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(c) Paul Fodor & Pearson Inc.

Software Development Life Cycle?

• Using well proven, established processes

–preferably while taking advantage of good tools
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Software Development Lifecycle

The LONG… answer
 The methodology for constructing and measuring software 

systems of high quality.

 What properties make a software system high quality?

 correctness

 efficiency

 ease of use (by other programmers in the case of 

frameworks)

 reliability/robustness

 maintainability

 modifiability

 extensibility

 scalability
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Klocs (1,000s Source lines of code)
 Software Development Lifecycle helps us measure

code 

 As programs get larger, the high quality software 

goals become much more difficult to achieve. 

Why?

 program complexity

 team complexity
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 Other Steps to Consider:

Software Integration: 

 Done in large projects

 Combine developed software into a cohesive unit

Software Maintenance:

 Follows Deployment

Monitoring and Updating deployed software

A B C D E

ABCDE
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Software maintenance

Follows Deployment

Monitoring and Updating deployed software
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• Waterfall Model:

• Many variations: 

1. Requirements Analysis

2. Design

3. Evaluate Design

4. Code

5. Test, Debug, & Profile Components

6. Integrate

7. Test, Debug, & Profile Whole Program

8. Deploy

9. Maintain
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There are other models:

Agile Programming

Extreme Programming

Pair Programming

Etc.
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 Software Jobs:

 Programmers = the most time consuming job in software development

 Additionally, you should know how to design, program, test, debug software

 Other types of jobs beside programmers:

 Designer

 Database, Network, Security Administrator

 Tester

 Project Leader 

 Manager

 Documentation developer / Instructor

 Founder/CEO

 NOTE: designers & programmers on a project may not be the same 

people!
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Software Engineering Basics

Important Principles for creating a 

Software Solution:

First, define the problem

Design, then code

Always Provide Feedback

Learn a methodology for constructing 

software systems of high quality.
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What properties make a software 

system of high quality?
 Correctness

 Efficiency

 Ease of use

 for the user

 for other programmers using your framework

 Reliability/robustness

 Reusability (i.e., code reuse with slight or no modification)

 Extensibility

 Scalability (i.e., to handle a growing amount of work in a 

capable manner)

 Maintainability, Readability, Modifiability, Testability, etc.
11
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 Correctness (think of GE or IBM large engineering systems)

 Efficiency (think of Google Search)

 Ease of use

 for the user (think of Apple UI and products)

 for other programmers using your framework (see MS Visual...)

 Reliability/robustness (think of NASA software)

 Reusability (see Apache Software Foundation software, e.g. HTTP server)

 Extensibility (see Android OS growth to most popular mobile platform)

 Scalability (think of Oracle DBs)

 Maintainability, Readability, Modifiability, Testability, etc.
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Correctness
Does the program perform its intended function?

And does it produce the correct results?

This is not just an implementation (coding) issue

Correctness is a function of the problem 

definition

A flawed Requirements Analysis results in a 

flawed Design

A flawed Design results in a flawed program

Garbage In – Garbage Out
13
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Efficiency
 Plan for efficiency

 wisely choose your data structures & algorthms (including their 

complexity, e.g., O(N)) in the design phase.

 tools & technologies too.

 Does the program meet user performance expectations?

 If not, find the bottlenecks

 done after implementation

 called profiling
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Ease of Use for End User
 Is the GUI easy to learn to use?

a gently sloped learning curve

 What makes a GUI easy to use?

 familiar GUI structures

 familiar icons when possible instead of text

components logically organized & grouped

appealing to look at

 colors, alignment, balance, etc.

 forgiving of user mistakes

help, tooltips, and other cues available

etc. 15
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Ease of Use for other Programmers
 In particular for frameworks and tools

 the Java API is developed to be easy to use

 Should you even build a framework?

Yes, you will be a software developer.

 What makes a framework easy to use?

 logical structure

naming choices (classes, methods, etc.)

 flexibility (usable for many purposes)

 feedback (exceptions for improper use)

documentation (APIs & tutorials)

etc.16
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Reliability/Robustness
 Does your program:

anticipate erroneous input?

anticipate all potential program conditions?

handle erroneous input intelligently?
 think about this in the design stage

provide graceful degradation?
 Graceful degradation (or Fault-tolerance) is the property that enables a system to 

continue operating properly in the event of the failure of (or one or more faults 

within) some of its components.

