ottware Development Litecycle
Object Oriented Design using UML

Design Review

CSE260, Computer Science B: Honors
Stony Brook University

http: //www. cs.stonybrook.edu/ ~cse260

http://www.cs.stonybrook.edu/~cse260

'Software Development Life Cycle?\

- Using well proven, established processes

__,) Requirements ,| Design & ,| Evaluate > Code » Test » Deploy
Analysis Document Design 3 L

|

Profile [*

Debug [*

—preferably while taking advantage of good tools

@ (c) Paul Fodor & Pearson Inc. /

- Software Development Lifecycle
The LONG... answer

® The methodology tor constructing and measuring software
systems of high quality.
® What properties make a software system high quality?
® correctness
® efficiency
® case of use (by other programmers in the case of
frameworks)
® reliability /robustness
® maintainability
* modifiability

° extensibility

® scalability
@ (c) Paul Fodor & Pearson Inc. /

4 R
Klocs (1,000s Source lines of code)

® Sottware Development Lifecycle helps us measure

code
® As programs get larger, the high quality software

goals become much more difficult to achieve.

program complexity s

> = PN TONSURG
TACTICAL BT s < PACTIONS
. = iy A\,
team complexit i e T e
| L T s 1l
COALMON e =0/ (T 1 I/ |\ / /&
CAPACITY &b ™ | L. T e)
PRIORITIES 3, 555 e 77/ POPULATION" | i, g -+ i+
N T e VERNMENT CONDITIONS 1 |\ | &=, Museed == 1y =)
g2 | (! cov : 2 ASBEUERS oo AS 2
Pt | [8. : s ST\ T POPULAR
=\] 4 BN o s TSUPPORT =
s || 5oy X
*ZCOALITION o s
“SDOMESTIC *, /
tom =1 At

(c) Paul Fodor & Pearson Inc. /

e
Software Development Lifecycle

¢ Other Steps to Consider:

® Software Integration:
Done in large projects

Combine developed software into a cohesive unit

A B C }) E

\W

ABCDE

e Software Maintenance:

Follows Deployment
Monitoring and Updating deployed software

@ (c) Paul Fodor & Pearson Inc.

e

Software maintenance

¢ Follows Deployment
® Monitoring and Updating deployed software

(c) Paul Fodor & Pearson Inc.

4 N
Software Development Lifecycle

- Waterfall Model: [Google testing blog

Many variations:
Test first is fun!
1. Requirements Analysis

So the Test-Driven-Development and Extreme-Programming people tell you you should write your tests even before
- you write the actual code. "Now this is taking things a bit too far." you might think. "To the extreme, even. Why would |
2 . eS I g n want to do this?"
In this post, I'll tell you my answer to this question. | now really do want to write my tests first...and here's why!

3. Evaluate Design
4. Code

5. Test, Debug, & Profile Components

6. Integrate

7. Test, Debug, & Profile Whole Program
8. Deploy

9. Maintain

(c) Paul Fodor & Pearson Inc. /

4 N
Software Development Lifecycle

®There are other models:

ag{(é
'Agile Programming e runs
okLxtreme Programming v]

.................

® Pair Pro gramming

oL tc.

(c) Paul Fodor & Pearson Inc

4 N
Software Development Lifecycle

® Software Jobs:

® Programmers = the most time consuming job in software development

Additionally, you should know how to design, program, test, debug software

® Other types of jobs beside programmers:
Designer
Database, Network, Security Administrator
Tester
Project Leader
Manager

Documentation developer / Instructor

Founder/CEO

e NOTE: designers & programmers on a project may not be the same

people!

@ (c) Paul Fodor & Pearson Inc. /

" Software Engineering Basics

*[mportant Principles for creating a

Software Solution:
oLirst, define the problem

®Design, then code

'Always Provide Feedback

o] carn a methodology for constructing

software systems of high quality.

@ (c) Paul Fodor & Pearson Inc. /

~ What properties make a software
system of high quality?

® Correctness
O Efficiency

® Ease of use
® for the user

® for other programmers using your framework
* Reliability/robustness
* Reusability (i.e., code reuse with slight or no modification)
* Extensibility

® Scalability (i.e., to handle a growing amount of work in a

capable manner)

@ * Maintainability, Readability, Modifiability, Testability, etc.

(c) Paul Fodor & Pearson Inc. /

~ What properties make a software
system of high quality?

® Correctness (think of GE or IBM large engineering systems)
* Efficiency (think of Google Search)
® Ease of use

® for the user (think of Apple Ul and products)

® for other programmers using your framework (see MS Visual...)
® Reliability/robustness (think of NASA software)
® Reusability (see Apache Software Foundation software, ¢.g. HTTP server)
* Extensibility (see Android OS growth to most popular mobile platform)
® Scalability (think of Oracle DBs)
® Maintainability, Readability, Modifiability, Testability, etc.

