
Paul Fodor

CSE260, Computer Science B: Honors

Stony Brook University

http://www.cs.stonybrook.edu/~cse260

Recapitulate CSE160: Java basics, types,

statements, arrays and methods

1

http://www.cs.stonybrook.edu/~cse260

(c) Paul Fodor (CS Stony Brook) & Pearson

Objectives
Refresh information from CSE160

2

(c) Paul Fodor (CS Stony Brook) & Pearson

How Data is Stored?

3

 What’s binary?

 a base-2 number system

 What do humans use?

 base-10

 Why?

 Why do computers like binary?

 electronics

 easier to make hardware that

stores and processes binary

numbers than decimal

numbers

 more efficient: space & cost

.

.

.

2000

2001

2002

2003

2004

.

.

.

01001010

01100001

01110110

01100001

00000011

Memory content

Memory address

Encoding for character ‘J’

Encoding for character ‘a’

Encoding for character ‘v’

Encoding for character ‘a’

Encoding for number 3

(c) Paul Fodor (CS Stony Brook) & Pearson

What is memory?
 A giant array of bytes

 Data is byte addressable

we can access or change any byte (group

of 8 bits) independently as needed

 How do we assign data to/get data from

memory?

 in Java we don't

 the JVM does

using memory addresses

 We use object ids/references

4

0xffffffff

0x00000000

Stack Segment

Heap Segment

Global Segment

Text Segment

(c) Paul Fodor (CS Stony Brook) & Pearson

Global Segment

data that can be reserved at compile

time

contains the global variables and static

variables that are initialized by the

programmer

 The data segment is read-write, since

the values of the variables can be altered

at run-time.

5

What goes in each memory

segment? 0xffffffff

0x00000000

Stack Segment

Heap Segment

Global Segment

Text Segment

(c) Paul Fodor (CS Stony Brook) & Pearson

What goes in each memory

segment?
Text Segment

 Also called code segment

 stores program instructions

 contains executable instructions

 It has a fixed size and is usually read-only.

 If the text section is not read-only, then the

architecture allows self-modifying code.

 It is placed below the heap or stack in order

to prevent heap and stack overflows from

overwriting it.

6

0xffffffff

0x00000000

Stack Segment

Heap Segment

Global Segment

Text Segment

(c) Paul Fodor (CS Stony Brook) & Pearson

Heap Segment

 for dynamic data (whenever you use

new)

data for constructed objects

persistent as long as an existing object

variable references this region of

memory

 Java, C#, Python, etc.

 Automatic Garbage Collection

7

What goes in each memory

segment? 0xffffffff

0x00000000

Stack Segment

Heap Segment

Global Segment

Text Segment

(c) Paul Fodor (CS Stony Brook) & Pearson

 Stack Segment

 temporary variables declared inside

methods

method arguments

removed from memory when a

method returns

8

What goes in each memory

segment? 0xffffffff

0x00000000

Stack Segment

Heap Segment

Global Segment

Text Segment

(c) Paul Fodor (CS Stony Brook) & Pearson

Anatomy of a Java Program

9

Comments

Reserved words

Modifiers

Statements

Blocks

Classes

Methods

The main method

(c) Paul Fodor (CS Stony Brook) & Pearson

Modifiers

10

Java uses certain reserved words called modifiers that specify

the properties of the data, methods, and classes and how

they can be used

 Examples: public, static, private,

final, abstract, protected

A public datum, method, or class can be accessed by

other programs

A private datum or method cannot be accessed by other

programs

(c) Paul Fodor (CS Stony Brook) & Pearson

Variable, class, and method names
 What’s an API?

 Application Programming Interface

 a library of code to use

 Names

For Variables, Classes, and Methods

 From 2 sources:
 your own classes, variables, and methods

 the Oracle/Sun (or someone else’s) API

 Your Identifiers (Names) –Why name them?

 they are your data and commands

 you’ll need to reference them elsewhere in your program

int myVariable = 5; // Declaration

myVariable = myVariable + 1; // Using the variable
11

(c) Paul Fodor (CS Stony Brook) & Pearson

Rules for Identifiers
 Should contain only letters, numbers, & '_'

 '$' is allowed, but only for special use

 Cannot begin with a digit!

 Uppercase and lowercase letters are considered to be

different characters

 Examples:

 Legal: myVariable, my_class, my4Var

 Illegal: 4myVariable, my class, my!Var,

@#$myClass

12

(c) Paul Fodor (CS Stony Brook) & Pearson

Common Java Naming Conventions

 Variables & Methods start with lower case letters: x,

toString

 Classes start with upper case letters: Person

 Variables and Class identifiers should generally be nouns

 Method identifiers should be verbs

 Use Camel notation: myVariable, MyClass

 Although it is legal, do not begin with ‘_’ (underscore).

 Use descriptive names: LinkedList,

compareTo

area = PI * radius * radius;
13

(c) Paul Fodor (CS Stony Brook) & Pearson

Programming Errors

14

Syntax / Compiler Errors

Detected by the compiler

Runtime Errors

Causes the program to abort

Logic Errors

Produces incorrect result

(c) Paul Fodor (CS Stony Brook) & Pearson

Syntax Error

15

public class ShowSyntaxError {

public static void main(String[] args) {

i = 30; // Detected by the compiler

System.out.println(i + 4);

}

}

(c) Paul Fodor (CS Stony Brook) & Pearson

Runtime Error

16

public class ShowRuntimeError {

public static void main(String[] args) {

int i = 1 / 0; // Division with 0

}

}

(c) Paul Fodor (CS Stony Brook) & Pearson

Logic Errors

17

public class ShowLogicError {

// Determine if a number is between 1 and 100 inclusively

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

int number = input.nextInt();

// Display the result

System.out.println(

"The number is between 1 and 100, inclusively: " +

((1 < number) && (number < 100)));

// Wrong result if the entered number is 1 or 100

System.exit(0);

}

}

(c) Paul Fodor (CS Stony Brook) & Pearson

Logic Errors Debugging

18

Logic errors are called bugs

The process of finding and correcting errors is

called debugging

Methods:

hand-trace the program (i.e., catch errors by reading

the program),

 insert print statements in order to show the values of

the variables

 for a large, complex program, the most effective

approach for debugging is to use a debugger utility

(c) Paul Fodor (CS Stony Brook) & Pearson

Debugger

19

Debugger is a program that facilitates

debugging. You can use a debugger to:

Execute a single statement at a time.

Trace into or stepping over a method.

Set breakpoints.

Display variables.

Display call stack.

Modify variables.