 If an error condition occurs in your program, should your program:

o crash?, exit?, notify the user and exit?, provide an approximated service? 

Not always possible to save it.

 For example: What should Web Browsers do with poorly formatted HTML? 
17
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Feedback
Provide feedback to End users due to: bad input, 

equipment failure, missing files, etc.

How?

popup dialogs, highlighting (red text in Web 

form), etc.

Provide feedback to other programmers using 

your framework due to: passing bad data, 

incorrect initialization, etc.

How?

exception throwing, error value returning, etc.
18
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Flexibility in a Framework
 Programmers need to know:

when and why things in a framework might go wrong

AND

when and why things in a framework do go wrong

 How?

customized response: 

System.out.println notifications

GUI notifications

 Web page generated and sent via Servlet notification

 etc.
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Reusability
 Code serving multiple purposes.

 Who cares?

management does

avoid duplication of work (save $)

software engineering does

avoid duplication of work (save time & avoid mistakes)

 How can we achieve this?

careful program decomposition (from methods to classes 

and packages)

separate technology-dependent components
20
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Extensibility
 Can the software easily be extended?

can it be used for other purposes

 plug-ins

 exporters

 add-ons

 Extensibility Example: 

 In NetBeans, Tools → Plugins

 Anyone can make a plugin

 Download, install, and use

 In Eclipse IDE, Help → Install New Software plugin

21



(c) Paul Fodor & Pearson Inc.

Scalability
How will the program perform when we increase:

# of users/connections

amount of data processed

# of geographic locations users are from

A function of design as well as technology
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More high quality software properties

Maintainability

Readability

Modifiability

Testability

All of these, as with the others, 

must be considered early in design

23



(c) Paul Fodor & Pearson Inc.

Design, then develop
We will design all classes before coding

not easy to do

UML is used for software design

You cannot design a system unless you really 

understand the necessary technology

designs cannot be created without testing

24
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Design Approaches 
Have other “similar” problems been solved?

Do design patterns exist to help?

 Employ:

 data-driven design

 data-driven programming is a programming paradigm in which the 

program statements describe the data to be matched and the 

processing required rather than defining a sequence of steps to be 

taken.

 top-down design

 a top-down approach is the breaking down of a system to gain 

insight into its compositional sub-systems
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Data-driven Design
From the problem specification, extract:

nouns (they are objects, attributes of objects)

verbs (they are methods)

Divide data into separate logical, manageable 

groupings

these will form your objects

Note needs for data structures or algorithms

design your data management classes early on
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Data-driven Design gives the Class 

relationships
 Think data flow:

What HAS what?

What IS what?

What USES what?

Where should data go?

 Static or non-static?

 Design patterns will help us make these decisions

 Bottom line: think modular

no 1000 line classes or 100 line methods

27
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Modularity
How reusable are your classes?

can they be used in a future project?

Think of programmers, not just users

Can individual classes be easily separated 

and re-used?

Separate Functionality from Presentation

Separate Data from Mechanics

28
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Functionality vs. Presentation
The state manager:

 manages the state of one or more user interface controls such as text fields, 

OK buttons, radio buttons, etc. in a graphical user interface. 

 In this user interface programming technique, the state of one UI control depends on 

the state of other UI controls.

 classes that do the work of managing data & enforcing rules on that data

 Why separate the state management and the UI?

 so we can design several different UIs for a state manager

 so we can change the state management without changing the UI

 so we can change the UI without changing the state manager 

 reuse code that is proven to work

 This is a common principle throughout GUI design
 even for Web sites (separate content from presentation)

 different programmers for each task
29
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Choosing Data Structures
Internal data structures

What is the natural representation of the 

given data?

Trade-offs: Setup vs. access speeds

Keep data ordered?

Ordered by what?

Which access algorithms?
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UML Diagrams
 UML - Unified Modeling Language diagrams are used to 

design object-oriented software systems

represent systems visually = Client-friendly!

provides a system architecture

makes coding more efficient and system more reliable

diagrams show relationships among classes and objects

 Can software engineering be automated?

