that describe

that item in another

Transcript(CrsCode) references

Course(CrsCode)

Professor(DeptId) references

Department(DeptId)

26

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Foreign Key Constraint
 Attribute A1 is a foreign key of R1 referring to attribute A2 in R2,

if whenever there is a value v of A1, there is a tuple of R2 in

which A2 has value v, and A2 is a key of R2

This is a special case of referential integrity: A2 must be a

candidate key of R2 (e.g., CrsCode is a key of Course

relation)

 If no row exists in R2 => violation of referential integrity

Not all rows of R2 need to be referenced: relationship is not

symmetric (e.g., some course might not be taught)

Value of a foreign key might not be specified (DeptId

column of some professor might be NULL)

27

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
28

A2

v3

v5

v1

v6

v2

v7

v4

A1

v1

v2

v3

v4
null

v3

R1 R2
Foreign key

Candidate key

Foreign Key Constraint

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 Names of the attrs. A1 and A2 need not be the same

Teaching(CrsCode: COURSES, Sem: SEMESTERS, ProfId: INT)

Professor(Id: INT, Name: STRING, DeptId: DEPTS)

ProfId attribute of Teaching references Id attribute of

Professor

29

Foreign Key Constraint

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

R1 and R2 need not be distinct

Employee(Id:INT, MgrId:INT, ….)

Employee(MgrId) references

Employee(Id)

Every manager is also an employee and hence

has a unique row in Employee

30

Foreign Key Constraint

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Foreign key might consist of several columns

R1(A1, …An) references R2(B1, …Bn)

Ai and Bi must have same domains (although not

necessarily the same names)

B1,…,Bn must be a candidate key of R2

Example: (CrsCode, Semester) of Transcript

references (CrsCode, Semester) of Teaching

31

Foreign Key Constraint

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Inclusion Dependency
 Referential integrity constraint that is not a foreign key

constraint

Example: Teaching(CrsCode, Semester) references

Transcript(CrsCode, Semester)

 No empty classes allowed

 Target attributes do not form a candidate key in Transcript

(StudId missing)

 No simple enforcement mechanism for inclusion

dependencies in SQL (requires assertions)

32

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

SQL Data Definition Sublanguage
 SQL is a language for describing database schema

and operations on tables

Data Definition Language (DDL): sublanguage

of SQL for describing schema

33

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

SQL
An SQL schema is a description of a portion of a

database

 It usually is under the control of a single user

who has the authorization to create and access

the objects within it.

34

CREATE SCHEMA SRS_StudInfo

CREATE SCHEMA SRS_StudInfo AUTHORIZATION Joe

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

SQL
 Joe can also delete the schema:

35

DROP SCHEMA SRS_StudInfo

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Tables
 Table: is an SQL entity that corresponds to a relation

SQL-92 is currently the most supported standard but

is now superseded by SQL:1999 (recursive queries,

triggers, and some object-oriented features),

SQL:2003 (SQL/XML), SQL:2006 (storing XML

data in an SQL, xQuery), SQL:2008 (ORDER BY),

SQL:2011

36

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Table Declaration

37

CREATE TABLE Student (

 Id INTEGER,

 Name CHAR(20),

 Address CHAR(50),

 Status CHAR(10)

)

101222333 John 10 Cedar St Freshman

234567890 Mary 22 Main St Sophomore

Id Name Address Status

Student

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

SQL Types
Database vendors generally deviate from the

standard even on basic features like the data types:
 SQL Data Types for Various DBs:

http://www.w3schools.com/sql/sql_datatypes.asp

We will focus on MySQL here.

38

http://www.w3schools.com/sql/sql_datatypes.asp

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

SQL CHAR Types
 CHAR(n)

 Used to store character string value of fixed length.

 The maximum no. of characters the data type can hold is 255

characters.

 It's 50% faster than VARCHAR.

 Uses static memory allocation.

 Good for things of the same size (e.g., signatures, keys, zips, phone, ssn)

 VARCHAR(n)
 Used to store variable length alphanumeric data.

 The maximum this data type can hold is up to
 Pre-MySQL 5.0.3: 255 characters.

 In MySQL 5.0.3+: 65,535 characters shared for the row.

 It's slower than CHAR.