(c) Paul Fodor (CS Stony Brook) & Pearson

Java’s Primitive Types
 Integers (whole numbers)

 byte–1 byte (-128 to 127)

 short –2 bytes (-32768 to 32767)

 int–4 bytes (-2147483648 to 2147483647)

 long–8 bytes (-9223372036854775808 to

9223372036854775807)

 Real Numbers

 float–4 bytes

 double–8 bytes

 char–2 bytes

 stores a single character (Unicode 2)

 boolean–stores true or false (uses 1-bit or byte)
20

(c) Paul Fodor (CS Stony Brook) & Pearson

Arithmetic Operators
+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo/Remainder (integer operands only)

++ Increment by one

-- Decrement by one

+= Increment by specified amount

-= Decrement by specified amount

*= Multiply by specified amount

/= Divide by specified amount
21

(c) Paul Fodor (CS Stony Brook) & Pearson

Division

Integer division:

8/3 = 2

Double division:

8.0/3.0 = 2.666666666666667

8.0/3 = 2.666666666666667

8/3.0 = 2.666666666666667

22

(c) Paul Fodor (CS Stony Brook) & Pearson

Arithmetic Operators
 Division operator (evaluate full expression first, then

assignment):

double average = 100.0/8.0; //12.5

average = 100.0/8; //12.5

average = 100/8; //12.0

int sumGrades = 100/8; //12

sumGrades = 100.0/8.0; //ERROR

sumGrades = (int)100.0/8.0; //ERROR

sumGrades = (int)(100.0/8.0); //12

int fifty_percent = 50/100; //0

double fiftyPercent = 50/100; //0.0

fiftyPercent = 50.0/100.0; //0.523

(c) Paul Fodor (CS Stony Brook) & Pearson

Increment and Decrement

Operators

24

int i = 10;

int newNum = 10 * i++;

int newNum = 10 * i;

i = i + 1;

Same effect as

int i = 10;

int newNum = 10 * (++i);

i = i + 1;

int newNum = 10 * i;

Same effect as

(c) Paul Fodor (CS Stony Brook) & Pearson

Packages
 To make types easier to find and use, to avoid naming conflicts, and to

control access, programmers bundle groups of related types into

packages.

 The types that are part of the Java platform are members of various

packages that bundle classes by function: fundamental classes are

in java.lang, classes for reading and writing (input and output) are

in java.io, and so on.

 You can put your types in packages too.

 To create a package, you choose a name for the package and put

a package statement with that name at the top of every source file that

contains the types (e.g., classes, interfaces). In file Circle.java:

package edu.stonybrook.cse160;

public class Circle {

...

}25

(c) Paul Fodor (CS Stony Brook) & Pearson

Packages
To use a public package member from outside its

package, you must do one of the following:

Refer to the member by its fully qualified name

java.util.Scanner input =

new java.util.Scanner(System.in);

 Import the package member

import java.util.Scanner;

 Import the member's entire package

import java.util.*;

26

(c) Paul Fodor (CS Stony Brook) & Pearson

Packages
 Packages appear to be hierarchical, but they are not.

 Importing java.awt.* imports all of the types in the java.awt package,

but it does not import java.awt.color, java.awt.font, or any

other java.awt.xxxx packages.

 If you plan to use the classes and other types in java.awt.color as well

as those in java.awt, you must import both packages with all their files:

import java.awt.*;

import java.awt.color.*;

Setting the CLASSPATH System Variable

 In Windows: set CLASSPATH=C:\users\george\java\classes

 In Unix-based OS:

%CLASSPATH=/home/george/java/classes;

export CLASSPATH

27

(c) Paul Fodor (CS Stony Brook) & Pearson

Text

28

How do we store text?

Numerically (using its code)

Each character is stored in memory as a number

Standard character sets: old ASCII & Unicode

ASCII uses 1 byte per character

 ‘A’ is 65

(c) Paul Fodor (CS Stony Brook) & Pearson

Unicode Format

29

Java characters use Unicode UTF-16

16-bit encoding

Unicode takes two bytes, preceded by \u, expressed in

four hexadecimal numbers that run from '\u0000' to

'\uFFFF'.

Unicode can represent 65535 + 1 characters.

Unicode \u03b1 \u03b2 \u03b3 for three Greek

letters

(c) Paul Fodor (CS Stony Brook) & Pearson

Character Data Type

30

char letter = 'A'; (ASCII)

char numChar = '4'; (ASCII)

char letter = '\u0041'; (Unicode)

char numChar = '\u0034'; (Unicode)

Four hexadecimal digits.

The increment and decrement operators can also be used on char

variables to get the next or preceding Unicode character.

- the following statements display character b:

char ch = 'a';

System.out.println(++ch);

(c) Paul Fodor (CS Stony Brook) & Pearson
31

The boolean Type and Operators

 Often in a programs you need to compare values:

if x is greater than y

Java provides six comparison operators (relational

operators) to compare two values: <, <= , >, >=,

== and !=
The result of the comparison is a Boolean value:

true or false.

boolean b = (1 > 2);

(c) Paul Fodor (CS Stony Brook) & Pearson
32

One-way if Statements

Boolean

Expression

true

Statement(s)

false

(radius >= 0)

true

 area = radius * radius * PI;

 System.out.println("The area for the circle of " +

 "radius " + radius + " is " + area);

false

(A) (B)

if (boolean-

expression) {

statement(s);

}

if (radius >= 0) {

area = radius * radius * PI;

System.out.println("The area"

+" for the circle of radius "

+ radius + " is " + area);

}

(c) Paul Fodor (CS Stony Brook) & Pearson
33

Two-way if Statement
if (boolean-expression) {

statement(s)-for-the-true-case;

} else {

statement(s)-for-the-false-case;

}

Boolean

Expression

false true

Statement(s) for the false case Statement(s) for the true case

(c) Paul Fodor (CS Stony Brook) & Pearson
34

Logical Operators
Operator Name

! not

&& and

|| or

^ exclusive or

(c) Paul Fodor (CS Stony Brook) & Pearson
35

Determining Leap Year

This program first prompts the user to enter a year as

an int value and checks if it is a leap year.

A year is a leap year if it is divisible by 4 but not by

100, or it is divisible by 400.