Visual programming

Patterns & frameworks

Computer-Aided Software Engineering (CASE) tools
31
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Types of UML Diagrams
Types of UML diagrams that we will make in 

CSE260:

Use Case Diagram 

Class Diagram

Sequence Diagram

Other types of UML diagrams (you will make in 

our CSE308): 

State, Activity, Collaboration, Communication, 

Component, & Deployment Diagrams
32



(c) Paul Fodor & Pearson Inc.

What will we use UML Diagrams for?

Use Case Diagrams

describe all the ways users will interact 

with the program

Class Diagrams

describe all of our classes for our app

Sequence Diagrams

describe all event handling

33
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Software Development Life Cycle
 Requirements Analysis & design stages:

 Correctness, Efficiency, Ease of use, 

Reliability/robustness, Reusability, Maintainability, 

Modifiability, Testability, Extensibility, Scalability

 do we consider these properties in the implementation stages?

 Little because it is too late to make a big impact.
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Where to begin?
Understand and Define the problem

the point of a requirements analysis

What are system input & output?

How will users interact with the system?

What data must the system maintain?

Generate a problem specification document

defines the problem

defines what needs to be done to solve the 

problem35
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Requirements Analysis
 i.e. Software Specification (or spec.)

 A textual document

 It serves two roles. It:

 defines the problem to be solved

 explains how to solve it

 This is the input into the software design stage

 What goes in a requirements analysis (RA)?
 The why, where, when, what, how, and who:

 Why are we making this software?

 Where and when will it be created?

 What, exactly, are we going to make?

 How are we going to make it?

 Who will be performing each role?
36
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Requirements Analysis
What really goes in a RA?
Detailed descriptions of all:

 necessary data (including how to query it, views, forms, 

inserts)

 program input and output

 GUI screens & controls 

 user actions and program reactions

Where do you start?
 Interviews with the end users

 What do they need?

 What do they want?
37
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UML Use Case Diagrams
 A set of scenarios that describe an interaction between a 

user and a system

 Done first in a project design

helps you to better understand the system 

requirements

 To draw a Use Case Diagram:

List a sequence of steps a user might take in order to 

complete an action.

Example actor: a user placing an order with a sales 

company
38
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UML Use Case Diagrams

 Human Actor: Stick figure with name underneath.

Name usually identifies type of actor.

Use Case: Oval enclosing name of use case.

 Non-Human Actor: Stick figure, or a rectangle enclosing the 

stereotype <<actor>> and the name of the actor. A stereotype 

indicates the type of UML element (when it isn’t evident from 

the shape).
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UML Use Case Diagrams
 Relationships Between Actors and Use Cases:

Solid edge between an actor A and a use case U 

means that actor A participates in use case U.
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UML Use Case Diagrams
 Relationships Between Use Cases:

 Include: dashed arrow labeled <<include>> from use case U1 to 

use case U2 means U2 is part of the primary flow of events of U1.

 Extend: dashed arrow labeled <<extend>> from use case U2 to 

use case U1 means U2 is part of a secondary flow of events of U1.
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Relationships Between Actors
 Generalization: Solid line with triangular arrowhead 

from actor A1 to actor A2 means that A2 is a 

generalization of A1. This implies that A1 participates in 

all use cases that A2 participates in. Generalization is 

similar to inheritance.

42
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Relationships Between Use Cases
 Generalization: Solid line with triangular arrowhead 

from use case U1 to use case U2 means that U2 is a 

generalization of U1 (equivalently, U1 is a specialized 

version of U2). Generalization is similar to inheritance.
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Formal UML

Use Case 

Diagram
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UML Class Diagrams
A UML class diagram consists of one or more 

classes, each with sections for:

class name

instance variables

methods

Lines between classes represent associations

Uses

Aggregation (HAS-A)
Containment

Inheritance (IS-A)
46
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UML Class Diagrams
 Show relationships between classes

 Class associations denoted by lines connecting classes

 A feathered arrow denotes a one-directional association
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Method and Instance Variable 

Descriptions
 Instance Variables Format
variableName : variableType

 For example: upValue : int

Method Header Format
methodName(argumentName:argumentType)

