
CSE260, Computer Science B: Honors

Stony Brook University

http://www.cs.stonybrook.edu/~cse260

Software Development Lifecycle

Object Oriented Design using UML

Design Review

1

http://www.cs.stonybrook.edu/~cse260

(c) Paul Fodor & Pearson Inc.

Software Development Life Cycle?

• Using well proven, established processes

–preferably while taking advantage of good tools

2

Requirements

Analysis

Design &

Document
Code Test

Debug

Profile

DeployEvaluate

Design

(c) Paul Fodor & Pearson Inc.

Software Development Lifecycle

The LONG… answer
 The methodology for constructing and measuring software

systems of high quality.

 What properties make a software system high quality?

 correctness

 efficiency

 ease of use (by other programmers in the case of

frameworks)

 reliability/robustness

 maintainability

 modifiability

 extensibility

 scalability
3

(c) Paul Fodor & Pearson Inc.

Klocs (1,000s Source lines of code)
 Software Development Lifecycle helps us measure

code

 As programs get larger, the high quality software

goals become much more difficult to achieve.

Why?

 program complexity

 team complexity

4

(c) Paul Fodor & Pearson Inc.

 Other Steps to Consider:

Software Integration:

 Done in large projects

 Combine developed software into a cohesive unit

Software Maintenance:

 Follows Deployment

Monitoring and Updating deployed software

A B C D E

ABCDE

5

Software Development Lifecycle

(c) Paul Fodor & Pearson Inc.

Software maintenance

Follows Deployment

Monitoring and Updating deployed software

6

(c) Paul Fodor & Pearson Inc.

• Waterfall Model:

• Many variations:

1. Requirements Analysis

2. Design

3. Evaluate Design

4. Code

5. Test, Debug, & Profile Components

6. Integrate

7. Test, Debug, & Profile Whole Program

8. Deploy

9. Maintain

7

Software Development Lifecycle

(c) Paul Fodor & Pearson Inc.

There are other models:

Agile Programming

Extreme Programming

Pair Programming

Etc.

8

Software Development Lifecycle

(c) Paul Fodor & Pearson Inc.

 Software Jobs:

 Programmers = the most time consuming job in software development

 Additionally, you should know how to design, program, test, debug software

 Other types of jobs beside programmers:

 Designer

 Database, Network, Security Administrator

 Tester

 Project Leader

 Manager

 Documentation developer / Instructor

 Founder/CEO

 NOTE: designers & programmers on a project may not be the same

people!

9

Software Development Lifecycle

(c) Paul Fodor & Pearson Inc.

Software Engineering Basics

Important Principles for creating a

Software Solution:

First, define the problem

Design, then code

Always Provide Feedback

Learn a methodology for constructing

software systems of high quality.

10

(c) Paul Fodor & Pearson Inc.

What properties make a software

system of high quality?
 Correctness

 Efficiency

 Ease of use

 for the user

 for other programmers using your framework

 Reliability/robustness

 Reusability (i.e., code reuse with slight or no modification)

 Extensibility

 Scalability (i.e., to handle a growing amount of work in a

capable manner)

 Maintainability, Readability, Modifiability, Testability, etc.
11

(c) Paul Fodor & Pearson Inc.

 Correctness (think of GE or IBM large engineering systems)

 Efficiency (think of Google Search)

 Ease of use

 for the user (think of Apple UI and products)

 for other programmers using your framework (see MS Visual...)

 Reliability/robustness (think of NASA software)

 Reusability (see Apache Software Foundation software, e.g. HTTP server)

 Extensibility (see Android OS growth to most popular mobile platform)

 Scalability (think of Oracle DBs)

 Maintainability, Readability, Modifiability, Testability, etc.

12

What properties make a software

system of high quality?

(c) Paul Fodor & Pearson Inc.

Correctness
Does the program perform its intended function?

And does it produce the correct results?

This is not just an implementation (coding) issue

Correctness is a function of the problem

definition

A flawed Requirements Analysis results in a

flawed Design

A flawed Design results in a flawed program

Garbage In – Garbage Out
13

(c) Paul Fodor & Pearson Inc.

Efficiency
 Plan for efficiency

 wisely choose your data structures & algorthms (including their

complexity, e.g., O(N)) in the design phase.

 tools & technologies too.

