
CSE260, Computer Science B: Honors

Stony Brook University

http://www.cs.stonybrook.edu/~cse260

Code Style and Conventions

http://www.cs.stonybrook.edu/~cse260

(c) Paul Fodor

What are code conventions?

A common style standard

Encouraged, not enforced

Think programmer etiquette

Vary between languages

2

(c) Paul Fodor
3

(c) Paul Fodor

Why have code conventions?
 Why have code conventions?

~80% of the lifetime cost of software is maintenance

rarely maintained by the original author

4

(c) Paul Fodor

Java Code Conventions
Code conventions improve the

readability of the software, allowing

engineers to understand new code

more quickly and thoroughly.

If you ship your source code as a product,

you need to make sure it is as well

packaged and clean as any other product

you create.
5

(c) Paul Fodor

What are the benefits of

code conventions?
 Improve readability

 Make learning curve less steep

 Ship neatly packaged, clean code

6

(c) Paul Fodor

Java Recommendations

7

• http://www.oracle.com/technetwork/java/codeconvtoc-136057.html

• Files (file names and extensions)

• No source files more than 2000 lines of code.

• Order of appearance:

1. Class/interface documentation comment

2. Class or interface statement

3. Class/interface implementation comment (/*...*/), if

necessary

4. Class (static) variables

5. Instance variables

6. Constructors

7. Methods

/**

* The Example class

* provides ...

*/

public class Example { ...

First public, then protected, then package

level (no access modifier), and then private.

group these by functionality (those that work together)

http://www.oracle.com/technetwork/java/codeconvtoc-136057.html

(c) Paul Fodor

More Conventions
 Avoid lines longer than 70 characters

 not handled well by many terminals and tools.

 When an expression will not fit on a single line, break it

according to these general principles:

 Break after a comma.

 Break before an operator.

 Prefer higher-level breaks to lower-level breaks.

 Align the new line with the beginning of the expression at the

same level on the previous line.

 If the above rules lead to confusing code or to code that's

squished up against the right margin, just indent 8 spaces

instead.
8

(c) Paul Fodor

Declaration Conventions
• One declaration per line is recommended since

it encourages commenting. In other words,
int level; // indentation level

int size; // size of table

is preferred over
int level, size;

• Do not put different types on the same line,

Ex:

int foo[], bar; //WRONG!

9

(c) Paul Fodor

Class & Method Conventions
• No space between a method name and the

parenthesis "(" starting its parameter list

• Open brace "{" appears at the end of the same line
as the declaration statement

• Closing brace "}" starts a line by itself indented to
match its corresponding opening statement,
– when it is a empty method the "}" should appear immediately after the "{"
class Sample extends Object {

int ivar1;

int ivar2;

Sample(int i, int j) {

ivar1 = i;

ivar2 = j;

}

int emptyMethod() {}

...

}
10

(c) Paul Fodor

If, Loop, & Try/Catch conventions
if (condition) {

statements;

}

if (condition) {

statements;

} else {

statements;

}

for (initialization; condition; update) {

statements;

}

try {

statements;

} catch (ExceptionClass e) {

statements;

} 11

(c) Paul Fodor

Additional Conventions

• Avoid using an object to access a class

(static) variable or method -> Use a class

name instead. For example:
classMethod(); //OK in the same class

AClass.classMethod(); //OK

anObject.classMethod(); //AVOID!

/* It gives the wrong impression

that the method is dynamic */

12

(c) Paul Fodor

Javadoc
Javadoc collects HTML comments from the

code into HTML files

The comments may contain HTML tags

/**

* Graphics is the abstract base class for all graphics contexts

* which allow an application to draw onto components realized on

* various devices or onto off-screen images.

* A Graphics object encapsulates the state information needed

* for the various rendering operations that Java supports. This

* state information includes:

*

* The Component to draw on …

The comments contain Javadoc tags

13

(c) Paul Fodor

Javadoc Tag Conventions
 Javadoc tags:

Order of Tags - include tags in the following order:

 @author (classes and interfaces only, required)

 @version (classes and interfaces only, required)

 @param (methods and constructors only)

 @return (methods only)

 @exception (@throws is a synonym added in Javadoc 1.2)

 @see

 @since

 @serial (or @serialField or @serialData)

 @deprecated
14

(c) Paul Fodor

Example
/**

* @param ch the character to be tested

* @since 1.2

* @throws IOException If an input or output

* exception occurred

* @deprecated As of JDK 1.1, replaced by

* setBounds

* @see #setBounds(int,int,int,int)

* ...

*/15