@ (c) Paul Fodor & Pearson Inc. /

" Correctness :

® Does the program perform its intended function?

® And does it produce the correct results?

® This is not just an implementation (coding) issue
* Correctness is a function ot the problem
definition
* A tlawed Requirements Analysis results in a

flawed Design
e A flawed Design results in a flawed program

® Garbage In — Garbage Out
@ (c) Paul Fodor & Pearson Inc. /

"~ Efficiency

® Plan for efficiency

* wisely choose your data structures & algorthms (including their
complexity, e.g., O(N)) in the design phase.

® tools & technologies too.

® Does the program meet user performance expectations?

¢ If not, find the bottlenecks :); \—t :);

® done after implementation

[© Netbean: e 65 BN =5)
. b | [Eite £dt Yiew Novigate Source Refzctor Bun Rebug Profile Versjoning Jocks Window Help
Ca e Pro 1 Ing PEES W@ oo - Q| Seorch (Ci4
| |[: projec [iFien iProfier @ % | L) Lve Profing Resdts K | SIHEIE] [orimoown
|| = controls 7 5 m Scope: Project
WPErBOE 2
Irwocations a
1= Status 1 '
Type: 4
Configuration: Analyze Perfermance 2
- 3 1
Profiling Res |l
) e :
Take Snapthot Lve Resus -
& Reset Colacted Resul 1
Saved S h i ou: 68.9%
red Snapsivots " 31.6%
i Dovaect: 316%
& AssgromGame Method categories
No method selecied
Load...
= View *
=
w
Y
o P e \AnagranGame’
ol
anagrams (profie) | G]

: Ease of Use for End User)

® [s the GUI easy to learn to use?
®a gently sloped learning curve

® What makes a GUI easy to use?
® familiar GUI structures

® familiar icons when possible instead of text

® components logically organized & grouped

0 appealing to look at

colors, alignment, balance, etc.
o forgiving of user mistakes

® help, tooltips, and other cues available

o etc . (c) Paul Fodor & Pearson Inc. /

s ™
Ease of Use for other Programmers

® In particular for frameworks and tools

® the Java APl is developed to be easy to use
® Should you even build a framework?

® Yes, you will be a software developer.
® What makes a framework easy to use?

® logical structure

® naming choices (classes, methods, etc.)

® flexibility (usable for many purposes)

® teedback (exceptions for improper use)

® documentation (APIs & tutorials)

o etc . (c) Paul Fodor & Pearson Inc. /

e

Reliability/Robustness

® Does your program:
° anticipate erroneous input?
® anticipate all potential program conditions?

® handle erroneous input intelligently?

think about this in the design stage

® provide graceful degradation?

Graceful degradation (or Fault-tolerance) is the property that enables a system to
continue operating properly in the event of the failure of (or one or more faults

within) some of its components.
¢ If an error condition occurs in your program, should your program:

o crash?, exit?, notify the user and exit?, provide an approximated service?

Not always possible to save it.

@ * For example: What should Web Browsers do with poorly formatted HTML?

(c) Paul Fodor & Pearson Inc.

/

" Feedback :

® Provide feedback to End users due to: bad input,
equipment failure, missing files, etc.
*How?
popup dialogs, highlighting (red text in Web
form), etc.
® Provide feedback to other programmers using
your framework due to: passing bad data,

incorrect initialization, etc.

*How?

exception throwing, error value returning, etc.
@ (c) Paul Fodor & Pearson Inc. /

" Flexibility in a Framework

o Programmers need to know:

® when and Why things in a framework might go wrong
AND

® when and Why things in a framework do go wrong

® How?
® customized response:
System.out.println notifications
GU1I notifications

Web page generated and sent via Servlet notification

ctc.

(c) Paul Fodor & Pearson Inc. /

" Reusability

® Code serving multiple purposes.
® Who cares?
® management does
avoid duplication of work (save §)
® software engineering does
avoid duplication of work (save time & avoid mistakes)
® How can we achieve this?

