
CSE 305 – Principles of Database Systems

Paul Fodor

Stony Brook University

http://www.cs.stonybrook.edu/~cse305

Relational Databases &Transaction Processing

The Big Picture

1

http://www.cs.stonybrook.edu/~cse305

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

What is a Data Model?
What is a Data Model?

Mathematical representation of data

Examples:

relational model = tables;

semistructured model = trees/graphs.

Determines the operations on the data.

Determines the constraints on the language.

2

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Relational Databases
We are particularly interested in relational

databases.

Data is stored in tables.

3

Id Name Address Status

1111 John 123 Main fresh

2222 Mary 321 Oak

1234 Bob 444 Pine

9999 Joan 777 Grand senior

Attributes

(column

headers)

Tuples

(rows)

Relation name: Students

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Table
 Set of rows (no duplicates)

Each row describes a different entity

Each column states a particular fact about each
entity
Each column has an associated domain

 Domain of Status = {fresh, soph, junior, senior}

4

Id Name Address Status

1111 John 123 Main fresh

2222 Mary 321 Oak

1234 Bob 444 Pine

9999 Joan 777 Grand senior

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Relation
Mathematical entity corresponding to a table

row ~ tuple

column ~ attribute

Values in a tuple are related to each other

John lives at 123 Main

Relation R can be thought of as predicate R

R(x,y,z) is true iff tuple (x,y,z) is in R

5

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Relation
Why Relations?
Very simple model.

Often matches how we think about data.

Abstract model that underlies SQL, the
most important database language today.

6

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Schemas
Relation schema = relation name and attribute list.

Optionally: types of attributes.

Example: Students(id, name, address, status) or
Students(id:int, name:string, address:string,
status:string{fresh, soph, junior, senior})
Underline = key (tuples cannot have the same

value in all key attributes). Excellent example of a
constraint.

Database = collection of relations.

Database schema = set of all relation schemas in
the database 7

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Operations
 Also, operations on relations are precisely defined:

 Take relation(s) as argument, produce new relation as result

 Unary (e.g., delete certain rows)

 Binary (e.g., union, Cartesian product)

 Corresponding operations defined on tables as well

 Using mathematical properties, equivalence can be

decided

 Important for query optimization:

8

op1(T1,op2(T2)) = op3(op4(T1),T2)
?

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Structured Query Language: SQL
 Language for manipulating tables

 Declarative – Statement specifies what needs to be
obtained, not how it is to be achieved (e.g., how to
access data, the order of operations)

 Due to declarativity of SQL, DBMS determines
evaluation strategy
 This greatly simplifies application programs

 But DBMS is not infallible: programmers should have an idea of
strategies used by DBMS, so they can design better tables,
indices, statements, in such a way that DBMS can evaluate
statements efficiently.

9

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

Structured Query Language: SQL
 Example:

 Language for constructing a new table from argument
table(s).
 FROM indicates source tables

WHERE indicates which rows to retain
 It acts as a filter

 SELECT indicates which columns/attributes to extract from the
retained rows

 This is Projection

 The result is a table.
10

SELECT <attribute list>

FROM <table list >

WHERE <condition>

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

SQL Example

11

SELECT Name

FROM Student

WHERE Id > 4999

Id Name Address Status

1234 John 123 Main fresh

5522 Mary 77 Pine senior

9876 Bill 83 Oak junior

 Student

Name

Mary

Bill

Result

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

SQL Examples

12

SELECT Id, Name FROM Student

SELECT Id, Name FROM Student

 WHERE Status = ‘senior’

SELECT * FROM Student

 WHERE Status = ‘senior’

SELECT COUNT(*) AS CountSeniors FROM Student

 WHERE Status = ‘senior’

the result is a table

with one column

and one row

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)

More Complex Example
 Goal: extract a table in which each row names a

senior student and gives a course taken and grade

 It combines information from two tables:

Student: Id, Name, Address, Status

Transcript: StudId, CrsCode, Semester, Grade

13

SELECT Name, CrsCode, Grade

FROM Student, Transcript

WHERE Transcript.StudId = Student.Id
 AND Status = ‘senior’

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
14

Join
a1 a2 a3

A 1 xxy

B 17 rst

b1 b2

3.2 17

4.8 17

FROM T1, T2

 yields: Cartesian

 Product

a1 a2 a3 b1 b2

A 1 xxy 3.2 17

A 1 xxy 4.8 17

B 17 rst 3.2 17

B 17 rst 4.8 17

WHERE a2 = b2 (filter)

 yields:

B 17 rst 3.2 17

B 17 rst 4.8 17

SELECT a1, b1 (projection)

 yields result:

B 3.2

B 4.8

T1 T2

SELECT a1, b1

FROM T1, T2

WHERE a2 = b2

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
15

Modifying Tables
UPDATE Student

SET Status = ‘soph’

WHERE Id = 111111111

INSERT INTO Student (Id, Name, Address, Status)

VALUES (999999999, ‘Bill’, ‘432 Pine’, ‘senior’)

DELETE FROM Student

WHERE Id = 111111111

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
16

Creating Tables

CREATE TABLE Student (

 Id INTEGER,

 Name CHAR(20),

 Address CHAR(50),

 Status CHAR(10),

 PRIMARY KEY (Id)) Constraint

• SQL is primarily a query language, for getting information from a

database.

• But SQL also includes a data-definition component for describing

database schemas.

• To delete a relation:

 DROP TABLE <name>;

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
17

Elements of Table Declarations
Most basic element: an attribute and its type.

The most common types are:
 INT or INTEGER (synonyms).

REAL or FLOAT (synonyms).

CHAR(n) = fixed-length string of n characters.