:returnType

 For example: setDie1(newDie1:Die):void

Underlined or $ denotes a static method or variable
 For example: myStaticMethod(x:int):void
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UML Class Diagrams & Aggregation
 UML class diagram for PairOfDice & Die:
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Die

numFaces: int

upValue : int

getUpValue() : int

getNumFaces() : int

roll() : void

PairOfDice

die1: Die

die2: Die

getDie1() : Die

getDie2() : Die

getTotal() : int

rollDice() : void

setDie1(newDie1: Die) : void

setDie2(newDie2: Die) : void

1 2

Denote multiplicity, 
2 Die object for 

each PairOfDice
object

Diamond denotes aggregation

PairOfDice HAS-A Die
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UML Class Diagrams & Inheritance
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public class Student extends Person

Person

name: String

age : int

getAge() : int

getName() : String

setAge(newAge: int) : void

Triangle denotes inheritance

Student IS-A Person

Student

gpa: double

getGPA() : double

setGPA(newGPA: double) : void
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Encapsulation
 We can take one of two views of an object:

 internal  - the variables the object holds and the 

methods that make the object useful

external  - the services that an object provides and 

how the object interacts

 From the external view, an object is an encapsulated

entity, providing a set of specific services

 These services define the Application Programming Interface

(API) to the object

abstraction hides details from the rest of the system
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Class Diagrams and Encapsulation
 In a UML class diagram:

public members can be preceded by +

private members are preceded by -
protected members are preceded by #

52

Die

- numFaces: int

- upValue : int

+ getUpValue() : int

+ getNumFaces() : int

+ roll() : void

PairOfDice

- die1: Die

- die2: Die

+ getDie1() : Die

+ getDie2() : Die

+ getTotal() : int

+ rollDice() : void

+ setDie1(newDie1: Die) : void

+ setDie2(newDie2: Die) : void
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Interfaces in UML
2 ways to denote an interface

<<interface>> (standard) OR <<I>>

53
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Abstract Classes in UML
2 ways to denote a class or method is abstract:

class or method name in italics, OR

{abstract} notation
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UML Sequence Diagrams
Demonstrate the behavior of objects in program

describe the objects and the messages they pass 

diagrams are read left to right and descending 
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Top-down class design
 Top-down class design strategy:

Decompose the problem into sub-problems (large 

chunks).

Write skeletal classes for sub-problems.

Write skeletal methods for sub-problems.

Repeat for each sub-problem.

 If necessary, go back and redesign higher-level classes to 

improve:

modularity,

 information hiding, and

 information flow
56
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Designing Methods
Decide method signatures

numbers and types of parameters and 

return values

Write down what a method should do 

(spec)

use top-down design
decompose methods into helper methods

Use javadoc comments to describe methods

Use method specs for implementation
57
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Results of Top-down class design

58

UML Class Diagrams

Skeletal Classes

• instance variables

• static variables

• class diagrams

• method headers

• DOCUMENTATION
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Software Longevity
The FORTRAN & COBOL programming 

languages are ~50 years old
many mainframes still use code written in the 1960s

software maintenance is more than ½ a project

Moral of the story: 

the code you write may outlive you, so make it:
Easy to understand

Easy to modify & maintain

software must be ready to accommodate change
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Software Maintenance
What is software maintenance?

 Improving or extending existing software

incorporate new functionality

incorporate new data to be managed

incorporate new technologies

incorporate new algorithms

incorporate use with new tools

incorporate things we cannot think of now ☺

60



(c) Paul Fodor & Pearson Inc.

Software Engineering
 Always use data driven & top-down design:

 identify and group system data

 identify classes, their methods and method signatures

 determine what methods should do

 identify helper methods

 Write down step by step algorithms inside methods to help you!!!

 document each class, method and field

 specify all conditions that need to be enforced or checked

 decide where to generate exceptions

 add to documentation

 evaluate design, and repeat above process

 until implementation instructions are well-defined
61
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Evaluating a Design
 During the design of a large program, it is worthwhile to step 

back periodically & attempt a comprehensive evaluation of the 

design so far

 called a design review
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Design Reviews are not just for Software

63
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Who performs the design review? 