 Does the program meet user performance expectations?

 If not, find the bottlenecks

 done after implementation

 called profiling

14

(c) Paul Fodor & Pearson Inc.

Ease of Use for End User
 Is the GUI easy to learn to use?

a gently sloped learning curve

 What makes a GUI easy to use?

 familiar GUI structures

 familiar icons when possible instead of text

components logically organized & grouped

appealing to look at

 colors, alignment, balance, etc.

 forgiving of user mistakes

help, tooltips, and other cues available

etc. 15

(c) Paul Fodor & Pearson Inc.

Ease of Use for other Programmers
 In particular for frameworks and tools

 the Java API is developed to be easy to use

 Should you even build a framework?

Yes, you will be a software developer.

 What makes a framework easy to use?

 logical structure

naming choices (classes, methods, etc.)

 flexibility (usable for many purposes)

 feedback (exceptions for improper use)

documentation (APIs & tutorials)

etc.16

(c) Paul Fodor & Pearson Inc.

Reliability/Robustness
 Does your program:

anticipate erroneous input?

anticipate all potential program conditions?

handle erroneous input intelligently?
 think about this in the design stage

provide graceful degradation?
 Graceful degradation (or Fault-tolerance) is the property that enables a system to

continue operating properly in the event of the failure of (or one or more faults

within) some of its components.

 If an error condition occurs in your program, should your program:

o crash?, exit?, notify the user and exit?, provide an approximated service?

Not always possible to save it.

 For example: What should Web Browsers do with poorly formatted HTML?
17

(c) Paul Fodor & Pearson Inc.

Feedback
Provide feedback to End users due to: bad input,

equipment failure, missing files, etc.

How?

popup dialogs, highlighting (red text in Web

form), etc.

Provide feedback to other programmers using

your framework due to: passing bad data,

incorrect initialization, etc.

How?

exception throwing, error value returning, etc.
18

(c) Paul Fodor & Pearson Inc.

Flexibility in a Framework
 Programmers need to know:

when and why things in a framework might go wrong

AND

when and why things in a framework do go wrong

 How?

customized response:

System.out.println notifications

GUI notifications

 Web page generated and sent via Servlet notification

 etc.

19

(c) Paul Fodor & Pearson Inc.

Reusability
 Code serving multiple purposes.

 Who cares?

management does

avoid duplication of work (save $)

software engineering does

avoid duplication of work (save time & avoid mistakes)

 How can we achieve this?

careful program decomposition (from methods to classes

and packages)

separate technology-dependent components
20

(c) Paul Fodor & Pearson Inc.

Extensibility
 Can the software easily be extended?

can it be used for other purposes

 plug-ins

 exporters

 add-ons

 Extensibility Example:

 In NetBeans, Tools → Plugins

 Anyone can make a plugin

 Download, install, and use

 In Eclipse IDE, Help → Install New Software plugin

21

(c) Paul Fodor & Pearson Inc.

Scalability
How will the program perform when we increase:

# of users/connections

amount of data processed

# of geographic locations users are from

A function of design as well as technology

22

(c) Paul Fodor & Pearson Inc.

More high quality software properties

Maintainability

Readability

Modifiability

Testability

All of these, as with the others,

must be considered early in design

23

(c) Paul Fodor & Pearson Inc.

Design, then develop
We will design all classes before coding

not easy to do

UML is used for software design

You cannot design a system unless you really

understand the necessary technology

designs cannot be created without testing

24

(c) Paul Fodor & Pearson Inc.

Design Approaches
Have other “similar” problems been solved?

Do design patterns exist to help?

 Employ:

 data-driven design

 data-driven programming is a programming paradigm in which the

program statements describe the data to be matched and the

processing required rather than defining a sequence of steps to be

taken.

 top-down design

 a top-down approach is the breaking down of a system to gain

insight into its compositional sub-systems

25

(c) Paul Fodor & Pearson Inc.

Data-driven Design
From the problem specification, extract:

nouns (they are objects, attributes of objects)

verbs (they are methods)

Divide data into separate logical, manageable

groupings

these will form your objects

Note needs for data structures or algorithms

design your data management classes early on

26

(c) Paul Fodor & Pearson Inc.

Data-driven Design gives the Class

relationships
 Think data flow:

What HAS what?

What IS what?

What USES what?

Where should data go?

 Static or non-static?

 Design patterns will help us make these decisions

 Bottom line: think modular

no 1000 line classes or 100 line methods

27

(c) Paul Fodor & Pearson Inc.

Modularity
How reusable are your classes?

can they be used in a future project?

Think of programmers, not just users

Can individual classes be easily separated

and re-used?

Separate Functionality from Presentation

Separate Data from Mechanics

28

(c) Paul Fodor & Pearson Inc.

Functionality vs. Presentation
The state manager:

 manages the state of one or more user interface controls such as text fields,

OK buttons, radio buttons, etc. in a graphical user interface.

 In this user interface programming technique, the state of one UI control depends on

the state of other UI controls.

 classes that do the work of managing data & enforcing rules on that data

 Why separate the state management and the UI?

 so we can design several different UIs for a state manager

 so we can change the state management without changing the UI

 so we can change the UI without changing the state manager

 reuse code that is proven to work

 This is a common principle throughout GUI design
 even for Web sites (separate content from presentation)

 different programmers for each task
29

(c) Paul Fodor & Pearson Inc.

Choosing Data Structures
Internal data structures

What is the natural representation of the

given data?

Trade-offs: Setup vs. access speeds

Keep data ordered?

Ordered by what?

Which access algorithms?

30

(c) Paul Fodor & Pearson Inc.

UML Diagrams
 UML - Unified Modeling Language diagrams are used to

design object-oriented software systems

represent systems visually = Client-friendly!

provides a system architecture

makes coding more efficient and system more reliable

diagrams show relationships among classes and objects

 Can software engineering be automated?

Visual programming

Patterns & frameworks

Computer-Aided Software Engineering (CASE) tools
31

(c) Paul Fodor & Pearson Inc.

Types of UML Diagrams
Types of UML diagrams that we will make in

CSE260:

Use Case Diagram

Class Diagram

Sequence Diagram

Other types of UML diagrams (you will make in

our CSE308):

State, Activity, Collaboration, Communication,

Component, & Deployment Diagrams
32

(c) Paul Fodor & Pearson Inc.

What will we use UML Diagrams for?

Use Case Diagrams

describe all the ways users will interact

with the program

Class Diagrams

describe all of our classes for our app

Sequence Diagrams

describe all event handling

33

(c) Paul Fodor & Pearson Inc.

Software Development Life Cycle
 Requirements Analysis & design stages:

 Correctness, Efficiency, Ease of use,

Reliability/robustness, Reusability, Maintainability,

Modifiability, Testability, Extensibility, Scalability

 do we consider these properties in the implementation stages?

 Little because it is too late to make a big impact.

34

Requirements

Analysis

Design &

Document
Code Test

Debug

Profile

DeployEvaluate

Design

(c) Paul Fodor & Pearson Inc.

Where to begin?
Understand and Define the problem

the point of a requirements analysis

What are system input & output?

How will users interact with the system?

What data must the system maintain?

Generate a problem specification document

defines the problem

defines what needs to be done to solve the

problem35

(c) Paul Fodor & Pearson Inc.

Requirements Analysis
 i.e. Software Specification (or spec.)

 A textual document

 It serves two roles. It:

 defines the problem to be solved

 explains how to solve it

 This is the input into the software design stage

 What goes in a requirements analysis (RA)?
 The why, where, when, what, how, and who:

 Why are we making this software?

 Where and when will it be created?

 What, exactly, are we going to make?

 How are we going to make it?

 Who will be performing each role?
36

(c) Paul Fodor & Pearson Inc.

Requirements Analysis
What really goes in a RA?
Detailed descriptions of all:

 necessary data (including how to query it, views, forms,

inserts)

 program input and output

 GUI screens & controls

 user actions and program reactions

Where do you start?
 Interviews with the end users

 What do they need?

 What do they want?
37

(c) Paul Fodor & Pearson Inc.

UML Use Case Diagrams
 A set of scenarios that describe an interaction between a

user and a system

 Done first in a project design

helps you to better understand the system

requirements

 To draw a Use Case Diagram:

List a sequence of steps a user might take in order to

complete an action.

Example actor: a user placing an order with a sales

company
38

(c) Paul Fodor & Pearson Inc.

UML Use Case Diagrams

 Human Actor: Stick figure with name underneath.

Name usually identifies type of actor.

Use Case: Oval enclosing name of use case.

 Non-Human Actor: Stick figure, or a rectangle enclosing the

stereotype <<actor>> and the name of the actor. A stereotype

indicates the type of UML element (when it isn’t evident from

the shape).

39

(c) Paul Fodor & Pearson Inc.

UML Use Case Diagrams
 Relationships Between Actors and Use Cases:

Solid edge between an actor A and a use case U

means that actor A participates in use case U.

40

(c) Paul Fodor & Pearson Inc.

UML Use Case Diagrams
 Relationships Between Use Cases:

 Include: dashed arrow labeled <<include>> from use case U1 to

use case U2 means U2 is part of the primary flow of events of U1.

 Extend: dashed arrow labeled <<extend>> from use case U2 to

use case U1 means U2 is part of a secondary flow of events of U1.

41

(c) Paul Fodor & Pearson Inc.

Relationships Between Actors
 Generalization: Solid line with triangular arrowhead

from actor A1 to actor A2 means that A2 is a

generalization of A1. This implies that A1 participates in

all use cases that A2 participates in. Generalization is

similar to inheritance.

42

(c) Paul Fodor & Pearson Inc.

Relationships Between Use Cases
 Generalization: Solid line with triangular arrowhead

from use case U1 to use case U2 means that U2 is a

generalization of U1 (equivalently, U1 is a specialized

version of U2). Generalization is similar to inheritance.

43

(c) Paul Fodor & Pearson Inc.
44

(c) Paul Fodor & Pearson Inc.

Formal UML

Use Case

Diagram

45

(c) Paul Fodor & Pearson Inc.

UML Class Diagrams
A UML class diagram consists of one or more

classes, each with sections for:

class name

instance variables

methods

Lines between classes represent associations

Uses

Aggregation (HAS-A)
Containment

Inheritance (IS-A)
46

(c) Paul Fodor & Pearson Inc.

UML Class Diagrams
 Show relationships between classes

 Class associations denoted by lines connecting classes

 A feathered arrow denotes a one-directional association

47

ClassA

Instance variable info

Method header info

ClassB

Instance variable info

Method header info

Feathered arrow means
ClassA knows of and uses
ClassC, but ClassC has no
knowledge of ClassA

ClassC

Instance variable info

Method header info

Connecting line means ClassA and
ClassB have a relationship

(c) Paul Fodor & Pearson Inc.

Method and Instance Variable

Descriptions
 Instance Variables Format
variableName : variableType

 For example: upValue : int

Method Header Format
methodName(argumentName:argumentType)

:returnType

 For example: setDie1(newDie1:Die):void

Underlined or $ denotes a static method or variable
 For example: myStaticMethod(x:int):void

48

(c) Paul Fodor & Pearson Inc.

UML Class Diagrams & Aggregation
 UML class diagram for PairOfDice & Die:

49

Die

numFaces: int

upValue : int

getUpValue() : int

getNumFaces() : int

roll() : void

PairOfDice

die1: Die

die2: Die

getDie1() : Die

getDie2() : Die

getTotal() : int

rollDice() : void

setDie1(newDie1: Die) : void

setDie2(newDie2: Die) : void

1 2

Denote multiplicity,
2 Die object for

each PairOfDice
object

Diamond denotes aggregation

PairOfDice HAS-A Die

(c) Paul Fodor & Pearson Inc.

UML Class Diagrams & Inheritance

50

public class Student extends Person

Person

name: String

age : int

getAge() : int

getName() : String

setAge(newAge: int) : void

Triangle denotes inheritance

Student IS-A Person

Student

gpa: double

getGPA() : double

setGPA(newGPA: double) : void

(c) Paul Fodor & Pearson Inc.

Encapsulation
 We can take one of two views of an object:

 internal - the variables the object holds and the

methods that make the object useful

external - the services that an object provides and

how the object interacts

 From the external view, an object is an encapsulated

entity, providing a set of specific services

 These services define the Application Programming Interface

(API) to the object

abstraction hides details from the rest of the system

51

(c) Paul Fodor & Pearson Inc.

Class Diagrams and Encapsulation
 In a UML class diagram:

public members can be preceded by +

private members are preceded by -
protected members are preceded by #

52

Die

- numFaces: int

- upValue : int

+ getUpValue() : int

+ getNumFaces() : int

+ roll() : void

PairOfDice

- die1: Die

- die2: Die

+ getDie1() : Die

+ getDie2() : Die

+ getTotal() : int

+ rollDice() : void

+ setDie1(newDie1: Die) : void

+ setDie2(newDie2: Die) : void

(c) Paul Fodor & Pearson Inc.

Interfaces in UML
2 ways to denote an interface

<<interface>> (standard) OR <<I>>

53

http://www.informit.com/articles/article.asp?p=336264&seqNum=3

http://www.informit.com/articles/article.asp?p=336264&seqNum=3

(c) Paul Fodor & Pearson Inc.

Abstract Classes in UML
2 ways to denote a class or method is abstract:

class or method name in italics, OR

{abstract} notation

54

(c) Paul Fodor & Pearson Inc.

UML Sequence Diagrams
Demonstrate the behavior of objects in program

describe the objects and the messages they pass

diagrams are read left to right and descending

55

(c) Paul Fodor & Pearson Inc.

Top-down class design
 Top-down class design strategy:

Decompose the problem into sub-problems (large

chunks).

Write skeletal classes for sub-problems.

Write skeletal methods for sub-problems.

Repeat for each sub-problem.

 If necessary, go back and redesign higher-level classes to

improve:

modularity,

 information hiding, and

 information flow
56

(c) Paul Fodor & Pearson Inc.

Designing Methods
Decide method signatures

numbers and types of parameters and

return values

Write down what a method should do

(spec)

use top-down design
decompose methods into helper methods

Use javadoc comments to describe methods

Use method specs for implementation
57

(c) Paul Fodor & Pearson Inc.

Results of Top-down class design

58

UML Class Diagrams

Skeletal Classes

• instance variables

• static variables

• class diagrams

• method headers

• DOCUMENTATION

(c) Paul Fodor & Pearson Inc.

Software Longevity
The FORTRAN & COBOL programming

languages are ~50 years old
many mainframes still use code written in the 1960s

software maintenance is more than ½ a project

Moral of the story:

the code you write may outlive you, so make it:
Easy to understand

Easy to modify & maintain

software must be ready to accommodate change

59

(c) Paul Fodor & Pearson Inc.

Software Maintenance
What is software maintenance?

 Improving or extending existing software

incorporate new functionality

incorporate new data to be managed

incorporate new technologies

incorporate new algorithms

incorporate use with new tools

incorporate things we cannot think of now ☺

60

(c) Paul Fodor & Pearson Inc.

Software Engineering
 Always use data driven & top-down design:

 identify and group system data

 identify classes, their methods and method signatures

 determine what methods should do

 identify helper methods

 Write down step by step algorithms inside methods to help you!!!

 document each class, method and field

 specify all conditions that need to be enforced or checked

 decide where to generate exceptions

 add to documentation

 evaluate design, and repeat above process

 until implementation instructions are well-defined
61

(c) Paul Fodor & Pearson Inc.

Evaluating a Design
 During the design of a large program, it is worthwhile to step

back periodically & attempt a comprehensive evaluation of the

design so far

 called a design review

62

(c) Paul Fodor & Pearson Inc.

Design Reviews are not just for Software

63

(c) Paul Fodor & Pearson Inc.

Who performs the design review?

 Design review committee

 Members should include:

varied perspectives

some from the project

some external to the project

 All should be familiar with the design itself

64

(c) Paul Fodor & Pearson Inc.

There is no perfect design
 Is the design adequate?

 Will do the job with adequate performance & cost?

65

(c) Paul Fodor & Pearson Inc.

Critical Design Issues
 Is it correct?

 Will all implementations of the design exhibit the desired

functionality?

 Is it efficient?

 Are there implementations of the design that will be

acceptably efficient?

 Is it testable & maintainable?

 Does the design describe a program structure that will make

implementations reasonably easy to build, test and maintain?

 Is it modifiable, extensible, & scalable?

 How difficult will it be to enhance the design to accommodate future

modifications?
66

(c) Paul Fodor & Pearson Inc.

Other Considerations

 Are the classes independent?

 Is there redundancy?

 Do they manage & protect their own data?

 Can they be tested individually?

 Do they promote code reuse?

 Is data and control flow clear or complex?

67

(c) Paul Fodor & Pearson Inc.

It all starts with a Modular Design
 Large software projects are divided up into separate modules

 i.e. groups of related classes

68

(c) Paul Fodor & Pearson Inc.

Modular Design Methodology
 Decompose

 large programming problems into smaller ones

 i.e. sub-problems

 Solve

 the sub-problems independently

 modules solve sub-problems

 Assemble

 the modules to build full system

 called system integration

 scariest parts of software development

 serious design flaws can be exposed

69

(c) Paul Fodor & Pearson Inc.

What makes a good modular design?

• Connections between modules are explicit

• Connections between modules are minimized

– called narrow interfaces

• Modules use abstraction well

• Implementation of modules can be done
independently

–modules avoid duplication of effort

70

(c) Paul Fodor & Pearson Inc.

More on Narrow Interfaces
• A module should have access to only as much

information as it needs to work (no more than that)

– less chance of misuse

– less coordination needed between team members

• fewer meetings necessary

71

A BInterface

A B

Interface

(c) Paul Fodor & Pearson Inc.

Design is

Difficult
 Where do you begin?

 When is the design

complete?

72

(c) Paul Fodor & Pearson Inc.

Good Design comes with Experience

 It takes time to become an expert

73

(c) Paul Fodor & Pearson Inc.

?

How can a design be reviewed for

correctness?
 Testing is not possible

 Verification is not possible

 unless it uses a formal language

 typically not practical

 Use proven, systematic procedure

 examine both local & global properties of the

design
74

(c) Paul Fodor & Pearson Inc.

Local Properties
 Studying individual modules

 Important local properties:

consistency

 everything designed was as specified

completeness

 everything specified was designed

performance

 running time

 storage requirements

75

(c) Paul Fodor & Pearson Inc.

Global Properties
 Studying how modules fit together

after examining local properties

76

(c) Paul Fodor & Pearson Inc.

Global Properties to Consider

 Is all the data accounted for?

 from original SRS

 exists properly in a module

 rules are properly enforced

 Trace paths through the design

walk-through

select test data

 Does control flow properly through the design?

 Does data flow properly through the design?

77

(c) Paul Fodor & Pearson Inc.

Reviewing Design Structure
 Two key questions:

 Is there an abstraction that would lead to a better

modularization?

Have we grouped together things that really do not

belong in the same module?

 Structural Considerations

Coherence of procedures

Coherence of types

Communication between modules

Reducing dependencies
78

(c) Paul Fodor & Pearson Inc.

Coherence of procedures

 A procedure (method) in a design should represent a

single, coherent abstraction

 Indicators of lack of coherence:

 if the best way to specify a procedure is to describe

how it works

 if the procedure is difficult to name

 Arbitrary restrictions:

 length of a procedure

method calls in a procedure

79

(c) Paul Fodor & Pearson Inc.

Coherence of Types

Examine each method to see how crucial it is for

the data type

does it need to access instance or static variables

of the class

Move irrelevant methods out to another location

Common with static functions

80

(c) Paul Fodor & Pearson Inc.

Communication between Modules

 Careful examination can uncover important design flaws

 think of handing your project design to another

student for inspection

 Do these pieces really fit together?

 to improve any design:

 act like a jerk when examining your own design

 ask questions that a jerk would ask

 make sure your design addresses these jerky questions

81

(c) Paul Fodor & Pearson Inc.

Reducing Dependencies
 A design with fewer dependencies is generally better

than one with more dependencies.

 What does this mean?

Make the design of each component dependent on as

few other components as necessary

Example of bad framework design:

 Every class in your framework uses every other class in

your framework in one way or another

 This would be terribly complex to test & modify

82

(c) Paul Fodor & Pearson Inc.

Look for Antipatterns

Common patterns in programs that use

poor design concepts

make reuse very difficult

source: http://www.antipatterns.com

Examples:

The Blob

Spaghetti Code

We must correct these design errors

83

http://www.antipatterns.com/

(c) Paul Fodor & Pearson Inc.
84

(c) Paul Fodor & Pearson Inc.
85