® careful program decomposition (from methods to classes

and packages)

® separate technology—dependent components

@ (c) Paul Fodor & Pearson Inc. /

" Extensibility

® Can the software easily be extended?
® can it be used for other purposes
plug-ins
exporters
add-ons

o Extensibility Example:

® In NetBeans, Tools — Plugins
Anyone can make a plugin

Download, install, and use

® In Eclipse IDE, Help — Install New Software plugin

@ (c) Paul Fodor & Pearson Inc. /

/ . I
Scalability
® How will the program perform when we increase:
® 7+ of users/connections
®amount of data processed

o 7 of geographic locations users are from

® A function of design as well as technology

@ (c) Paul Fodor & Pearson Inc. /

4 R
More high quality software properties

® Maintainability

*Readability

* Modifiability

*Testability

® All of these, as with the others,

must be considered early in design

@ (c) Paul Fodor & Pearson Inc. /

" Design, then develop

* We will design all classes before coding
*not easy to do

e [UML is used for software design

® You cannot design a system unless you really

understand the necessary technology

'designs cannot be created without testing

(c) Paul Fodor & Pearson Inc.

" Design Approaches

® Have other “similar” problems been solved?

°Do design patterns exist to help?
o Employ:
® data-driven design

data-driven prosramming is a prosramming paradiom in which the
prog g prog gP g

program statements describe the data to be matched and the
processing required rather than defining a sequence of steps to be

taken.

® top-down design

a top-down approach is the breaking down of a system to gain

insight into its compositional sub—systems

(c) Paul Fodor & Pearson Inc. /

" Data-driven Design

(-

® From the problem specitication, extract:
*nouns (they are objects, attributes of objects)

*verbs (they are methods)

® Divide data into separate logical, manageable

groupings

o these will form your objects

® Note needs for data structures or algorithms

Odesign your data management classes early on

(c) Paul Fodor & Pearson Inc.

‘Data-driven Design gives the Class

relationships
® Think data flow:

® What HAS what?

® What IS what?

® What USES what?

® Where should data go?

® Static or non-static?
® Design patterns will help us make these decisions

¢ Bottom line: think modular

® no 1000 line classes or 100 line methods

@ (c) Paul Fodor & Pearson Inc. /

" Modula

® Think of pr

rity

® How reusable are your classes?

®can they be used in a future project?

ogrammers, not just users

® Can individual classes be easily separated

®Separate D

(-

and re-used:

?

*Separate Functionality from Presentation

ata from Mechanics

(c) Paul Fodor & Pearson Inc.

" Functionality vs. Presentation

The state manager:

® manages the state of one or more user interface controls such as text fields,
OK buttons, radio buttons, etc. in a graphical user interface.

In this user interface programming technique, the state of one Ul control depends on
the state of other Ul controls.

® classes that do the work of managing data & enforcing rules on that data

® Why separate the state management and the UI?
® so we can design several different Uls for a state manager
® so we can change the state management without changing the Ul
® so we can change the Ul without changing the state manager
® reuse code that is proven to work

® This is a common principle throughout GUl design

even for Web sites (separate content from presentation)

different programmers for each task
\ (c) Paul Fodor & Pearson Inc. /

/Choosing Data Structures

¢ Internal data structures

e What is the natural representation of the
given data?
®[rade-offs: Setup vs. access speeds

*Keep data ordered?

Ordered by what?
Which access algorithms?

(c) Paul Fodor & Pearson Inc

e

™~

UML Diagrams

e UML - Unified Modeling Language diagrarns are used to

design object-oriented software systems

® represent systems Visually = Client-friendly!
o provides a system architecture
® makes coding more efficient and system more reliable

o diagrams show relationships among classes and objects

® Can software engineering be automated?

(-

® Visual programming
® Patterns & frameworks

® Computer-Aided Software Engineering (CASE) tools

(c) Paul Fodor & Pearson Inc. /

" Types of UML Diagrams

* Types of UML diagrams that we will make in

CSE260:

® Use Case Diagram
® Class Diagram

®Sequence Diagram

® Other types of UML diagrams (you will make in

our CSE308):
*State, Activity, Col

aboration, Communication,

Component, & De;

_aloyment Diagrams

@ (c) Paul Fodor & Pearson Inc. /

e

™~
What will we use UML Diagrams for?

®Use Case Diagrams

edescribe all the Ways Uusers will interact

with the program
® Class Diagrams
°describe all of our classes tor our app
®Sequence Diagrams

odescribe all event handling

@ (c) Paul Fodor & Pearson Inc. /

4 N
Software Development Life Cycle

® Requirements Analysis & design stages:

Requirements s

Analysis

Design &
Document

(-

|

[
»

Evaluate
Design

A\ 4

ode

C

I

» Jest

» Deploy

Profile

A

Debug

* Correctness, Efficiency, Ease of use,

Reliability /robustness, Reusability, Maintainability,
Moditiability, Testability, Extensibility, Scalability

® do we consider these properties in the implementation stages?

Little because it is too late to make a big impact.

(c) Paul Fodor & Pearson Inc.

/

" Where to begin?