VARCHAR(n) = variable-length string of up to n
characters.

 Strings require single quotes.

Two single quotes = real quote, e.g., 'Paul''s grade'.

Any value can be NULL.

Creating Tables

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
18

 DATE and TIME are types in SQL.

 The form of a date value is:

 DATE ’yyyy-mm-dd’

 Example: DATE ’2016-09-10’ for Sept. 10, 2016.

 The form of a time value is:

 TIME ’hh:mm:ss’

 with an optional decimal point and fractions of a second following.

 Example: TIME ’15:30:02.5’ = two and a half seconds after

3:30PM.

Dates and Times

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
19

Transactions
Many enterprises use databases to store

information about their state
E.g., balances of all depositors

The occurrence of a real-world event that
changes the enterprise state requires the
execution of a program that changes the database
state in a corresponding way
E.g., balance must be updated when you withdraw

A transaction is a program that accesses the
database in response to real-world events

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
20

Transactions
Many activities (transactions) at the database at

all times.

Must not confuse actions, e.g., two withdrawals
from the same account must each debit the
account.

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
21

Transactions are not just ordinary programs

Additional requirements are placed on
transactions (and particularly their execution
environment) that go beyond the requirements
placed on ordinary programs.

Atomicity

Consistency

Isolation

Durability

ACID properties

Transactions

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
22

Atomicity
The system must ensure that the transaction

either runs to completion (i.e., commits) or, if it

does not complete, has no effect at all (as if it

had never been started) (i.e., aborts).

This is not true of ordinary programs. A
hardware or software failure could leave files
partially updated.

The TP monitor has the responsibility of
ensuring that whatever partial changes the
transaction has made to the database are
undone (i.e., rolled back)

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
23

Integrity Constraints
 Or Consistency Constraints.

 Rules of the enterprise generally limit the
occurrence of certain real-world events.
 Student cannot register for a course if current number of

registrants = maximum allowed

 Correspondingly, allowable database states are
restricted.
 All database states must have:

 current_registrations <= maximum_registrations

 These limitations are expressed as integrity constraints,
which are assertions that must be satisfied by the
database state.

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
24

Consistency
A transaction must access and update the

database in such a way that it preserves all

database integrity constraints.

The transaction designer must ensure that:

 IF the database is in a state that satisfies all

integrity constraints when execution of a

transaction is started

THEN when the transaction completes:

All integrity constraints are once again satisfied

(constraints can be violated in intermediate states)

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
25

Consistency
Examples:

The database contains the Id of each student:

 IC1: The Id of each student must be unique.

The database contains a list of prerequisites for each

course and, for each student, a list of completed

courses.

 IC2: A student cannot register for a course without having

taken all prerequisite courses.

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
26

Consistency
The database contains the maximum number of students

allowed to take each course and the number of students

who are currently registered for each course.

 IC3: The number of students registered for each course

cannot be greater than the maximum number allowed for

that course.

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
27

Consistency
 It might be possible to determine the number of

students registered for a course from the database in

two ways: the number is stored as a count in the

course, and computed from the information

describing each student by counting the number of

student records that indicate that the student is

registered for (or enrolled in) the course

 IC4: the two determinations must yield the same result.

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
28

Isolation
A set of transactions is executed sequentially,

or serially, if one transaction in the set is

executed to completion before another is

started.

If all transactions are consistent and the

database is initially in a consistent state,

serial execution maintains consistency.

But serial execution is inadequate from a

performance perspective

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
29

Isolation
Concurrent execution is when multiple

transactions are executed simultaneously.

different transactions are effectively interleaved

in time

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
30

Concurrent Transaction Execution

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
31

 Concurrent (interleaved) execution of a set of

transactions offers performance benefits, but might

not be correct.

 Example: Two students execute the course

registration transaction at about the same time

 (cur_reg is the number of current registrants)

T1: read(cur_reg : 29) write(cur_reg : 30)

T2: read(cur_reg : 29) write(cur_reg : 30)

 time

Result: Database state no longer corresponds to real-world state,

integrity constraint violated.

Lost update: one of the increments has been lost.

Isolation

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
32

 Isolation = Even though transactions are executed

concurrently, the overall effect of the schedule

must be the same as if the transactions had

executed serially in some order.

The effect of concurrently executing a set of
transactions must be the same as if they had
executed serially in some order
The execution is thus not serial, but serializable

Isolation

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
33

 Serializable execution has better performance
than serial, but performance might still be
inadequate.
Database systems offer several isolation levels with

different performance characteristics (but some
guarantee correctness only for certain kinds of
transactions – not in general)

Isolation

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
34

Durability
 The system must ensure that once the transaction

commits, its effects remain in the database even if the

computer, or the medium on which the database is

stored, subsequently crashes.

Example: if a student successfully registers for a

course, he/she expects the system to remember that

he/she is registered even if the system later crashes.

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
35

ACID Properties
The transaction monitor is responsible for

ensuring atomicity, (the requested level of)
isolation and durability.
Hence it provides the abstraction of failure-free,

non-concurrent environment, greatly simplifying the
task of the transaction designer.

The transaction designer is responsible for
ensuring the consistency of each transaction, but
doesn’t need to worry about concurrency
(because of isolation) and system failures
(because of atomicity and durability).

(c) Pearson Education Inc. and Paul Fodor (CS Stony Brook)
36

ACID Properties
Atomicity = Each transaction is executed

completely or not at all.

Consistency = Each transaction maintains database

consistency.

 Isolation = The concurrent execution of a set of

transactions has the same effect as some serial

execution of that set.

Durability = The effects of committed transactions

are permanently recorded in the database.