 Uses dynamic memory allocation.

39

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

SQL Numeric Types
 INTEGER (INT)

 Integer numerical (no decimal). Precision 10.

 SMALLINT
 Integer numerical (no decimal). Precision 5

 BIGINT
 Integer numerical (no decimal). Precision 19

 DECIMAL(p,s) (same with NUMERIC, DOUBLE)
 Exact numerical, precision p, scale s. Example: decimal(5,2) is a

number that has 3 digits before the decimal and 2 digits after the

decimal

 REAL
 Approximate numerical, mantissa precision 7

 FLOAT
 Approximate numerical, mantissa precision 16

40

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

SQL TIME Types
 DATE

 Stores year, month, and day values.

 Format: YYYY-MM-DD.

 The supported range is from '1000-01-01' to '9999-12-31'.

 TIME
 Stores hour, minute, and second values

 Format: HH:MI:SS.

 The supported range is from '-838:59:59' to '838:59:59'.

 DATETIME
 A date and time combination.

 Format: YYYY-MM-DD HH:MI:SS

 TIMESTAMP
 Stores year, month, day, hour, minute, and second values

41

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Other SQL Types
 BLOB

 For BLOBs (Binary Large OBjects). Holds up to 65,535 bytes of data

 ENUM(x,y,z,etc.)
 Let you enter a list of possible values. You can list up to 65535 values in

an ENUM list. If a value is inserted that is not in the list, a blank value

will be inserted.

 SET
 Similar to ENUM except that SET may contain up to 64 list items and

can store more than one choice.

 XML
 Stores XML formatted data.

 Not in MySQL, but in DB2, Oracle, SQL Server.

42

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Primary/Candidate Keys

43

CREATE TABLE Course (

 CrsCode CHAR(6),

 CrsName CHAR(20),

 DeptId CHAR(4),

 Descr CHAR(100),

 PRIMARY KEY (CrsCode),

 UNIQUE (DeptId, CrsName) -- candidate key

)

Comments start

with 2 dashes

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Null
 Problem: Not all information might be known when

row is inserted (e.g., a Grade might be missing from

Transcript)

 A column might not be applicable for a particular row

(e.g., MaidenName if row describes a male)

 Solution: Use place holder: null

Not a value of any domain (although called null value)

 Indicates the absence of a value

Not allowed in certain situations

 Primary keys and columns constrained by NOT NULL

44

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Default Value

45

CREATE TABLE Student (

 Id INTEGER,

 Name CHAR(20) NOT NULL,

 Address CHAR(50),

 Status CHAR(10) DEFAULT 'freshman',

 PRIMARY KEY (Id)

)

Value to be assigned if attribute value in a row is

not specified

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Semantic Constraints in SQL

Primary key and foreign key are examples

of structural constraints

Semantic constraints

Express the logic of the application at

hand:

e.g., number of registered students

maximum enrollment

46

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 Often used for application dependent conditions

 Example: limit attribute values

Each row in table must satisfy condition

47

CREATE TABLE Transcript (

 StudId INTEGER,

 CrsCode CHAR(6),

 Semester CHAR(6),

 Grade CHAR(1),

 CHECK (Grade IN (‘A’, ‘B’, ‘C’, ‘D’, ‘F’)),

 CHECK (StudId > 0 AND StudId < 1000000000)

)

Semantic Constraints in SQL

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Example: relate values of attributes in different

columns

48

CREATE TABLE Employee (

 Id INTEGER,

 Name CHAR(20),

 Salary INTEGER,

 MngrSalary INTEGER,

 CHECK (MngrSalary > Salary)

)

Semantic Constraints in SQL

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Constraints – Problems
 Problem 1:

The semantics of the CHECK clause requires that

every tuple in the corresponding relation satisfy all

of the conditional expressions associated with all

CHECK clauses in the corresponding CREATE

TABLE statement

The empty relation (i.e., a relation that contains no

tuples) always satisfies all CHECK constraints as there

are no tuples to check.

49

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Constraints – Problems
 If Employee is empty, there are no rows on which to

evaluate the CHECK condition.

The first CHECK clause says that the Employee relation

cannot be empty

 The conditions are supposed to be satisfied by every tuple in

the Employee relation, not by the relation itself

50

CREATE TABLE Employee (

 Id INTEGER,

 Name CHAR(20),

 Salary INTEGER,

 DepartmentId CHAR(4),

 MngrId INTEGER,

 CHECK (0 < (SELECT COUNT(*) FROM Employee))

 CHECK (SELECT COUNT(*) FROM Manager)

 < (SELECT COUNT(*)FROM Employee)))

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Constraints – Problems

 The second CHECK clause says that there must be more

employees than managers, which it in fact does, but only if

the Employee relation is not empty.

 Should constraint be in Employee or in Manager?

 Inter-relational constraints should be symmetric.

51

CREATE TABLE Employee (

 Id INTEGER,

 Name CHAR(20),

 Salary INTEGER,

 DepartmentId CHAR(4),

 MngrId INTEGER,

 CHECK (0 < (SELECT COUNT (*) FROM Employee))

 CHECK (SELECT COUNT(*) FROM Manager)

 < (SELECT COUNT(*)FROM Employee)))

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Assertion
 Symmetrically specifies an inter-relational constraint

 Applies to entire database (not just the individual rows

of a single table)

hence it works even if Employee is empty

 Unlike the CHECK conditions that appear inside a

table definition, those in the CREATE ASSERTION

statement must be satisfied by the contents of the

entire database rather than by individual tuples of a host

table.

52

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Assertion
 Example: the Employee table cannot be empty:

 If, at the time of specifying the constraint, the

Employee relation is empty, the SQL standard states

that if a new constraint is defined and the existing

database does not satisfy it, the constraint is rejected.

The database designer then has to find out the cause

of constraint violation and either rectify the database

or amend the constraint.

MySQL does not support ASSERTIONS.
53

CREATE ASSERTION EmployeeNotEmpty

 CHECK (0 < SELECT COUNT (*) FROM Employee)

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Assertion

54

CREATE ASSERTION EmployeesMoreThanManagers

 CHECK (SELECT COUNT(*) FROM Manager)

 < (SELECT COUNT(*) FROM Employee)))

 Example: less managers than employees:

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Assertion

55

CREATE ASSERTION EmployeeSalariesDown

 CHECK NOT EXISTS
 (SELECT * FROM Employee, Manager

 WHERE Employee.MngrId = Manager.Id AND
 Employee.Salary > Manager.Salary))

 Example: employees cannot earn more than their

managers:

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Assertions and Inclusion Dependency

56

CREATE ASSERTION NoEmptyCourses

 CHECK (NOT EXISTS (

 SELECT * FROM Teaching T

 WHERE -- for each row T check

 -- the following condition

 NOT EXISTS (

 SELECT * FROM Transcript R

 WHERE T.CrsCode = R.CrsCode

 AND T.Semester = R.Semester)

))

Courses with no

students

Students in a

particular course

No tuple in the Teaching relation (the outer NOT EXISTS statement) for which no

matching class exists in the Transcript relation (the inner NOT EXISTS statement).

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

User-Defined Domains
Possible attribute values can be specified

Using a CHECK constraint or

Creating a new domain

An alternative SQL way to allow the user to define

appropriate ranges of values, give them domain

names, and then use these names in various table

definitions.

Domain can be used in several declarations

57

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Domains
Examples:

58

CREATE DOMAIN Grades CHAR (1)

 CHECK (VALUE IN (‘A’, ‘B’, ‘C’, ‘D’, ‘F’))

CREATE TABLE Transcript (

 ….,

 Grade: Grades,

 …)

• MySQL doesn't support domains, but if you

want to create them, then you can use

MariaDB.

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

SQL Foreign Key Constraints

59

CREATE TABLE Teaching (

 ProfId INTEGER,
 CrsCode CHAR (6),

 Semester CHAR (6),

 PRIMARY KEY (CrsCode, Semester),

 FOREIGN KEY (CrsCode) REFERENCES Course,

 FOREIGN KEY (ProfId) REFERENCES Professor (Id))

• The Course table must have a CrsCode attribute and key.

• In MySQL, we must specify the attribute even if it is the

same name.