(year % 4 == 0 && year % 100 != 0)

|| year % 400 == 0

(c) Paul Fodor (CS Stony Brook) & Pearson
36

The unconditional & and | Operators

The & operator works exactly the same as the

&& operator, and the | operator works

exactly the same as the || operator with one

exception:

the & and | operators always evaluate both

operands

(c) Paul Fodor (CS Stony Brook) & Pearson
37

If x is 1, what is x after these expressions:

(x > 1) && (x++ < 10) 1

(x > 1) & (x++ < 10) 2

(1 == x) || (10 > x++)? 1

(1 == x) | (10 > x++)? 2

The unconditional & and | Operators

(c) Paul Fodor (CS Stony Brook) & Pearson
38

switch Statements
switch (var) {

case 0: ...;

break;

case 1: ...;

break;

case 2: ...;

break;

case 3: ...;

break;

default: ...;

}

(c) Paul Fodor (CS Stony Brook) & Pearson
39

switch Statement Flow Chart

var is 0

 break

Compute tax for married file separately

 break

var is 1

 break

var is 2

 break

var is 3

default

Next Statement

(c) Paul Fodor (CS Stony Brook) & Pearson
40

switch Statement Rules

switch (switch-expression) {

case value1: statement(s)1;

break;

case value2: statement(s)2;

break;

…

case valueN: statement(s)N;

break;

default: statement(s);

}

char, byte, short,

int, String

value1, ..., and valueN

are constant

expressions of the

same data type as the

value of the switch-

expression

constant = they cannot

contain variables in the

expression, such as x+y

(c) Paul Fodor (CS Stony Brook) & Pearson
41

switch Statement Rules
break is optional,

but it terminates

the remainder of

the switch

statement

default is optional -

executed when

none of the

specified cases

matches the

switch-expression.

execution in sequential order

switch (switch-expression) {

case value1: statement(s)1;

break;

case value2: statement(s)2;

break;

…

case valueN: statement(s)N;

break;

default: statement(s);

}

(c) Paul Fodor (CS Stony Brook) & Pearson

Static methods
What does static mean?

associates a method with a particular class name

any method can call a static method either:

directly from within same class OR

using class name from outside class

42

(c) Paul Fodor (CS Stony Brook) & Pearson
43

The Math Class
Class constants:

PI

E

Class methods:

Trigonometric Methods

Exponent Methods

Rounding Methods

min, max, abs, and random Methods

(c) Paul Fodor (CS Stony Brook) & Pearson
44

Trigonometric Methods

 sin(double a)

 cos(double a)

 tan(double a)

 acos(double a)

 asin(double a)

 atan(double a)

Radians

• Examples:
Math.sin(0) returns 0.0

Math.sin(Math.PI / 6)

returns 0.5

Math.sin(Math.PI / 2)

returns 1.0

Math.cos(0) returns 1.0

Math.cos(Math.PI / 6)

returns 0.866

Math.cos(Math.PI / 2)

returns 0

(c) Paul Fodor (CS Stony Brook) & Pearson
45

Exponent Methods
 exp(double a)

Returns e raised to the power of a.

 log(double a)

Returns the natural logarithm of a.

 log10(double a)

Returns the 10-based logarithm of a.

 pow(double a, double b)

Returns a raised to the power of b.

 sqrt(double a)

Returns the square root of a.

• Examples:
Math.exp(1) returns 2.71

Math.log(2.71)

returns 1.0

Math.pow(2, 3)

returns 8.0

Math.pow(3, 2)

returns 9.0

Math.pow(3.5, 2.5)

returns 22.91765

Math.sqrt(4) returns 2.0

Math.sqrt(10.5)

returns 3.24

(c) Paul Fodor (CS Stony Brook) & Pearson
46

Rounding Methods
 double ceil(double x)

x rounded up to its nearest integer. This integer is returned as a double
value.

 double floor(double x)

x is rounded down to its nearest integer. This integer is returned as a
double value.

 double rint(double x)

x is rounded to its nearest integer. If x is equally close to two integers,
the even one is returned as a double.

 int round(float x)

Return (int)Math.floor(x+0.5).

 long round(double x)

Return (long)Math.floor(x+0.5).

(c) Paul Fodor (CS Stony Brook) & Pearson
47

Rounding Methods Examples
Math.ceil(2.1) returns 3.0

Math.ceil(2.0) returns 2.0

Math.ceil(-2.0) returns –2.0

Math.ceil(-2.1) returns -2.0

Math.floor(2.1) returns 2.0

Math.floor(2.0) returns 2.0

Math.floor(-2.0) returns –2.0

Math.floor(-2.1) returns -3.0

Math.round(2.6f) returns 3

Math.round(2.0) returns 2

Math.round(-2.0f) returns -2

Math.round(-2.6) returns -3

(c) Paul Fodor (CS Stony Brook) & Pearson
48

min, max, and abs

 max(a, b)and min(a, b)

Returns the maximum or

minimum of two parameters.

 abs(a)

Returns the absolute value of the

parameter.

 random()

Returns a random double

value

in the range [0.0, 1.0).

• Examples:
Math.max(2, 3)

returns 3

Math.max(2.5, 3)

returns 3.0

Math.min(2.5,3.6)

returns 2.5

Math.abs(-2)

returns 2

Math.abs(-2.1)

returns 2.1

(c) Paul Fodor (CS Stony Brook) & Pearson
49

The random Method

Generates a random double value greater than or equal

to 0.0 and less than 1.0 (0 <= Math.random() < 1.0)

Examples:

(int)(Math.random() * 10)
Returns a random integer

between 0 and 9.

50 + (int)(Math.random() * 50)
Returns a random integer

between 50 and 99.

In general,

a + Math.random() * b

Returns a random number between

a and a + b, excluding a + b.

(c) Paul Fodor (CS Stony Brook) & Pearson
50

Generating Random Characters

(char)((int)'a' + Math.random() * ((int)'z' - (int)'a' + 1))

 All numeric operators can be applied to the char operands

 The char operand is cast into a number if the other operand is a

number or a character.

 So, the preceding expression can be simplified as follows:

(char)('a' + Math.random() * ('z' - 'a' + 1))

(c) Paul Fodor (CS Stony Brook) & Pearson

Comparing and Testing Characters

if (ch >= 'A' && ch <= 'Z')

System.out.println(ch + " is an uppercase letter");

if (ch >= 'a' && ch <= 'z')

System.out.println(ch + " is a lowercase letter");

if (ch >= '0' && ch <= '9')

System.out.println(ch + " is a numeric character");

51

(c) Paul Fodor (CS Stony Brook) & Pearson

How objects are stored?
You must understand that in Java, every

object/reference variable stores a

memory address

32 bit numbers (4 bytes)

OR

64 bit numbers (8 bytes)

These addresses point to memory

locations where the objects’ data is stored
52

(c) Paul Fodor (CS Stony Brook) & Pearson

The String Type

53

 The char type only represents one character

 To represent a string of characters, use the data type

called String:

String message = "Welcome to Java";

String is a predefined class in the Java library just like the

System class

http://java.sun.com/javase/8/docs/api/java/lang/String.html

The String type is NOT a primitive type

The String type is a reference type

 A String variable is a reference variable, an "address" which

points to an object storing the value or actual text

http://java.sun.com/javase/8/docs/api/java/lang/String.html

(c) Paul Fodor (CS Stony Brook) & Pearson

Strings are immutable!