 Design review committee

 Members should include:

varied perspectives

some from the project

some external to the project

 All should be familiar with the design itself

64
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There is no perfect design
 Is the design adequate?

 Will do the job with adequate performance & cost?
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Critical Design Issues
 Is it correct?

 Will all implementations of the design exhibit the desired 

functionality?

 Is it efficient?

 Are there implementations of the design that will be 

acceptably efficient?

 Is it testable & maintainable? 

 Does the design describe a program structure that will make 

implementations reasonably easy to build, test and maintain?

 Is it modifiable, extensible, & scalable?

 How difficult will it be to enhance the design to accommodate future 

modifications?
66
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Other Considerations

 Are the classes independent?

 Is there redundancy?

 Do they manage & protect their own data?

 Can they be tested individually?

 Do they promote code reuse?

 Is data and control flow clear or complex?
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It all starts with a Modular Design
 Large software projects are divided up into separate modules

 i.e. groups of related classes

68
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Modular Design Methodology
 Decompose 

 large programming problems into smaller ones 

 i.e. sub-problems

 Solve 

 the sub-problems independently

 modules solve sub-problems

 Assemble 

 the modules to build full system

 called system integration

 scariest parts of software development

 serious design flaws can be exposed
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What makes a good modular design?

• Connections between modules are explicit

• Connections between modules are minimized

– called narrow interfaces

• Modules use abstraction well

• Implementation of modules can be done 
independently

–modules avoid duplication of effort

70
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More on Narrow Interfaces
• A module should have access to only as much 

information as it needs to work (no more than that)

– less chance of misuse

– less coordination needed between team members

• fewer meetings necessary

71

A BInterface

A B

Interface



(c) Paul Fodor & Pearson Inc.

Design is 

Difficult
 Where do you begin?

 When is the design 

complete?
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Good Design comes with Experience

 It takes time to become an expert

73



(c) Paul Fodor & Pearson Inc.

?

How can a design be reviewed for 

correctness?
 Testing is not possible

 Verification is not possible

 unless it uses a formal language

 typically not practical

 Use proven, systematic procedure

 examine both local & global properties of the 

design
74
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Local Properties
 Studying individual modules

 Important local properties:

consistency

 everything designed was as specified

completeness

 everything specified was designed

performance

 running time

 storage requirements
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Global Properties
 Studying how modules fit together

after examining local properties
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Global Properties to Consider

 Is all the data accounted for?

 from original SRS

 exists properly in a module

 rules are properly enforced

 Trace paths through the design

walk-through

select test data

 Does control flow properly through the design?

 Does data flow properly through the design?
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Reviewing Design Structure
 Two key questions:

 Is there an abstraction that would lead to a better 

modularization?

Have we grouped together things that really do not 

belong in the same module?

 Structural Considerations

Coherence of procedures

Coherence of types

Communication between modules

Reducing dependencies
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Coherence of procedures

 A procedure (method) in a design should represent a 

single, coherent abstraction

 Indicators of lack of coherence:

 if the best way to specify a procedure is to describe 

how it works

 if the procedure is difficult to name

 Arbitrary restrictions:

 length of a procedure

method calls in a procedure
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Coherence of Types

Examine each method to see how crucial it is for 

the data type

does it need to access instance or static variables 

of the class

Move irrelevant methods out to another location

Common with static functions
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Communication between Modules

 Careful examination can uncover important design flaws

 think of handing your project design to another 

student for inspection

 Do these pieces really fit together?

 to improve any design:

 act like a jerk when examining your own design

 ask questions that a jerk would ask

 make sure your design addresses these jerky questions

81



(c) Paul Fodor & Pearson Inc.

Reducing Dependencies
 A design with fewer dependencies is generally better 

than one with more dependencies.

 What does this mean?

Make the design of each component dependent on as 

few other components as necessary

Example of bad framework design:

 Every class in your framework uses every other class in 

your framework in one way or another

 This would be terribly complex to test & modify
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Look for Antipatterns

Common patterns in programs that use 

poor design concepts

make reuse very difficult

source: http://www.antipatterns.com

Examples:

The Blob

Spaghetti Code

We must correct these design errors
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