® Understand and Detine the problem
*the point of a requirements analysis
® What are system input & output?
*How will users interact with the system?

e What data must the system maintain?

® Generate a problem specification document

oC

oC

@ problem

|C

(&

ines the problem

(c) Paul Fodor & Pearson Inc.

ines what needs to be done to solve the

/

e

Requirements Analysis

® i.e. Software Specification (or spec.)
® A textual document

® [t serves two roles. It:

defines the problem to be solved

explains how to solve it

® This is the input into the software design stage
e What goes Iin a requirements analysis (RA)?

® The why, where, when, what, how, and who:
Why are we making this software?
Where and when will it be created?
What, exactly, are we going to make?
How are we going to make it?

Who will be performing each role?

(c) Paul Fodor & Pearson Inc.

e

What do they want?
o '

Requirements Analysis
e What really goes in a RA?

® Detailed descriptions of all:

necessary data (including how to query it, views, forms,

inserts)
program input and output
GUI screens & controls

user actions and program reactions

e Where do you start?

® Interviews with the end users
What do they need?

(c) Paul Fodor & Pearson Inc.

" UML Use Case Diagrams

® A set of scenarios that describe an interaction between a

user and a system

® Done firstin a project design

® helps you to better understand the system

requirements

® To draw a Use Case Diagram:

® List a sequence of steps a user might take in order to

complete an action.

o Example actor: a user placing an order with a sales

comp any

@ (c) Paul Fodor & Pearson Inc. /

" UML Use Case Diagrams

® Human Actor: Stick figure with name underneath.

Name usually identifies type of actor.

A

Actor

® Use Case: Oval enclosing name of use case.

® Non-Human Actor: Stick figure, or a rectangle enclosing the
stereotype <<actor>> and the name of the actor. A stercotype
indicates the type of UML element (when it isn’t evident from
the shape).

==actor==
Event Dispatcher
(c) Paul Fodor & Pearson Inc. ' ! /

e

UML Use Case Diagrams

o Relationships Between Actors and Use Cases:

e Solid edge between an actor A and a use case U

means that actor A participates in use case U.

(c) Paul Fodor & Pearson Inc. /

e

o

UML Use Case Diagrams

o Relationships Between Use Cases:

® Include: dashed arrow labeled <<include>> from use case U1 to
use case U2 means U2 is part of the primary flow of events of U1.
e Extend: dashed arrow labeled <<extend™>> from use case U2 to

use case U1 means U2 is part of a secondary flow of events of U1.

- <<include>> : ___
Withdraw Money f-===========----~- Authenticate
o A

1

1

1

L .
 <<extend>>
1

Hint: To remember the direction of \
the arrow. read the edge label as Authentication
“includes” or “extends”. Error

(c) Paul Fodor & Pearson Inc. /

: Relationships Between Actors

® Generalization: Solid line with triangular arrowhead
from actor Al to actor A2 means that A2 is a
generalization of A1. This implies that A1 participates in

all use cases that A2 participates in. Generalization is

similar to inheritance. " Make
@enﬁation

Member T

i ree Up g@

Platinum Member
(c) Paul Fodor & Pearson Inc.

4 I
Relationships Between Use Cases

® Generalization: Solid line with triangular arrowhead
from use case U1 to use case U2 means that U2 is a
generalization of Ul (equivalently, U1 is a specialized

version of U2). Generalization is similar to inheritance.

- p@)

Y

Pw with Pay w1th

Qcht (w gift card

(c) Paul Fodor & Pea /

Use Case
Diagram
For ATM

<<actor>>
Visa Authorization System

<<actor>>
Bank Information System

i

=

\—1

Visa Cardholder

N

Bank Customer

I

\

Elite Bank Customer

secondary

ithdraw Using
Visa Card

\
\

e i
—
-

Reward Points
Inquiry

ATM System econdary

«}r&glydes»
5 - e A a5 N
ithdraw Using\ <~~~
\
Bank Card «includes»

Deposit Check

(c) Paul Fodor & Pearson Inc.

Use-case:

ApplicationSearch

Primary actor:

Undergraduate Secretary, Admin

Goal in context:

Display a list of applications that match the secretary’s search term
and eriteria.

Preconditions:

The actor has been authenticated and identified as an undergraduate
secretary.

Trigger:

The undergraduate secretary clicks on the “Application Search™
button.

Scenario:

I. UG secretary: observes search page.

2. UG secretary: selects ‘Search by ID’, *Search by Name', or
*Search by Matriculation Date’ radio button.

3. UG secretary: enters the ID number, first and last name, or date
range in the text fields corresponding to the selected radio button.

4. UG secretary: clicks the *Search’ button.

5. UG secretary: observes all the records in the database that match

the given search terms and criteria in a table below the search
fields.

