
CSE260, Computer Science B: Honors

Stony Brook University

http://www.cs.stonybrook.edu/~cse260

Annotations & Reflection

1

http://www.cs.stonybrook.edu/~cse260

(c) Paul Fodor

Annotations and Reflection?

Features of some languages

Programmer conveniences

Useful in checking inheritance

Alternate development modes

2

(c) Paul Fodor

Annotations
Remember @Override

Remember JUnit?

@Before, @After, @Test

@ is Java’s notation for the start of an annotation

like @author for javadoc

What are they?

metadata

provide data about a program

3

(c) Paul Fodor

What are annotations used for?

 Information for the compiler

detect errors

suppress warnings.

Compile-time and deployment-time processing

for IDEs and other tools

generate code, XML files, etc.

Runtime processing

some annotations are used at runtime.
4

(c) Paul Fodor

Annotations can have field names and data

@Author(

name = "Benjamin Franklin",

date = "3/27/2003"

)

class MyClass()

@SuppressWarnings(value = "unchecked")

void myMethod() { ... }

5

(c) Paul Fodor

Where can annotations be used?

6

• Declarations of classes, fields, methods, etc.

• Java SE 8 also has type annotations:

• Class instance creation expression:

new @Interned MyObject();

• Type cast:

myString = (@NonNull String) str;

• implements clause:

class UnmodifiableList<T> implements

@Readonly List<@Readonly T> { ... }

• Thrown exception declaration:

void monitorTemperature() throws

@Critical TemperatureException { ... }

(c) Paul Fodor

Why do we care about annotations?

• Tools love to use them

• JUnit

• Javadoc

• Web-related Tools:

• Java Persistence API (JPA)

• describes the management of relational

data in applications

• Application Servers
7

(c) Paul Fodor

Annotations Look-Up
 Scattered in the Java API. Examples:

http://docs.oracle.com/javaee/8/api/javax/annotation/package-summary.html

http://docs.oracle.com/javaee/8/api/javax/faces/bean/package-summary.html

 Via cheat sheets:

8

http://docs.oracle.com/javaee/8/api/javax/annotation/package-summary.html
http://docs.oracle.com/javaee/8/api/javax/faces/bean/package-summary.html

(c) Paul Fodor

Annotations
 Annotation Types Used by the Java Language

 The predefined annotation types defined in java.lang are

@Deprecated, @Override, and @SuppressWarnings.

 @Deprecated annotation indicates that the marked element is

deprecated and should no longer be used.

 The compiler generates a warning whenever a program uses a

method, class, or field with the @Deprecated annotation.

// Javadoc comment

/**

* @deprecated

* explanation of why it was deprecated

*/

@Deprecated

static void deprecatedMethod() { ... }
9

(c) Paul Fodor

Annotations
 @Override annotation informs the compiler that the element is

meant to override an element declared in a superclass.

// mark method as a superclass method

// that has been overridden

@Override

int overriddenMethod() { ... }

 @SuppressWarnings annotation tells the compiler to suppress specific

warnings that it would otherwise generate.

// use a deprecated method and tell

// compiler not to generate a warning

@SuppressWarnings("deprecation")

void useDeprecatedMethod() {

// deprecation warning

// - suppressed

objectOne.deprecatedMethod();

}
10

(c) Paul Fodor

Declaring an Annotation Type
 Define the annotation type:

@interface ClassPreamble {

String author();

String date();

int currentRevision() default 1;

String lastModified() default "N/A";

String lastModifiedBy() default "N/A";

// Note use of array

String[] reviewers();

}

11

(c) Paul Fodor

 After the annotation type is defined, you can use annotations of

that type:

@ClassPreamble (

author = "John Doe",

date = "3/17/2002",

currentRevision = 6,

lastModified = "4/12/2004",

lastModifiedBy = "Jane Doe",

// Note array notation

reviewers = {"Alice", "Bob", "Cindy"}

)

public class Generation3List extends List2{

// class code goes here

}
12

Declaring an Annotation Type

(c) Paul Fodor

 To make the information in @ClassPreamble appear in

Javadoc-generated documentation, when you define the

annotation:

// import this to use @Documented

import java.lang.annotation.*;

@Documented

@interface ClassPreamble {

// Annotation element definitions

}
13

Declaring an Annotation Type

(c) Paul Fodor

Reflection
A powerful programming feature

requires the ability to examine or modify the

runtime behavior of applications running in the

Java virtual machine.

 i.e. dynamically examine classes and objects

 Should be used only by developers who have a

strong grasp of the fundamentals of the language.

Can enable applications to perform operations

which would otherwise be impossible.

14

(c) Paul Fodor

Reflection
Call methods at runtime that you didn’t

know existed at compile time.

Isn’t that polymorphism?

No, polymorphism uses inheritance and

knows the overridden method signatures

At runtime:

ask a Class what methods it has

call one of those methods
15

(c) Paul Fodor

Reflection Uses
Extensibility Features

dynamically use classes not known at compile time

plug-ins, add-ons, etc.

complete flexibility

Class Browsers and Visual Development

Environments

i.e. display class properties

 think the visual debugger

Debuggers and Test Tools

Watch class values change
16

(c) Paul Fodor

Reflection
 It all starts with the Class class:

o Every object in Java is a member of a class.

o How do we get an object’s Class?

• getClass() method inherited from Object. Ex:

Class c = "Hello".getClass();

• Using Class.forName and a string. Ex:

Class c2 = Class.forName("java.lang.String");

• can throw ClassNotFoundException

• Other methods:

• getSuperclass

• getDeclaredClasses
• returns an array of Class object members declared by the class, but excludes inherited classes

Class cls = Class.forName("ClassDemo");

Class[] classes = cls.getDeclaredClasses();

• getEnclosingClass
• Returns the outer class of an inner class (or null if none)

17

(c) Paul Fodor
18

The Class class has useful methods

(c) Paul Fodor

Fields
Has a type and value

Type is a Class

Get/Set data via get/set methods

Other useful classes
Method

Constructor

19

(c) Paul Fodor

Drawbacks of Reflection
 Performance Overhead

 dynamic type resolution is expensive

 certain Java virtual machine optimizations skipped

 should be avoided in hot spots

 Security Restrictions

 requires a runtime permission which may not be present when

running under a security manager.

 can’t be used with Applets

 Exposure of Internals

 allows code to perform operations that would be illegal in non-

reflective code

 accessing private fields and methods

 can result in unexpected side-effects20