There are no methods to change them

once they have been created

any new assignment will assign a new

String to the old variable
String word = "Steven";

word = word.substring(0, 5);

the variable word is now a reference to a

new String that contains "Steve"
54

(c) Paul Fodor (CS Stony Brook) & Pearson

Useful String functions

 charAt, equals, equalsIgnoreCase,

compareTo, startsWith, endsWith,

indexOf, lastIndexOf, replace,

substring, toLowerCase,

toUpperCase, trim

 s.equals(t)

 returns true if s and t have same letters and

sequence

false otherwise

55

(c) Paul Fodor (CS Stony Brook) & Pearson

Comparing Strings

Don’t use ‘==’ to compare Strings

it compares their memory addresses and

not actual strings (character sequences)

Instead use the equals/1 method

supplied by the String class

56

(c) Paul Fodor (CS Stony Brook) & Pearson

Comparing Strings
String word1 = new String("Hello");

String word2 = new String("Hello");

if (word1 == word2){

System.out.println(true);

} else {

System.out.println(false);

}

Result?

57

(c) Paul Fodor (CS Stony Brook) & Pearson

Comparing Strings
String word1 = new String("Hello");

String word2 = new String("Hello");

if (word1 == word2){

System.out.println(true);

} else {

System.out.println(false);

}

false

Why? Two different addresses!
58

(c) Paul Fodor (CS Stony Brook) & Pearson

Comparing Strings
String word1 = new String("Hello");

String word2 = new String("Hello");

if (word1.equals(word2)){

System.out.println(true);

} else {

System.out.println(false);

}

true

Same content!
59

(c) Paul Fodor (CS Stony Brook) & Pearson

Comparing Strings
String word1 = "Hello";

String word2 = "Hello";

if (word1 == word2){

System.out.println(true);

} else {

System.out.println(false);

}

true

 Interned Strings: Only one instance of

“Hello” is stored
word1 and word2 will have the same address

60

(c) Paul Fodor (CS Stony Brook) & Pearson

Comparing Strings

Method Description

Returns true if this string is equal to string s1.

Returns true if this string is equal to string s1; it is case insensitive.

Returns an integer greater than 0, equal to 0, or less than 0 to indicate whether

this string is greater than, equal to, or greater than s1.

Same as compareTo except that the comparison is case insensitive.

Returns true if this string starts with the specified prefix.

Returns true if this string ends with the specified suffix.

equals(s1)

equalsIgnoreCase(s1)

compareTo(s1)

compareToIgnoreCase(s1)

startsWith(prefix)

endsWith(suffix)

61

(c) Paul Fodor (CS Stony Brook) & Pearson

Obtaining Substrings

Method Description

Returns this string’s substring that begins with the character at the specified

beginIndex and extends to the end of the string, as shown in Figure 4.2.

Returns this string’s substring that begins at the specified beginIndex and

extends to the character at index endIndex – 1, as shown in Figure 9.6.

Note that the character at endIndex is not part of the substring.

substring(beginIndex)

substring(beginIndex,

endIndex)

62

(c) Paul Fodor (CS Stony Brook) & Pearson

Finding a Character or a

Substring in a String

Method Description

Returns the index of the first occurrence of ch in the string. Returns -1 if not

matched.

Returns the index of the first occurrence of ch after fromIndex in the string.

Returns -1 if not matched.

Returns the index of the first occurrence of string s in this string. Returns -1 if

not matched.

Returns the index of the first occurrence of string s in this string after

fromIndex. Returns -1 if not matched.

Returns the index of the last occurrence of ch in the string. Returns -1 if not
matched.

Returns the index of the last occurrence of ch before fromIndex in this

string. Returns -1 if not matched.

Returns the index of the last occurrence of string s. Returns -1 if not matched.

Returns the index of the last occurrence of string s before fromIndex.

Returns -1 if not matched.

indexOf(ch)

indexOf(ch, fromIndex)

indexOf(s)

indexOf(s, fromIndex)

lastIndexOf(ch)

lastIndexOf(ch,

fromIndex)

lastIndexOf(s)

lastIndexOf(s,

fromIndex)

63

(c) Paul Fodor (CS Stony Brook) & Pearson

Conversion between

Strings and Numbers
String intString = "15";

String doubleString = "56.77653";

int intValue =

Integer.parseInt(intString);

double doubleValue =

Double.parseDouble(doubleString);

String s2 = "" + intValue;

64

(c) Paul Fodor (CS Stony Brook) & Pearson
65

Formatting Output
The printf statement:

System.out.printf(format, items);

format is a string that may consist of

substrings and format specifiers

• A format specifier begins with a percent

sign and specifies how an item should be

displayed: a numeric value, character,

boolean value, or a string

(c) Paul Fodor (CS Stony Brook) & Pearson
66

Frequently-Used Specifiers
Specifier Output Example

%b a boolean value true or false

%c a character 'a'

%d a decimal integer 200

%f a floating-point number 45.460000

%e a number in standard scientific notation 4.556000e+01

%s a string "Java is cool"

int count = 5;

double amount = 45.5678;

System.out.printf("count is %d and amount is %.2f", count, amount);

Displays: count is 5 and amount is 45.56

items

(c) Paul Fodor (CS Stony Brook) & Pearson

Java and iteration
We have 3 types of iterative statements

a while loop

a do … while loop

a for loop

All 3 can be used to do similar things

Which one should you use?

a matter of individual preference/convenience

67

(c) Paul Fodor (CS Stony Brook) & Pearson
68

while Loop Flow Chart
while (loop-continuation-condition) {

// loop-body;

Statement(s);

}

int count = 0;

while (count < 100) {

System.out.println("Welcome to Java!");

count++;

}

Loop

Continuation

Condition?

true

Statement(s)

(loop body)

false

(count < 100)?

true

System.out.println("Welcome to Java!");

count++;

false

(A) (B)

count = 0;

(c) Paul Fodor (CS Stony Brook) & Pearson
69

Caution: equality for reals
 Don’t use floating-point values for equality checking in a loop control -
floating-point values are approximations for some values

 Example: the following code for computing 1 + 0.9 + 0.8 + ... + 0.1:

double item = 1; double sum = 0;

while (item != 0) { // No guarantee item will be 0 or 0.0

sum += item;

item -= 0.1;

}

System.out.println(sum);

Variable item starts with 1 and is reduced by 0.1 every time the loop body is executed
The loop should terminate when item becomes 0
There is no guarantee that item will be exactly 0, because the floating-point arithmetic
is approximated

0.1 is not represented exactly: 0.1 = 1/16 + 1/32 + 1/256 + 1/512 + 1/4096 + 1/8192 + ...

It is actually an infinite loop!