Exceptions:

I. “Search by ID" button is selected: if the ID is not provided in the
correct format, and error message is displayed that contains the
correct format.

2. There are no records that match the given search terms and criteria
(the message “No matching records could be found” will be
displayed below the search fields) : UG secretary enters different
search terms and clicks the *Search” button

Priority:

Essential, must be implemented.

When available:

First increment.

Frequency of use:

Many times per day.

Channel to actor

Via web browser interface.

Secondary actors:

Admin, server

Channels to
secondary actors:

Admin: web browser interface, program modification
server: network and local interface

Open issues:

1. Where on the web interface will the search fields and buttons be
displayed?

2. What other criteria will the UG secretary want to search by?

3. Should we have a ‘Clear Fields™ button that clears all entered text
in the search fields?

Formal UML
Use Case
Diagram

" UML Class Diagrams

® A UML class diagram consists of one or more
classes, each with sections for:
¢ class name
®instance variables
emethods
® Lines between classes represent associations
® [ses
® Aggregation (HAS-A)
Containment

®Inheritance (IS-A)

\ (c) Paul Fodor & Pearson Inc.

" UML Class Diagrams

e Show relationships between classes

® (lass associations denoted by lines connecting classes

® A feathered arrow denotes a one-directional association

—Connecting line means ClassA and
ClassB have a relationship

ClassA

v ClassB

Instance variable info

Instance variable info

Method header info

Method header info

<
<

Feathered arrow means

ClassC

ClassA knows of and uses

Instance wvariable info

ClassC, but ClassC has no

Method header info

knowledge of ClassA

(c) Paul Fodor & Pearson Inc. /

" Method and Instance Variable
Descriptions

® Instance Variables Format
variableName : variableType
® For example: =~ upValue : int

® Method Header Format

methodName (argumentName : argumentType)
:returnType
® For example: setDiel (newDiel:Die) :void

® Underlined or $ denotes a static method or variable

For example: myStaticMethod (x:int) :void

@ (c) Paul Fodor & Pearson Inc. /

s ™
UML Class Diagrams & Aggregation

e UML class diagram for PairOfDice & Die:

Diamond denotes aggregation
PairOfDice HAS-ADie

PairOfDice Die
numFaces: int
diel: Die 1 2| upValue : int
die2: Die
getDiel () : Die getUpValue() : int
getDie2 () : Die getNumFaces () : int
getTotal() : int roll() : wvoid
rollDice() : wvoid
setDiel (newDiel: Die) : wvoid L
setDie2 (newDie2: Die) : void Denote multiplicity,
2 Die object for

each PairOfDice
(c) Paul Fodor & Pearson Inc. O bj eCt /

4 N
UML Class Diagrams & Inheritance

public class Student extends Person

Person

name: String
age : int

getAge() : int
getName () : String

setAge (newAge: int) : void
Triangle denotes inheritance > Z N\

Student |IS-A Person

Student

gpa: double

getGPA () : double
setGPA (newGPA: double) : wvoid

(c) Paul Fodor & Pearson Inc. /

" Encapsulation

® We can take one of two views of an object:
®internal - the variables the object holds and the
methods that make the object usetul
®external - the services that an object provides and
how the object interacts
® From the external view, an object is an encapsulated
entity, providing a set of specific services
® These services define the Application Programming Interface

(API) to the object

® abstraction hides details from the rest of the system

@ (c) Paul Fodor & Pearson Inc. /

e

Class Diagrams and Encapsulation

® In a UML class diagram:

® public members can be preceded by +

® private members are preceded by -

o protected members are preceded by H

™~

Die

PairOfDice
- diel: Die
- die2: Die
+ getDiel () : Die
+ getDie2() : Die
+ getTotal() : int
+ rollDice() : wvoid
+ setDiel (newDiel: Die) : wvoid
+ setDie2 (newDie2: Die) : wvoid

(c) Paul Fodor & Pearson Inc.

numFaces: int

upValue :

int

getUpValue ()
getNumFaces ()

roll ()

: void

: int
: int

" Interfaces in UML

® 2 ways to denote an interface
e <Jinterface>> (standard) OR <<[>>

ginterface»
Transaction
interface Transaction
+ execute() {
public void execute();
1l }
Transaction
+ execute()

http://www.informit.com/articles/article.asp?p=336264&seqNum=3

(c) Paul Fodor & Pearson Inc.

http://www.informit.com/articles/article.asp?p=336264&seqNum=3

" Abstract Classes in UML

® 2 ways to denote a class or method is abstract:

(-

® class or method name in italics, OR

® {abstract} notation

Shape

- itsAnchorPaoint

+ drawf)

Shape
{abstract}

- itsAnchorPoint

+ draw() {abstract}

public abstract class Shape

{

public abstract wvoid draw() ;

)

private Point itsAnchorPoint;

(c) Paul Fodor & Pearson Inc.

™~

" UML Sequence Diagrams

® Demonstrate the behavior of objects in program
® describe the objects and the messages they pass

Odiagrams are read left to right and descending

listener: data :
HuyTrophyHan Fombiguarium

buyTrophy

endGameAsWin

(c) Paul Fodor & Pearson Inc. /

" Top-down class design

® Top-down class design strategy:
® Decompose the problem into sub-problems (large
chunks).
® Write skeletal classes for sub-problems.
® Write skeletal methods for sub-problems.
® Repeat for each sub-problem.
® It necessary, go back and redesign higher-level classes to
Improve:
* modularity,
® information hiding, and

® information flow

@ (c) Paul Fodor & Pearson Inc. /

" Designing Methods

o

® Decide method signatures
°numbers and types of parameters and
return values
® Write down what a method should do
(spec)
*use top-down design

decompose methods into helper methods

® Use javadoc comments to describe methods

® [Ise method specs for 1mplementat10n

(c) Paul Fodor

/

4 N
Results of Top-down class design

UML Class Diagrams

Skeletal Classes
e Instance variables
« static variables
» class diagrams
» method headers

« DOCUMENTATION

(c) Paul Fodor & Pearson Inc. /

/ .
Software Longevity
e The FORTRAN & COBOL programming

languages are ~50 years old

® many mainframes still use code written in the 1960s

® software maintenance is more than %2 a project
® Moral of the story:

*the code you write may outlive you, so make it:

Easy to understand

Easy to modify & maintain

®software must be ready to accommodate change

@ (c) Paul Fodor & Pearson Inc. /

®1NnCor]
®1NnCor]
®1NnCor]
'incor:

®1NCor

" Software Maintenance

® What is software maintenance?

o Improving or extending existing software

porate new functionality
borate new data to be managed
porate new technologies
porate new algorithms

horate use with new tools

®NCOor

™~

horate things we cannot think of now ©

(c) Paul Fodor & Pearson Inc.

/

" Software Engineering

(-

® Always use data driven & top-down design:
® identity and group system data
® identity classes, their methods and method signatures
® determine what methods should do

o identify helper methods

™~

Write down step by step algorithms inside methods to help you

® document each class, method and field

® specity all conditions that need to be enforced or checked
decide where to generate exceptions
add to documentation

® evaluate design, and repeat above process

until implementation instructions are well-defined

(c) Paul Fodor & Pearson Inc.

: Evaluating a Design

™~

® During the design of a large program, it is worthwhile to step

back periodically & attempt a comprehensive evaluation of the

design so far

® called a design review

4 ™
Design Reviews are not just for Software

(c) Paul Fodor & Pearson Inc. J

4 R
Who performs the design review?

® Design review committee

® Members should include:

® varied perspectives

® some from the project

® some external to the project

e All should be familiar with the design itself

@ (c) Paul Fodor & Pearson Inc. /

" There is no perfect design

® [s the design adequate?

* Will do the job with adequate performance & cost?

(c) Paul Fodor & Pearson Inc.

GALAXY CLASS STARSHIP
FORWARD VIEW

LAST UPDATED: 18.01.2003

™~

4 L .
Critical Design Issues

® [sit correct?
* Will all implementations of the design exhibit the desired
functionality?
® s it efficient?
® Are there implementations of the design that will be

acceptably efficient?

® [sit testable & maintainable?

® Does the design describe a program structure that will make

implementations reasonably easy to build, test and maintain?

® [sit modifiable, extensible, & scalable?

modifications?

(c) Paul Fodor & Pearson Inc.

e How difficult will it be to enhance the design to accommodate future

/

: Other Considerations

® Are the classes independent?

® s there redundancy?

® Do they manage & protect their own data?
® Can they be tested individually?

® Do they promote code reuse?

® [s data and control tlow clear or complex?

(c) Paul Fodor & Pearson Inc

4 N
It all starts with a Modular Design

* Large software projects are divided up into separate modules

® i.e. groups of related classes

Soft Body Bullet Extras:
Dynamics Multi Threaded Maya Plugin
hkx2dae
.bsp, .obj,
Rigid.Body other tools
Dynamics
Collision
Detection
Linear Math
Memory, Containers

(c) Paul Fodor & Pearson Inc. /

" Modular Design I\/Iethodology\

® Decompose

o large programming problems into smaller ones

®i.e. sub-problems

Project Specification

* Solve T

® the sub—problems independently oy [|Interface -

® modules solve sub-problems

1
Y

<« Interface |«

(implementation)

e Assemble \ /

(1mplementan0n)

® the modules to build full system Integrated System

e called system integration
scariest parts of software development

serious design flaws can be exposed

@ (c) Paul Fodor & Pearson Inc.

