
CSE260, Computer Science B: Honors

Stony Brook University

http://www.cs.stonybrook.edu/~cse260

Build automation

1

http://www.cs.stonybrook.edu/~cse260

(c) Paul Fodor

Build Automation
Build automation is the act of scripting or

automating a wide variety of tasks that

software developers do in their day-to-day

activities. Includes tasks to:

compile computer source code into binary code

package binary code

 check-out from version control

run automated tests

deploy to production systems

create documentation and/or release notes2

(c) Paul Fodor

make, GNU make, nmake
 make is a classic Unix build tool created

by Stuart Feldman in April 1976 at Bell Labs

(2003 ACM Software System Award for

make)

GNU make is the standard implementation

of make for Linux and OS X

Microsoft nmake, a command-line tool

which normally is part of Visual Studio

3

(c) Paul Fodor

make and GNU make
make is typically used to build executable

programs and libraries from source code:

make [TARGET ...]

make searches the current directory for the

makefile to use: GNUmakefile,

makefile, Makefile

without arguments, make builds the first target

that appears in its makefile, which is traditionally

a symbolic "phony" target named all

4

(c) Paul Fodor

 A makefile consists of rules.
 E.g., GNU Make syntax:

target : prerequisites ; command

 For example:

hello: ; @echo "hello"

 A makefile can also contain definitions of macros
 usually referred to as variables when they hold simple string definitions:

CC = clang

 A macro is used by expanding it: $() or ${}

NEW_MACRO = $(CC)

 Line continuation is indicated with a backslash \ character at the

end of a line
target: component \

component

5

make and GNU make

(c) Paul Fodor

 Macros can be composed of shell commands by using the command

substitution operator ':

YYYYMMDD = 'date'

 Lazy evaluation: macros are normally expanded only when their

expansions are actually required:

PACKAGE = package

VERSION = 'date +"%Y.%m%d"'

ARCHIVE = $(PACKAGE)-$(VERSION)

dist:

Notice that only now macros are expanded

for shell to interpret:

tar -cf package-'date +"%Y%m%d"'.tar

tar -cf $(ARCHIVE).tar

6

make and GNU make

(c) Paul Fodor

 Overriding macros on the command line:
make [MACRO="value" ...] [TARGET ...]

 Suffix rules also have "file targets" with names in the

form .FROM.TO and are used to launch actions based on file

extension: the internal macro $< refers to the first prerequisite

and $@ refers to the target
 For example, convert any HTML file to txt:

.SUFFIXES: .txt .html

From .html to .txt

.html.txt:

lynx -dump $< > $@

 Another way is to use pattern rules:
%.txt : %.html

lynx -dump $< > $@
7

make and GNU make

(c) Paul Fodor

PACKAGE = package

VERSION = ` date "+%Y.%m%d%" `

RELEASE_DIR = ..

RELEASE_FILE = $(PACKAGE)-$(VERSION)

Notice that the variable LOGNAME comes from the environment in

POSIX shells.

target: all - Default target. Does nothing.

all:

echo "Hello $(LOGNAME), nothing to do by default"

sometimes: echo "Hello ${LOGNAME}, nothing to do by default"

echo "Try 'make help'"

target: help - Display callable targets.

help:

egrep "^# target:" [Mm]akefile

target: list - List source files

list:

Won't work. Each command is in separate shell

cd src

ls

Correct, continuation of the same shell

cd src; \

ls

target: dist - Make a release.

dist:

tar -cf $(RELEASE_DIR)/$(RELEASE_FILE) && \

gzip -9 $(RELEASE_DIR)/$(RELEASE_FILE).tar

Expanded example 1

8

(c) Paul Fodor

Example 2
#include <iostream.h>

#include "functions.h"

int main(){

print_hello();

cout << endl;

cout << "The factorial of 5 is " << factorial(5) << endl;

return 0;

}

#include <iostream.h>

#include "functions.h"

void print_hello(){

cout << "Hello World!";

}

#include "functions.h"

int factorial(int n){

if(n!=1){

return(n * factorial(n-1));

}

else return 1;

}

void print_hello();

int factorial(int n);

9

main.cpp

hello.cpp

factorial.cpp

functions.h

(c) Paul Fodor

g++ main.cpp hello.cpp factorial.cpp -o hello

all:

g++ main.cpp hello.cpp factorial.cpp -o hello

all: hello

hello: main.o factorial.o hello.o

g++ main.o factorial.o hello.o -o hello

main.o: main.cpp

g++ -c main.cpp

factorial.o: factorial.cpp

g++ -c factorial.cpp

hello.o: hello.cpp

g++ -c hello.cpp

clean:

rm -rf *o hello

Example 2

10

Obtain an executable

A basic Makefile

make -f Makefile

More: Using dependencies

(c) Paul Fodor

A comment: the variable CC will be the compiler to use.

CC=g++

CFLAGS=-c -Wall

all: hello

hello: main.o factorial.o hello.o

$(CC) main.o factorial.o hello.o -o hello

main.o: main.cpp

$(CC) $(CFLAGS) main.cpp

factorial.o: factorial.cpp

$(CC) $(CFLAGS) factorial.cpp

hello.o: hello.cpp

$(CC) $(CFLAGS) hello.cpp

clean:

rm -rf *o hello

11

Using variables and comments

(c) Paul Fodor

PROGRAM = foo

C_FILES := $(wildcard *.c)

OBJS := $(patsubst %.c, %.o, $(C_FILES))

CC = cc

CFLAGS = -Wall -pedantic

LDFLAGS =

all: $(PROGRAM)

$(PROGRAM): .depend $(OBJS)

$(CC) $(CFLAGS) $(OBJS) $(LDFLAGS) -o $(PROGRAM)

depend: .depend

.depend: cmd = gcc -MM -MF depend $(var); cat depend >> .depend;

.depend:

@echo "Generating dependencies..."