(c) Paul Fodor (CS Stony Brook) & Pearson
70

do-while Loop
do {

// Loop body;

Statement(s);

} while (loop-continuation-condition);

Loop

Continuation

Condition?

true

Statement(s)

(loop body)

false

(c) Paul Fodor (CS Stony Brook) & Pearson
71

for Loops
for (initial-action;

loop-continuation-condition;

action-after-each-iteration) {

// loop body;

Statement(s);

}

int i;

for (i = 0; i < 100; i++){

System.out.println(

"Welcome to Java!");

}

Loop

Continuation

Condition?

true

Statement(s)

(loop body)

false

(A)

Action-After-Each-Iteration

Initial-Action

(i < 100)?

true

 System.out.println(

 "Welcome to Java");

false

(B)

i++

i = 0

(c) Paul Fodor (CS Stony Brook) & Pearson

for loops and counting

for loops are popular for counting loops

through the indices of a string

through the indices of an array (later)

through iterations of an algorithm

Good for algorithms that require a known

number of iterations

counter-controlled loops

72

(c) Paul Fodor (CS Stony Brook) & Pearson
73

for loops
The initial-action in a for loop can be a list of zero or more

comma-separated expressions

The action-after-each-iteration in a for loop can be a list of

zero or more comma-separated statements

for(int i = 1; i < 100; System.out.println(i++));

for(int i = 0, j = 0; (i + j < 10); i++, j++){

// Do something

}

(c) Paul Fodor (CS Stony Brook) & Pearson
74

Infinite loops
If the loop-continuation-condition in a for loop is

omitted, it is implicitly true

 for (; ;) {
 // Do something

}

(a)

Equivalent while (true) {

 // Do something

}

(b)

(c) Paul Fodor (CS Stony Brook) & Pearson

Keywords break and continue

You can also use break in a loop to immediately

terminate the loop:
public static void main(String[] args) {

int sum = 0;

int number = 0;

while (number < 20) {

number++;

sum += number;

if (sum >= 100) // increments until the sum is

break; // greater than 100

}

System.out.println("The number is " + number);

System.out.println("The sum is " + sum);

}

The number is 14

The sum is 105
75

(c) Paul Fodor (CS Stony Brook) & Pearson

You can also use continue in a loop to end the

current iteration and program control goes to the

end of the loop body (and continues the loop):
public static void main(String[] args) {

int sum = 0;

int number = 0;

while (number < 20) { // adds integers from 1 to 20

number++; // except 10 and 11 to sum

if (number ==10 || number == 11)

continue;

sum += number;

}

System.out.println("The number is " + number);

System.out.println("The sum is " + sum);

} The number is 20

The sum is 189

76

Keywords break and continue

(c) Paul Fodor (CS Stony Brook) & Pearson
77

Defining Methods

• A method is a collection of statements that are

grouped together to perform an operation

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

modifier

return value

type
method

name
formal

parameters

return value

method

body

method

header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters

(arguments)

method

signature

(c) Paul Fodor (CS Stony Brook) & Pearson

Why write methods?
 To shorten your programs

 avoid writing identical code twice or more

 To modularize your programs

 fully tested methods can be trusted

 To make your programs more:

 readable

 reusable

 testable

debuggable

extensible

 adaptable

78

(c) Paul Fodor (CS Stony Brook) & Pearson

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

modifier

return value

type
method

name
formal

parameters

return value

method

body

method

header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters

(arguments)

method

signature

79

Method Signature
• Method signature is the combination of the

method name and the parameter list.

(c) Paul Fodor (CS Stony Brook) & Pearson

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

modifier

return value

type
method

name
formal

parameters

return value

method

body

method

header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters

(arguments)

method

signature

80

Formal Parameters
• The variables defined in the method header are

known as formal parameters.

(c) Paul Fodor (CS Stony Brook) & Pearson

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

modifier

return value

type
method

name
formal

parameters

return value

method

body

method

header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters

(arguments)

method

signature

81

Actual Parameters
• When a method is invoked, you pass a value to

the parameter: actual parameter or argument.

(c) Paul Fodor (CS Stony Brook) & Pearson
82

CAUTION: all execution paths
 A return statement is required for a value-returning method

The method shown below has a compilation error because the Java
compiler thinks it possible that this method does not return any value

To fix this problem, delete if(n < 0) in (a), so that the compiler
will see a return statement to be reached regardless of how the
if statement is evaluated.

 public static int sign(int n) {
 if (n > 0)

 return 1;

 else if (n == 0)

 return 0;

 else if (n < 0)

 return –1;

}

(a)

Should be

(b)

public static int sign(int n) {

 if (n > 0)

 return 1;

 else if (n == 0)

 return 0;

 else

 return –1;

}

(c) Paul Fodor (CS Stony Brook) & Pearson
83

Call Stacks

(a) The main
method is invoked.

Space required for

the main method

 k:

 j: 2

 i: 5

(b) The max
method is invoked.

Space required for

the max method

 num2: 2

 num1: 5

(d) The max method is

finished and the return

value is sent to k.

(e) The main
method is finished.

Stack is empty

Space required for

the main method

 k:

 j: 2

 i: 5

Space required for

the main method

 k: 5

 j: 2

 i: 5

(c) The max method
is being executed.

Space required for

the max method

 result: 5

 num2: 2

 num1: 5

 Space required for

the main method

 k:

 j: 2

 i: 5

Methods are executed using a stack data structure

(c) Paul Fodor (CS Stony Brook) & Pearson
84

Trace Call Stack

i is declared and initialized

The main method

is invoked.

i: 5

(c) Paul Fodor (CS Stony Brook) & Pearson
85

Trace Call Stack

j is declared and initialized

The main method

is invoked.

j: 2

i: 5

(c) Paul Fodor (CS Stony Brook) & Pearson
86

Trace Call Stack

Declare k

The main method

is invoked.

Space required for the

main method

 k:
j: 2

i: 5

(c) Paul Fodor (CS Stony Brook) & Pearson
87

Trace Call Stack

Invoke max(i, j)

The main method

is invoked.

Space required for the

main method

 k:
j: 2

i: 5

(c) Paul Fodor (CS Stony Brook) & Pearson
88

Trace Call Stack

pass the values of i and j to num1

and num2

The max method is

invoked.

num2: 2

num1: 5

Space required for the
main method

 k:
j: 2

i: 5

(c) Paul Fodor (CS Stony Brook) & Pearson
89

Trace Call Stack

pass the values of i and j to num1

and num2

The max method is

invoked.

 result:

num2: 2

num1: 5

Space required for the
main method

 k:
j: 2

i: 5

(c) Paul Fodor (CS Stony Brook) & Pearson
90

Trace Call Stack

(num1 > num2) is true

The max method is

invoked.

 result:

num2: 2

num1: 5

Space required for the
main method

 k:
j: 2

i: 5

(c) Paul Fodor (CS Stony Brook) & Pearson
91

Trace Call Stack

Assign num1 to result

The max method is

invoked.

Space required for the

max method
 result: 5

num2: 2

num1: 5

Space required for the
main method

 k:
j: 2

i: 5

(c) Paul Fodor (CS Stony Brook) & Pearson
92

Trace Call Stack

Return result and assign it to k

The max method is

invoked.