4 A
What makes a good modular design?

* Connections between modules are explicit

 Connections between modules are minimized
—called narrow in teI:faces

Modules use abstraction well

o Implementation of modules can be done

independently

—modules avoid duplication of effort

@ (c) Paul Fodor & Pearson Inc. /

e
More on Narrow Interfaces

* A module should have access to only as much
information as it needs to work (no more than that)
— less chance of misuse

— less coordination needed between team members

fGWGI’ meetings necessary

A

A
A 4

> Interface

(9]

A A

Interface

A A A A A A

v v v v v v

A 4 A 4 A 4

(c) Paul Fodor & Pearson Inc.

Design is
Difficult

® Where do you begin?
® When is the design

complete?

ZombiquariumPanel

-game : MiniGame
-data : ZombiguariumDataModel

+ ZombiguariumPanel(initGame : MiniGame, initData : ZombiquariumDataModel)
+ paintComponent(g : Graphics) : void

+renderBackground(g : Grapics) : void

+renderGameSpritesi(g : Graphics) - void

+renderSprites(g : Graphics, spritesit: lterator=Sprite=) - void
+renderGUIControlsig : Graphics): void

+renderStats(g : Graphics): void

+renderSprite(g : Graphics, s Sprite) - void

+renderDebugaingText(g : Graphics) : void

java.awt

Color Font Graphics Image

java.util

Collection Iterator

Sprite SpriteType MiniGame
T—
javax.swing
Zombiguarium
JPanel z riump +5 GAME_WIDTH -int
+5 GAME_HEIGHT : int
+§ BOUNDARY_TOP : float

+§ BOUNDARY_BOTTOM : float

+5 BOUNDARY_LEFT : float

+5 BOUNDARY_RIGHT : float

+8 STARTING_SUN int

+8 COST_OF_TROPHY :int

+5 COST_OF_ZOMBIE : int

+§ COST_OF_BRAIN . int

+§ VALUE_OF_SUM :int

+8 STARTING_ZOMBIE_HEALTH : int

+§ ZOMBIE_HEALTH_DEC : int

+8 ZOMBIE_DYING_THRESHOLD :int

+5 DEAD_ON_DISPLAY_TIME : int

+5 ZOMBIE_SUMN_GEN_INTERVAL : int
+§ SUN_FALL_VELOCITY : float

+§ BRAIN_FALL_VELOCITY : float

+5 ZOMBIE_MAX_VELOCITY : float

+§ ZOMBIE_MIN_VELOCITY : float

+8 ZOMBIE_SIGHT_DISTAMCE : float

+8 MAX_BRAINS : float

+5 ZOMBIE_MOUTH_AABB : Insets

+5 FRAME_RATE : int

+% APP_TITLE : String

+8 SPRITE_TYPES_SETUP_FILE : String
+5 SETUP_DELIMITER : String

+8 COLOR_KEY : Color

+8 BACKGROUMND_TYPE : String

+& BRAIN_TYPE : String

+§ ZOMBIE_TYPE : String

+% SUN_TYPE : String

+85 NORMAL_ZOMBIE_LEFT_STATE : String
+5 NORMAL_ZOMBIE_RIGHT_STATE : String
+§ DYING_ZOMBIE_LEFT_STATE : String
+8 DYING_ZOMBIE_RIGHT_STATE : String
+5 DEAD_ZOMBIE_L EFT_STATE String
+§ DEAD_ZOMBIE_RIGHT_STATE : String
+§ ENABLED_STATE : String

+5 DISABLED_STATE : String

+5 DEFAULT_STATE : String

+8§ MOUSE_OVER_STATE . String

+§ INVISIBLE_STATE : String

+8 VISIBLE_STATE : String

+§ NORTH_TQOLBAR_TYPE : String

+8 PROGRESS_TYPE : String

+& WIN_DISPLAY_TYPE : String

+5 LOSS_DISPLAY_TYPE - String

+& NEW_GAME_TYPE : String

+§ BUY_ZOMBIE_TYPE : String

+5 BUY_TROPHY_TYPE : String

+5 PROGRESS_METER_FONT : Font

+8 PROGRESS_METER_TEXT_COLOR : String
+8 SUN_FONT : Font

+5 SUN_TEXT_COLOR : Color

+§ DEBUGGING_TEXT_FONT : Font

+§ DEBUGGING_TEXT_COLOR : Color
+5 PROGRESS_BAR_CORNERS : Insets
+§ PROGRSS_BAR_COLOR : Color

BuyZombieHandler

HewGameHandler

BuyTrophyHandler

java.awt

Color

Font

Image

Insets

Buffer

+ Zombiguarium()
+initData() : void
+initSpriteTypes() : void
+initGUIControls() : void
+initGUIHandlers() : void
+reset() : void

+ updateGUI() : void

+§ main(args : String[]) : void

4 ™
Good Design comes with Experience

e [t takes time to become an expert

Java Architect

Flease only reply with lava Architects that have created white papers that Developers
hawve followed.

Must have a car to get to my client in Woodbury, Long Island.

Contract will last at least 1 year.

1st is o phone screen for 30 minutes, then a foce to foce for 2 hrs with the VP, and the
other Architect.

The goal is to design for the best performaonce ond create processes to be followed.

Creote the white papers that will be followed by the developers.
The consultant must be on-site every day, ne telecommuting.

One architect is there right now, the other is retiring.

Performance monitoring, reporting, and tuning af Oracle databases.
(c) Paul Fodor & Pearson Inc. /

" How can a design be reviewed for
correctness?

. Testing is not possible

® Verification is not possible

® unless it uses a formal language o

° typically not practical

¢ Use proven, systematic procedure

* examine both local & global properties of the
design
@ g (c) Paul Fodor & Pearson Inc.

" Local Properties

o Studying individual modules

* Important local properties:

® consistency
everything designed was as specified
® completeness
everything specified was designed
® performance
running time

storage requirements

(c) Paul Fodor & Pearson Inc.

" Global Properties

° Studying how modules fit together

® after examining local properties

»

~

-

(c) Paul Fodor & Pearson Inc

e
Global Properties to Consider

e [s all the data accounted for?

¢ from original SRS
exists properly in a module

rules are properly enforced

® Trace paths through the design
o Walk—through

®select test data

Does control flow properly through the design?
Does data flow properly through the design?

@ (c) Paul Fodor & Pearson Inc. /

: Reviewing Design Structure :

® Two key questions:

® |s there an abstraction that would lead to a better

modularization?

® Have we grouped together things that really do not

belong in the same module?
e Structural Considerations
® Coherence of procedures
® Coherence of types

® Communication between modules

o Reducing dependencies

@ (c) Paul Fodor & Pearson Inc. /

4 I
Coherence of procedures

® A procedure (method) in a design should represent a

single, coherent abstraction

® Indicators of lack of coherence:

¢ if the best way to specify a procedure is to describe

how it works
®if the procedure is difficult to name
® Arbitrary restrictions:
® length of a procedure

* method calls in a procedure

@ (c) Paul Fodor & Pearson Inc. /

" Coherence of Types :

® Examine each method to see how crucial it is for
the data type
®does it need to access instance or static variables

of the class

® Move irrelevant methods out to another location

® Common with static functions

@ (c) Paul Fodor & Pearson Inc. /

- _ _ I
Communication between Modules

® Careful examination can uncover important design flaws

® think of handing your project design to another
student for inspection
Do these pieces really fit together?
® to improve any design:
act like a jerk when examining your own design
ask questions that a jerk would ask

make sure your design addresses these jerky questions

(c) Paul Fodor & Pearson Inc. /

"Reducing Dependencies

° A design with fewer dependencies is generally better

than one with more dependencies.

® What does this mean?

® Make the design of each component dependent on as

few other components as hecessary

® Example of bad framework design:

Every class in your framework uses every other class in

your framework in one way or another

® This would be terribly complex to test & modify

(c) Paul Fodor & Pearson Inc. /

" Look for Antipatterns

(-

® Common patterns in programs that use

poor design concepts
®*make reuse very difficult

®source: http: / /www.antipatterns.com

o Examples:

e The Blob
o Spaghetti Code

® We must correct these design errors

(c) Paul Fodor & Pearson Inc.

http://www.antipatterns.com/

The Blob

+ Symptoms \
+ Single class with many «
attributes & operations

+ Controller ¢lass with
simple, data-object \

y

classes. i
+ Lack of OO design. h
+ A migrated legacy ——
design

+ Consequences

+ Lost OO advantage
+ Too complex to reuse or
test.

+ Expensive to load

MITRE

(c) Paul Fodor & Pearson Inc.

Development AntiPatiem:

Spaghetti Code

spa- ghet-ti code [Slang] an undocumented piece of
software source code that cannot be extended or modified

without exireme difficulty due to its convoluted structure.

Un-structured code Well structured code
is a liability is an investment.

MITRE

(c) Paul Fodor & Pearson Inc.