@$(foreach var, $(C_FILES), $(cmd))

@rm -f depend

-include .depend

These are the pattern matching rules. In addition to the automatic

variables used here, the variable $* that matches whatever % stands for

can be useful in special cases.

%.o: %.c

$(CC) $(CFLAGS) -c $< -o $@

%: %.c

$(CC) $(CFLAGS) -o $@ $<

clean:

rm -f .depend *.o

Example 3

12

(c) Paul Fodor

configure script
 Configure script is an executable script designed to aid in developing

a program to be run on a wide number of different computers

 It matches the libraries on the user's computer (i.e., the operating

system), with those required by the program, just before compiling it

from its source code

 Example usage:
./configure

make

make install

 Other:

./configure --help

./configure --libs="-lmpfr -lgmp"

./configure --prefix=/home/myname/apps

13

(c) Paul Fodor

GNU build system (Autotools)
 A suite of programming tools designed to assist in making source

code packages portable to many Unix-like systems.

 Parts: Autoconf, Autoheader, Automake, Libtool.

 It is part of GNU toolchain:

 GNU make: Automation tool for compilation and build;

 GNU Compiler Collection (GCC): Suite of compilers for several

programming languages;

 GNU Binutils: Suite of tools including linker, assembler and other tools;

 GNU Bison: Parser generator

 GNU m4: m4 macro processor

 GNU Debugger (GDB): Code debugging tool

 GNU build system (autotools)

14

(c) Paul Fodor

GNU build system (Autotools)
 Autoconf generates a configure script based on the contents of a

configure.ac file in GNU m4 macro preprocessor
 https://www.gnu.org/software/autoconf/

 Example configure.ac:

AC_INIT(myconfig, version-0.1)

AC_MSG_NOTICE([Hello, world.])

 Now do:

autoconf configure.ac > configure

chmod +x configure

./configure

 and you get:

configure: Hello, world.

http://www.edwardrosten.com/code/autoconf/

15

https://www.gnu.org/software/autoconf/
http://www.edwardrosten.com/code/autoconf/

(c) Paul Fodor

GNU build system (Autotools)
AC_INIT(myconfig, version-0.1)

echo "Testing for a C compiler"

AC_PROG_CC

echo "Testing for a C++ compiler"

AC_PROG_CXX

echo "Testing for a FORTRAN compiler"

AC_PROG_F77

AC_LANG(C++)

AC_CHECK_LIB(m, cos)

16

(c) Paul Fodor

Apache Ant
 Apache Ant is a popular for Java platform development and uses an

XML file format: by default the XML file is named build.xml
<?xml version="1.0"?>

<project name="Hello" default="compile">

<target name="clean" description="remove intermediate files">

<delete dir="classes"/>

</target>

<target name="clobber" depends="clean" description="remove all artifact files">

<delete file="hello.jar"/>

</target>

<target name="compile" description="compile the Java source code to class files">

<mkdir dir="classes"/>

<javac srcdir="." destdir="classes"/>

</target>

<target name="jar" depends="compile" description="create a Jar file for the application">

<jar destfile="hello.jar">

<fileset dir="classes" includes="**/*.class"/>

<manifest>

<attribute name="Main-Class" value="HelloProgram"/>

</manifest>

</jar>

</target>

</project>

17

(c) Paul Fodor

Apache Maven
 A build automation tool used primarily for Java projects, but also

other languages: C#, Ruby, Scala, and other languages.

 Maven projects are configured using a Project Object Model, which

is stored in a pom.xml-file:
<project>

<!-- model version is always 4.0.0 for Maven 2.x POMs -->

<modelVersion>4.0.0</modelVersion>

<!-- project coordinates, i.e. a group of values which uniquely identify this project -->

<groupId>com.mycompany.app</groupId>

<artifactId>my-app</artifactId>

<version>1.0</version>

<!-- library dependencies -->

<dependencies>

<dependency>

<!-- coordinates of the required library -->

<groupId>junit</groupId>

<artifactId>junit</artifactId>

<version>3.8.1</version>

<!-- this dependency is only used for running and compiling tests -->

<scope>test</scope>

</dependency>

</dependencies>

</project>

 Then the command: mvn package
18

(c) Paul Fodor

Extreme programming (XP)

19

Planning and feedback loops in extreme programming.

Responsiveness to changing customer requirements

Advocates frequent "releases" in short development cycles.

(c) Paul Fodor

Agile software development
 The Agile Manifesto

 promotes adaptive planning, evolutionary development, early delivery, continuous

improvement and encourages rapid and flexible response to change.

1. Customer satisfaction by rapid delivery of useful software

2. Welcome changing requirements, even late in development

3. Working software is delivered frequently (weeks rather than months)

4. Close, daily cooperation between business people and developers

5. Projects are built around motivated individuals, who should be trusted

6. Face-to-face conversation is the best form of communication (co-location)

7. Working software is the principal measure of progress

8. Sustainable development, able to maintain a constant pace

9. Continuous attention to technical excellence and good design

10. Simplicity—the art of maximizing the amount of work not done—is essential

11. Self-organizing teams

12. Regular adaptation to changing circumstances

20