Space required for the

max method
 result: 5

num2: 2

num1: 5

Space required for the
main method

 k:5
j: 2

i: 5

(c) Paul Fodor (CS Stony Brook) & Pearson
93

Trace Call Stack

Execute print statement

The main method

is invoked.

Space required for the

main method

 k:5
j: 2

i: 5

(c) Paul Fodor (CS Stony Brook) & Pearson

Call-by-value
Method formal arguments are copies of the original

data

Consequence?

methods cannot assign („=‟) new values to

primitive type formal arguments and affect the

original passed variables.

Why?

changing argument values changes the copy, not the

original.

94

(c) Paul Fodor (CS Stony Brook) & Pearson
95

The main method

is invoked

The values of num1 and num2 are

passed to n1 and n2. Executing swap

does not affect num1 and num2.

Space required for the

main method
num2: 2

num1: 1

The swap method

is invoked

Space required for the

main method
num2: 2

num1: 1

Space required for the
swap method

 temp:

n2: 2
n1: 1

The swap method

is finished

Space required for the

main method
num2: 2

num1: 1

The main method

is finished

Stack is empty

Swap case for Call-by-value

(c) Paul Fodor (CS Stony Brook) & Pearson

 Method overloading is the ability to create multiple methods of the

same name with different implementations.

96

Overloading

// Overload the name max for different invocations
public static int max(int x, int y){

return (x>y) ? x : y;
}

public static double max(double x, double y){
return (x>y) ? x : y;

}

public static void main(String[] args) {
System.out.println(max(1,2)); // will call max(int,int)
System.out.println(max(3.5,4.7)); // will call max(double,double)

}

(c) Paul Fodor (CS Stony Brook) & Pearson

Sometimes there may be two or more

possible matches for an invocation of a

method, but the compiler cannot

determine the most specific match.

This is referred to as ambiguous invocation.

Ambiguous invocation is a compilation

error.

97

Overloading & Ambiguous Invocation

(c) Paul Fodor (CS Stony Brook) & Pearson
98

Overloading & Ambiguous Invocation
public class AmbiguousOverloading {

public static void main(String[] args) {

System.out.println(max(1, 2));

}

public static double max(int num1, double num2) {

if (num1 > num2)

return num1;

else

return num2;

}

public static double max(double num1, int num2) {

if (num1 > num2)

return num1;

else

return num2;

}

}

(c) Paul Fodor (CS Stony Brook) & Pearson
99

Introducing Arrays
An array is a data structure that represents a

collection of the same type of data

5.6

4.5

3.3

13.2

4

34.33

34

45.45

99.993

11123

double[] myList = new double[10];

reference
myList[0]

myList[1]

myList[2]

myList[3]

myList[4]

myList[5]

myList[6]

myList[7]

myList[8]

myList[9]

Element

value

Array reference

variable

Array element at

index 5

myList[0] = 5.6;

 ...

(c) Paul Fodor (CS Stony Brook) & Pearson
100

Default Values
When an array is created, its

elements are assigned the default

value of

0 for the numeric primitive data types,

'\u0000' for char types, and

false for boolean types.

(c) Paul Fodor (CS Stony Brook) & Pearson
101

Indexed Variables
The array elements are accessed through the

index

The array indices are 0-based, i.e., it starts

from 0 to arrayRefVar.length - 1

Each element in the array is represented

using the following syntax, known as an

indexed variable:

arrayRefVar[index];

(c) Paul Fodor (CS Stony Brook) & Pearson
102

Array Initializers
Declaring, creating, initializing in one step:

double[] myList = {1.9, 2.9, 3.4, 3.5};

This shorthand syntax must be in one

statement

(c) Paul Fodor (CS Stony Brook) & Pearson
103

Enhanced for Loop (for-each loop)
JDK 1.5 introduced a new for loop that enables you to traverse the complete

array sequentially without using an index variable.

 For example, the following code displays all elements in the array myList:

for (double value: myList)

System.out.println(value);

In general, the syntax is

for (elementType value: arrayRefVar) {

// Process the value

}

Note: You still have to use an index variable if you wish to traverse the array

in a different order or change the elements in the array.

(c) Paul Fodor (CS Stony Brook) & Pearson
104

Copying Arrays
Often, in a program, you need to duplicate an array or a part of an array.

Using the assignment statement (=), you re-direct the pointer:

list2 = list1;

You don’t copy with “=“ !

Contents

of list1

list1

Contents

of list2

list2

Before the assignment

list2 = list1;

Contents

of list1

list1

Contents

of list2

list2

After the assignment

list2 = list1;

Garbage

(c) Paul Fodor (CS Stony Brook) & Pearson
105

Using a loop:
int[] sourceArray={2, 3, 1, 5, 10};

int[] targetArray=new int[sourceArray.length];

for (int i = 0; i < sourceArray.length; i++)

targetArray[i] = sourceArray[i];

Copying Arrays

(c) Paul Fodor (CS Stony Brook) & Pearson
106

The arraycopy Utility
System.arraycopy(sourceArray,

src_pos, targetArray, tar_pos,

length);

Example:

System.arraycopy(sourceArray, 0,

targetArray, 0, sourceArray.length);

(c) Paul Fodor (CS Stony Brook) & Pearson
107

Passing Arrays to Methods
public static void printArray(int[] array) {

for (int i = 0; i < array.length; i++) {

System.out.print(array[i] + " ");

}

}
Invoke the method

int[] list = {3, 1, 2, 6, 4, 2};

printArray(list);

OR
Invoke the method

printArray(new int[]{3, 1, 2, 6, 4, 2});

Anonymous array

(c) Paul Fodor (CS Stony Brook) & Pearson
108

Pass By Value
Java uses pass by value to pass arguments to a method.

 For a parameter of a primitive type value, the actual
value is passed.

Changing the value of the local parameter inside the
method does not affect the value of the variable outside
the method.

 For a parameter of an array type, the value of the
parameter contains a reference to an array; this reference
is passed to the method.

Any changes to the array that occur inside the method
body will affect the original array that was passed as the
argument.

(c) Paul Fodor (CS Stony Brook) & Pearson
109

public class Test {

public static void main(String[] args) {

int x = 1; // x represents an int value

int[] y = new int[10]; // y represents an array of int values

m(x, y); // Invoke m with arguments x and y

System.out.println("x is " + x); // x is 1

System.out.println("y[0] is " + y[0]); // y[0] is 5555

}

public static void m(int number, int[] numbers) {

number = 1001; // Assign a new value to number

numbers[0] = 5555; // Assign a new value to numbers[0]

}

}

Simple Example

(c) Paul Fodor (CS Stony Brook) & Pearson
110

Space required for the

main method

 int[] y:
 int x: 1

reference

The arrays are

stored in a

heap.

Heap

 0

 0

 0

The JVM stores the array in an area of memory, called heap,

which is used for dynamic memory allocation where blocks

of memory are allocated and freed in an arbitrary order.