 FOREIGN KEY (CrsCode) REFERENCES Course(CrsCode)

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Foreign Key Constraints

60

x

CrsCode

y

x y

CrsCode ProfId

Id
Teaching

Course

Professor

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Circularity in Foreign Key Constraints

61

y x

A1 A2 A3 B1 B2 B3

x y A B

candidate key: A1

foreign key: A3 references B(B1)

candidate key: B1

foreign key: B3 references A(A1)

• Chicken-and-egg problem:

Problem 1: Creation of A requires existence of B and vice versa

Solution: CREATE TABLE A (……) -- no foreign key

 CREATE TABLE B (……) -- include foreign key

 ALTER TABLE A

 ADD CONSTRAINT cons

 FOREIGN KEY (A3) REFERENCES B (B1)

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 Problem 2: Insertion of row in A requires prior existence of row in B and

vice versa

Solution: use appropriate constraint checking mode:

 IMMEDIATE checking: a check is made after each SQL statement that

changes the database

 DEFERRED checking: a check is made only when a transaction

commits.

ALTER TABLE chicken ADD CONSTRAINT chickenREFegg

 FOREIGN KEY (eID) REFERENCES egg(eID)

 INITIALLY DEFERRED DEFERRABLE;

ALTER TABLE egg ADD CONSTRAINT eggREFchicken

 FOREIGN KEY (cID) REFERENCES chicken(cID)

 INITIALLY DEFERRED DEFERRABLE;

62

Circularity in Foreign Key Constraints

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Reactive Constraints
 When a constraint is violated, the corresponding transaction is

typically aborted.

However, in some cases, other remedial actions are more

appropriate.

 Foreign-key constraints are one example of this situation.

 It would be nice to have a mechanism that allows a user to

specify how to react to a violation of a constraint.

A reactive constraint is a static constraint coupled with a

specification of what to do if a certain event happens.

Triggers attached to foreign-key constraints

63

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Handling Foreign Key Violations

 Insertion into A:
Reject if no row exists in B containing foreign key of

inserted row!

64

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Handling Foreign Key Violations

 Deletion from B:

Multiple possible responses.

NO ACTION: Reject if row(s) in A references row to

be deleted (default response)

65

x
x

A B
?

Request to delete

row rejected

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
66

NULL A
B

x

Row

deleted

Handling Foreign Key Violations

 Deletion from B:

SET NULL: Set value of foreign key in referencing

row(s) in A to NULL

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
67

y A B
y

x

Row

deleted

Handling Foreign Key Violations

 Deletion from B:

SET DEFAULT: Set value of foreign key in referencing

row(s) in A to default value (y) which must exist in B

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
68

A B

x x

Handling Foreign Key Violations

 Deletion from B:

CASCADE: Delete referencing row(s) in A as well

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 Update (change) foreign key in A: Reject if no row exists in B

containing new foreign key

 Update candidate key in B (to z) – same actions as with deletion:

 NO ACTION: Reject if row(s) in A references row to be updated

(default response)

 SET NULL: Set value of foreign key to null

 SET DEFAULT: Set value of foreign key to default

 CASCADE: Propagate z to foreign key

69

z
z

A B

Cascading when

key in B changed

from x to z

Handling Foreign Key Violations

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Specifying Actions

70

CREATE TABLE Teaching (

 ProfId INTEGER,

 CrsCode CHAR (6),

 Semester CHAR (6),

 PRIMARY KEY (CrsCode, Semester),

 FOREIGN KEY (ProfId) REFERENCES Professor (Id)

 ON DELETE NO ACTION

 ON UPDATE CASCADE,

 FOREIGN KEY (CrsCode) REFERENCES Course (CrsCode)

 ON DELETE NO ACTION

 ON UPDATE CASCADE)

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 The action taken to repair the violation of a foreign key

constraint in A may cause a violation of a foreign key

constraint in C

The action specified in C controls how that violation is

handled

 If the entire chain of violations cannot be resolved, the

initial deletion from B is rejected

71

x
x y

y

C A B

Handling Foreign Key Violations

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Triggers
 The ON DELETE/UPDATE triggers are simple and powerful, but

they are not powerful enough to capture a wide variety of

constraint violations that arise in database applications and are not

due to foreign keys

 A more general mechanism for handling events

 Whenever a specified event occurs, execute some specified action

 Not in SQL-92, but is in SQL:1999

 Trigger is a schema element (like table, assertion, etc.)

72

CREATE TRIGGER CrsChange

 AFTER UPDATE OF CrsCode, Semester ON Transcript

 WHEN (Grade IS NOT NULL)

 ROLLBACK

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
5-73

Insert
 Inserting a single row into a table

Attribute list can be omitted if it is the same as

in CREATE TABLE (but do not omit it)

NULL and DEFAULT values can be specified

INSERT INTO Student(Id, Name, Address, Status)

VALUES (12345, 'John Smith', '123 Main St, NYC', NULL)

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Database Views
 Part of external schema

 A virtual table constructed from actual tables on the fly

Can be accessed in queries like any other table

Not materialized, constructed when accessed

Similar to a subroutine in ordinary programming

74

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

 Part of external schema suitable for use in Bursar’s office:

 Part of external schema suitable for student with Id

123456789:

Views - Examples

75

CREATE VIEW CoursesTaken (StudId, CrsCode, Semester) AS

 SELECT T.StudId, T.CrsCode, T.Semester

 FROM Transcript T

CREATE VIEW CoursesITook (CrsCode, Semester, Grade) AS

 SELECT T.CrsCode, T.Semester, T.Grade

 FROM Transcript T

 WHERE T.StudId = 123456789

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Modifying the Schema

76

ALTER TABLE Student

 ADD COLUMN Gpa INTEGER DEFAULT 0

ALTER TABLE Student

 ADD CONSTRAINT GpaRange

 CHECK (Gpa >= 0 AND Gpa <= 4)

ALTER TABLE Student

 DROP CONSTRAINT GpaRange -- constraint names are useful

DROP TABLE Employee

DROP ASSERTION NoEmptyCourses

 Although database schemas are not supposed to change

frequently, they do evolve (new fields are added, etc.)

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Access Control
Databases might contain sensitive information

Access has to be limited:

Users have to be identified – authentication

Generally done with passwords

Each user must be limited to modes of access

appropriate to that user - authorization

 SQL:92 provides tools for specifying an

authorization policy but does not support

authentication (i.e., vendor specific)
77

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Controlling Authorization in SQL

78

CREATE USER 'joe'@'localhost' IDENTIFIED BY 'password';

GRANT ALL PRIVILEGES ON * . * TO 'newuser'@'localhost';

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Controlling Authorization in SQL

79

 GRANT access_list

 ON table

 TO user_list

access modes: SELECT, INSERT, DELETE, UPDATE, REFERENCES,

All PRIVILEGES

GRANT UPDATE (Grade) ON Transcript TO prof_smith

 – The Grade column can be updated only by prof_smith

GRANT SELECT ON Transcript TO joe

 – Individual columns cannot be specified for SELECT access (in the

 SQL standard) – all columns of Transcript can be read

 – But SELECT access control to individual columns can be simulated

 through views

User

name

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Controlling Authorization in SQL

Using Views

GRANT SELECT ON Course Taken TO joe

 Thus views can be used to simulate access control to individual

columns of a table

80

GRANT access

ON view

 TO user_list

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

REVOKE
 Privileges, or the grant option for privileges, can be revoked

using the REVOKE statement.

 CASCADE means that if some user, U1, whose user name appears on

the list userlist, has granted those privileges to another user, U2, the

privileges granted to U2 are also revoked.

 If U2 has granted those privileges to still another user, those privileges are

revoked as well, and so on.

 RESTRICT means that if any such dependent privileges exist, the

REVOKE statement is rejected

81

REVOKE [GRANT OPTION FOR] privilege-list

ON object

FROM user-list {CASCADE | RESTRICT}

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

REFERENCE Access mode

 The GRANT REFERENCES permission on a table is

needed to create a FOREIGN KEY constraint that

references that table.

GRANT REFERENCES ON Student TO joe

Now Joe can create tables that have foreign keys to

Student keys

82

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Access mode problem
 Granting privileges at the level of database operations,

such as SELECT or UPDATE, is not adequate.

For example, only a depositor can deposit in a bank

account and only a bank official can add interest to

the account, but both the deposit and interest

transactions might use the same UPDATE statement.

 For such applications, it is more appropriate to grant

privileges at the level of subroutines or transactions.

83