The Call Stack and Heap

(c) Paul Fodor (CS Stony Brook) & Pearson
111

The Call Stack and Heap

When invoking m(x, y), the values of x and y are passed to

number and numbers. Since y contains the reference value

to the array, numbers now contains the same reference value

to the same array.

Space required for the

main method

 int[] y:

 int x: 1

Stack

Space required for

method m

int[] numbers:

int number: 1001

reference

 5555

 0

 0

The arrays are

stored in a

heap.

Heap

reference

Array of ten int

values is stored here

(c) Paul Fodor (CS Stony Brook) & Pearson
112

Returning an Array from a Method

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;

i < list.length; i++, j--) {

result[j] = list[i];

}

return result;

}

int[] list1 = new int[]{1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

(c) Paul Fodor (CS Stony Brook) & Pearson
113

Searching Arrays

 public static int linearSearch(int[] list, int key)

 list

key Compare key with list[i] for i = 0, 1, …

 [0] [1] [2] …

Searching is the process of looking for a
specific element in an array

(c) Paul Fodor (CS Stony Brook) & Pearson

Linear Search Example

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

3

3

3

3

3

3

Key List

114

(c) Paul Fodor (CS Stony Brook) & Pearson
115

From Idea to Solution

public static int linearSearch(int[] list, int key) {

for (int i = 0; i < list.length; i++)

if (key == list[i])

return i;

return -1;

}

int[] list = {6,4,1,9,7,3,2,8};

int i = linearSearch(list, 3); // returns 5

int j = linearSearch(list, -4); // returns -1

int k = linearSearch(list, 4); // returns 1

(c) Paul Fodor (CS Stony Brook) & Pearson
116

Binary Search

If an array is already ordered, then it is

cheaper to find an element

Assume that the array is in ascending

order. e.g., 1, 2, 3, 4, 6, 7, 8, 9

The binary search first compares the key

(e.g., 8) with the element in the middle of

the array.

(c) Paul Fodor (CS Stony Brook) & Pearson
117

 If the key is less than the middle element, you
only need to search the key in the first half of
the array.

 If the key is equal to the middle element, the
search ends with a match.

 If the key is greater than the middle element,
you only need to search the key in the second
half of the array.

Consider the following three cases:

Binary Search

(c) Paul Fodor (CS Stony Brook) & Pearson
118

1 2 3 4 6 7 8 9

1 2 3 4 6 7 8 9

1 2 3 4 6 7 8 9

8

8

8

Key List

Binary Search

(c) Paul Fodor (CS Stony Brook) & Pearson
119

From Idea to Solution
/** Use binary search to find the key in the list */

public static int binarySearch(int[] list, int key) {

int low = 0;

int high = list.length - 1;

while (high >= low) {

int mid = (low + high) / 2;

if (key < list[mid])

high = mid - 1;

else if (key == list[mid])

return mid;

else

low = mid + 1;

}

return -1 - low;

}

(c) Paul Fodor (CS Stony Brook) & Pearson
120

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

 2 4 7 10 11 45 50 59 60 66 69 70 79

 key is 11

 key < 50

 list

mid

 [0] [1] [2] [3] [4] [5]

 key > 7

 key == 11

high low

mid high low

 list

 [3] [4] [5]

mid high low

 list

 2 4 7 10 11 45

 10 11 45

Binary Search

(c) Paul Fodor (CS Stony Brook) & Pearson
121

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

 2 4 7 10 11 45 50 59 60 66 69 70 79

 key is 54

 key > 50

 list

mid

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

 key < 66

 key < 59

high low

mid high low

 list

 [7] [8]

mid high low

 list

 59 60 66 69 70 79

 59 60

 [6] [7] [8]

high low

 59 60

Binary Search

(c) Paul Fodor (CS Stony Brook) & Pearson
122

The Arrays.binarySearch Method

 Java provides several overloaded binarySearch
methods for searching a key in an array of int,
double, char, short, long, and float in the
java.util.Arrays class.

int[] list = {1, 2, 3, 4, 6, 7, 8, 9};

System.out.println("Index is " +

java.util.Arrays.binarySearch(list, 11));

Return is 4

(c) Paul Fodor (CS Stony Brook) & Pearson
123

Selection sort finds the smallest number in the list and places it first. It then finds the smallest
number in the remaining list and places it second, and so on until the list contains only a single
number. Sort the list {2, 9, 5, 4, 8, 1, 6} using selection sort would be:

Selection Sort

2 9 5 4 8 1 6

swap

Select 1 (the smallest) and swap it

with 2 (the first) in the list

1 9 5 4 8 2 6

swap

 The number 1 is now in the

correct position and thus no
longer needs to be considered.

1 2 5 4 8 9 6

swap

1 2 4 5 8 9 6

Select 2 (the smallest) and swap it

with 9 (the first) in the remaining

list

The number 2 is now in the
correct position and thus no

longer needs to be considered.

Select 4 (the smallest) and swap it
with 5 (the first) in the remaining

list

 The number 6 is now in the

correct position and thus no
longer needs to be considered.

1 2 4 5 8 9 6

Select 6 (the smallest) and swap it

with 8 (the first) in the remaining
list

1 2 4 5 6 9 8

swap

The number 6 is now in the

correct position and thus no
longer needs to be considered.

1 2 4 5 6 8 9

Select 8 (the smallest) and swap it

with 9 (the first) in the remaining

list

The number 8 is now in the

correct position and thus no
longer needs to be considered.

Since there is only one element
remaining in the list, sort is

completed

5 is the smallest and in the right

position. No swap is necessary

The number 5 is now in the

correct position and thus no

longer needs to be considered.

swap

(c) Paul Fodor (CS Stony Brook) & Pearson

From Idea to Solution
for (int i = 0; i < list.length; i++) {

select the smallest element in list[i..listSize-1];

swap the smallest with list[i], if necessary;

// list[i] is in its correct position.

// The next iteration apply on list[i+1..listSize-1]

}

124

(c) Paul Fodor (CS Stony Brook) & Pearson
125

Expand

double currentMin = list[i];

int currentMinIndex = i;

for (int j = i+1; j < list.length; j++) {

if (currentMin > list[j]) {

currentMin = list[j];

currentMinIndex = j;

}

}

for (int i = 0; i < list.length; i++) {

select the smallest element in list[i..listSize-1];

swap the smallest with list[i], if necessary;

// list[i] is in its correct position.

// The next iteration apply on list[i+1..listSize-1]

}

From Idea to Solution

(c) Paul Fodor (CS Stony Brook) & Pearson
126

Wrap it in a Method
/** The method for sorting numbers */

public static void selectionSort(double[] list) {

for (int i = 0; i < list.length; i++) {

// Find the minimum in the list[i..list.length-1]

double currentMin = list[i];

int currentMinIndex = i;

for (int j = i + 1; j < list.length; j++) {

if (currentMin > list[j]) {

currentMin = list[j];

currentMinIndex = j;

}

}

// Swap list[i] with list[currentMinIndex] if necessary;

if (currentMinIndex != i) {

list[currentMinIndex] = list[i];

list[i] = currentMin;

}

}

}

(c) Paul Fodor (CS Stony Brook) & Pearson
127

Insertion Sort
int[] myList = {2, 9, 5, 4, 8, 1, 6}; // Unsorted

The insertion sort
algorithm sorts a list
of values by
repeatedly inserting
an unsorted element
into a sorted sublist
until the whole list
is sorted.

2 9 5 4 8 1 6

Step 1: Initially, the sorted sublist contains the

first element in the list. Insert 9 to the sublist.

2 9 5 4 8 1 6

Step2: The sorted sublist is {2, 9}. Insert 5 to the

sublist.

2 5 9 4 8 1 6

Step 3: The sorted sublist is {2, 5, 9}. Insert 4 to

the sublist.

2 4 5 9 8 1 6

Step 4: The sorted sublist is {2, 4, 5, 9}. Insert 8
to the sublist.

2 4 5 8 9 1 6

Step 5: The sorted sublist is {2, 4, 5, 8, 9}. Insert

1 to the sublist.

1 2 4 5 8 9 6

Step 6: The sorted sublist is {1, 2, 4, 5, 8, 9}.
Insert 6 to the sublist.

1 2 4 5 6 8 9

Step 7: The entire list is now sorted

(c) Paul Fodor (CS Stony Brook) & Pearson
128

How to Insert?

The insertion sort
algorithm sorts a list
of values by
repeatedly inserting
an unsorted element
into a sorted sublist
until the whole list
is sorted.

 [0] [1] [2] [3] [4] [5] [6]

 2 5 9 4 list Step 1: Save 4 to a temporary variable currentElement

 [0] [1] [2] [3] [4] [5] [6]

 2 5 9 list Step 2: Move list[2] to list[3]

 [0] [1] [2] [3] [4] [5] [6]

 2 5 9 list Step 3: Move list[1] to list[2]

 [0] [1] [2] [3] [4] [5] [6]

 2 4 5 9 list Step 4: Assign currentElement to list[1]

(c) Paul Fodor (CS Stony Brook) & Pearson
129

From Idea to Solution
for (int i = 1; 1; i < list,length; i++) {

insert list[i] into a sorted sublist list[0..i-1] so that

list[0..i] is sorted

}

(c) Paul Fodor (CS Stony Brook) & Pearson
130

public static void insertionSort(double[] list){

for(int i=1; i<list.length; i++){

//insert list[i] in the sorted sublist list[0,i-1]

// find the position

int pos;

for(pos=0; pos<i; pos++)

if(list[pos]>list[i])

break;

double temp = list[i];

// shift right elements from pos to i-1

for(int j=i; j>pos; j--)

list[j] = list[j-1];

list[pos] = temp;

}

}

public static void main(String[] args) {

double[] list1 = new double[]{8, 2, 3, 4};

insertionSort(list1);

print(list1);

}

public static void print(double[] list){

for(double x:list) System.out.print(x + " ");

}

(c) Paul Fodor (CS Stony Brook) & Pearson
131

The Arrays.sort Method
• Since sorting is frequently used in programming, Java provides several

overloaded sort methods for sorting an array of int, double, char, short,
long, and float in the java.util.Arrays class. For example, the following
code sorts an array of numbers and an array of characters.

double[] numbers = {6.0, 4.4, 1.9, 2.9, 3.4, 3.5};

java.util.Arrays.sort(numbers);

char[] chars = {'a', 'A', '4', 'F', 'D', 'P'};

java.util.Arrays.sort(chars);

(c) Paul Fodor (CS Stony Brook) & Pearson
132

Declaring Variables of Two-

dimensional Arrays and Creating

Two-dimensional Arrays
int[][] matrix = new int[10][10];

or

int matrix[][] = new int[10][10];

 Indexed variables:

matrix[0][0] = 3;

 Length:
for (int i = 0; i < matrix.length; i++)

for (int j = 0; j < matrix[i].length; j++)

matrix[i][j] = (int)(Math.random() * 1000);

(c) Paul Fodor (CS Stony Brook) & Pearson
133

Two-dimensional Array Lengths

 0 1 2 3 4

 0

 7

 0 1 2 3 4

 1

 2

 3

 4

 0

 1

 2

 3

 4

matrix[2][1] = 7;

matrix = new int[5][5];

 3

 7

 0 1 2

 0

 1

 2

int[][] array = {

 {1, 2, 3},

 {4, 5, 6},

 {7, 8, 9},

 {10, 11, 12}

};

1

2

3

4

5

6

 8

9

10

11

12

array.length? 4

array[0].length? 3

matrix.length? 5

matrix[0].length? 5

(c) Paul Fodor (CS Stony Brook) & Pearson
134

Lengths of Two-dimensional

Arrays

x
x[0]

x[1]

x[2]

x[0][0] x[0][1] x[0][2] x[0][3]

 x[1][0] x[1][1] x[1][2] x[1][3]

 x[2][0] x[2][1] x[2][2] x[2][3]

x.length is 3

x[0].length is 4

x[1].length is 4

x[2].length is 4

int[][] x = new int[3][4];

(c) Paul Fodor (CS Stony Brook) & Pearson
135

Declaring, Creating, and Initializing

Using Shorthand Notations

You can also use an array initializer to declare, create and initialize

a two-dimensional array. For example,

int[][] array = new int[4][3];

array[0][0] = 1; array[0][1] = 2; array[0][2] = 3;

array[1][0] = 4; array[1][1] = 5; array[1][2] = 6;

array[2][0] = 7; array[2][1] = 8; array[2][2] = 9;

array[3][0] = 10; array[3][1] = 11; array[3][2] = 12;

int[][] array = {

{1, 2, 3},

{4, 5, 6},

{7, 8, 9},

{10, 11, 12}

};

Same as

(c) Paul Fodor (CS Stony Brook) & Pearson
136

Ragged Arrays
A ragged array is an array where rows can have

different lengths:
int[][] matrix = {

{1, 2, 3, 4, 5},

{2, 3, 4, 5},

{3, 4, 5},

{4, 5},

{5}

};

matrix.length is 5

matrix[0].length is 5

matrix[1].length is 4

matrix[2].length is 3

matrix[3].length is 2

matrix[4].length is 1

(c) Paul Fodor (CS Stony Brook) & Pearson
137

1 2 3 4 5

int[][] triangleArray = {

 {1, 2, 3, 4, 5},

 {1, 2, 3, 4},

 {1, 2, 3},

 {1, 2},

 {1}

};

1 2 3 4

1 2 3

1 2

1

Ragged Arrays
Storing a ragged array:

