Course Description

• “Second part of a two-semester sequence, CSE 160 and CSE 260. Further development of the object-oriented design strategies presented in CSE 160. Continues with introductions to event-driven programming, graphical user interfaces, and design patterns. Includes an extended design and programming project.

(https://www.cs.stonybrook.edu/students/Undergraduate-Studies/courses/CSE260)"

• Prerequisites: CSE 160
• Corequisite: CSE 261
• 3 credits
Course Outcomes

- The following are the official course goals agreed upon by the faculty for this course:
 - An ability to apply techniques of object-oriented programming in the context of large-scale programs.
 - An understanding of the importance of time and memory efficiency in algorithm and data structure design.
 - An ability to use recursion to solve programming problems.
 - An ability to use programming tools such as syntax-directed editors, debuggers, execution profilers, documentation generators, and revision-control systems.
Major Topics Covered in Course

- The software lifecycle: requirements and specifications, use cases, object-oriented design
- UML: use case diagrams, class diagrams, sequence diagrams
- Guidelines for class design, encapsulation, programming by contract, preconditions, postconditions, invariants, and assertions
- Mutability and immutability, side effects and aliasing
- The Java object model: primitive and object types, subtypes, wrapper classes, object identity versus equality, hashing and equality, cloning objects: shallow and deep copy, object serialization
- Application frameworks, model/view/controller architecture, design patterns
- Packages, using refactoring tools
- Threads and synchronization, using threads with Swing
- Running time analysis, big-O notation, using execution profiling tools to measure time and memory use
- Abstract data types: specification and implementation
- Collections: lists, bags, sets, and maps
- Indexed collections, sorted collections, binary search
- Sorting: mergesort, heapsort, quicksort
- Stacks, queues, and their applications: depth-first and breadth-first search, Dijkstra's algorithm
- Trees: binary heaps, binary search trees, balanced trees
- Linked implementation of lists and trees, skip lists
- Recursion
- Hash tables and their implementation
Instructor Information

• Dr. Paul Fodor
 214 New Computer Science Building
• Office hours: Mondays and Wednesdays 3:30-5pm
• Phone: 1 (631) 632-9820
• Email: paul (dot) fodor (at) stonybrook (dot) edu
 • Please include “CSE 260” in the email subject and your name in your email correspondence
• TAs: see course Web page:
 http://www.cs.stonybrook.edu/~cse260
• Blackboard will be used for assignments, grades and course material.
Class Time and Place

- Lectures: MW 7:00PM-08:20PM, Computer Science 2120.
- Labs: TUTH 4:00PM-05:20PM, Computer Science 2120.
Textbooks

Grading Schema

- Grades will be based on homework and exams according to the following formula:
 - Homework assignments = 12.5%
 - Project phase 1 = 2.5%
 - Project phase 2 = 2.5%
 - Project phase 3 (final) = 7.5%
 - Quizzes = 5%
 - Labs = 10%
 - Midterm exam 1 = 20%
 - Midterm exam 2 = 20%
 - Final exam = 20%
Examinations

- Midterm 1: We. 10/3, in classroom, during class time (80 minutes).
- Midterm 2: We. 11/7, in classroom, during class time (80 minutes).
- Final Exam: Wednesday December 19, 2018, 5:30-7:30pm.
 - See Final Exams University Schedule here:
 https://www.stonybrook.edu/commcms/registrar/registration/_exams/fall18-finals.php

- The exams will be like the problems that we solve in the class!
- **The Pass/No Credit (P/NC) option is not available for this course**
 - This policy applies to *all* CSE/ISE undergraduate courses used to satisfy the graduation requirements for the major
Grading

- **Grade Cutoffs:** A [95-100], A- [90-95], B+ [87-90], B [83-87], B- [80-83], C+ [77-80], C [73-77], C- [70-73], D+ [65-70], D [60-65], F [0-60]

- **SPECIAL RULE:** If all your grades, including homework assignments, quizzes, recitation and your three exam grades are above the respective class averages, you're guaranteed to receive a grade of C or higher for this class.

- There will be extra credit problems as a part of quizzes and homework assignments which values to an increase of less than 4% in the final grade.

- There will be in-class quizzes / brief assessments used to practice the class material and measure growth in knowledge, abilities, and skills. They will be solved in class and they are valued 2 points each.
Grading

• The final grade you receive in this class will reflect, as far as possible, the extent to which you have mastered the concepts and their applications.

• How much someone needs a grade, or how close they are to the next higher grade, will have no effect on grade.

• As the instructor, I want everyone to do well in this course, and will make every reasonable effort to help you understand the material taught.

• However, the grades provided at the end of the semester are final, except for rare situations involving grading errors.

• They will not be altered for any reason, so please do not ask me to do so.
Assignments

- Homework assignments due on fixed dates and times.
 - no late submission is permitted
- All assignments should be submitted electronically on Blackboard
Lab exercises

- You will be given problems that require a programmed solution during lab hours. You will have only the lab period to edit, compile, and execute your solution.

- Attendance is mandatory, if you want credit
 - you can leave early only if you showed all your assigned work
 - if you come later than 15 minutes from the start of the lab, then you don't get the credit for the lab

- Demonstrate your work to Lab-TA before you leave for lab credit
 0 – 3 points:
 - 0 - Student did not attend the lab or program does not even compile.
 - 1 - Student attended the lab, program compiles but has major problems.
 - 2 - Student attended the lab, and program partially works (with some minor errors)
 - 3 - Student attended the lab, and program is correct
Regrading of Homework/Exams

- Please meet with a grading TA or the instructor and arrange for regrading.
- You have one week from the day grades are posted or mailed or announced!
- Late requests will not be entertained.
<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Generics in Java</td>
</tr>
<tr>
<td>2</td>
<td>Lists, Stacks, Queues, and Priority Queues in Java</td>
</tr>
<tr>
<td>3</td>
<td>Sets and Maps in Java</td>
</tr>
<tr>
<td>4</td>
<td>Developing Efficient Algorithms</td>
</tr>
<tr>
<td>5</td>
<td>Sorting</td>
</tr>
<tr>
<td>6</td>
<td>Implementing Lists, Stacks, Queues, and Priority Queues</td>
</tr>
<tr>
<td>7</td>
<td>Binary Search Trees</td>
</tr>
<tr>
<td>8</td>
<td>AVL Trees</td>
</tr>
<tr>
<td>9</td>
<td>Hashing</td>
</tr>
<tr>
<td>10</td>
<td>Graphs and Applications</td>
</tr>
<tr>
<td>11</td>
<td>Weighted Graphs and Applications</td>
</tr>
<tr>
<td>12</td>
<td>2-4 Trees and B-Trees</td>
</tr>
<tr>
<td>13</td>
<td>Red-Black Trees</td>
</tr>
<tr>
<td>14</td>
<td>Multithreading and Parallel Programming</td>
</tr>
<tr>
<td>15</td>
<td>Design patterns</td>
</tr>
</tbody>
</table>
Disability Support Services

• If you have a physical, psychological, medical or learning disability, contact the DSS office at Room 128 ECC. Phone 632-6748/TDD

• If you are planning to take an exam at DSS office, you need to tell me ahead of time for every exam.

• All documentation of disability is confidential.
Academic Integrity

The following rules are posted in every course syllabus: "Each student must pursue his or her academic goals honestly and be personally accountable for all submitted work. Representing another person's work as your own is always wrong. Any suspected instance of academic dishonesty will be reported to the Academic Judiciary. For more comprehensive information on academic integrity, including categories of academic dishonesty, please refer to the academic judiciary website at http://www.stonybrook.edu/commcms/academic_integrity/"
Academic Integrity

- You can discuss general assignment concepts with other students: explaining how to use systems or tools and helping others with high-level design issues
- You **MAY NOT share** assignments, source code or other answers by copying, retyping, looking at, or supplying a file
 - Assignments are subject to manual and automated similarity checking (We do check! and our tools for doing this are much better than cheaters think)
- If you cheat, you will be brought up on academic dishonesty charges - we follow the university policy:
 - http://www.stonybrook.edu/uaa/academicjudiciary
Examples of Academic Dishonesty

- **Unpermitted collaboration** (on a paper, homework, lab reports, etc.). Unless an instructor has explicitly approved working together, students should assume, for their own protection, that it is not permitted.

- **Helping someone else to plagiarize from one's own homework** (for example, by giving them a copy of yours, or doing it for them)
 - This includes having a public repository on Github that other students can copy from.

- **Representing someone else's source code as one's own**. If another person's code is being used, it must be properly cited.

- **Buying or selling source code**.

- **Using source code or pieces of a paper from the internet without properly citing the source**.
Academic Integrity

• The instructor makes a recommendation at the Academic Judiciary office
• Cheating is cheating! No matter the amount of cheating or if one is the source or destination of cheating.
• Do not cheat! You are cheating yourself.
• Our job is the teach you the material and make sure that you learn it.
• Our recommendation is always F for the cheaters!
Catastrophic events

• Major illness, death in family
• Formulate a plan (with your CEAS academic advisor) to get back on track
• Advice
 • Once you start running late, it’s really hard to catch up
What do you need to get started?

- Blackboard account
 - http://blackboard.stonybrook.edu
- Java JDK standard edition:
 - http://www.oracle.com/technetwork/java/javase/downloads
- Eclipse IDE:
- Learn to use the debugger!!!
- Liang’s student Web site:
 - http://www.cs.armstrong.edu/liang/intro11e
Software

• Necessary Software:
 • You should download JDK for your operating system (cost: free)
 • Eclipse IDE: http://www.eclipse.org
 • You should download the Eclipse IDE for Java Developers (cost: free)
 • Integrated Development Environment (IDE)
 • combines writing, compiling, running and debugging Java code into a single application
 • makes coding much more efficient and organized
 • Eclipse, NetBeans, etc.
Individual class projects

- https://www.cs.stonybrook.edu/students/Undergraduate-Studies/courses/CSE260

- "An extended design and programming project."
 - Project phase 1: Monday, October 8 (proposal in class)
 - Project phase 2: Monday, November 12 (presentations in class)
 - Project phase 3 (final): Monday, December 3 (presentations in class)
Sample project: Go
Another sample project: Artificial Intelligence (AI) Poker
Another sample project: AI Blackjack
CSE114 Spring 2013 Craps

Pass Line
$1
$2
$3
$4
$5

Don't Pass Line

Point 10
Good Luck

Roll Dices
Another sample project: Baccarat
Another sample project: Pai Gow Poker (double-hand poker)
Another sample project: 24 Game
Another sample project: Bridge
Another sample project: Go Fish
Another sample project: Wheel of Fortune
Another sample project: Cosmic Wimpout

http://cosmicwimpout.com/p/7/How-to-play
Another sample project: Scrimish
Another sample project: UNO!
Another sample project: the rush-hour game

http://www.thinkfun.com/play-online/rush-hour/
Please

• Please be on time
• Please show respect for your classmates
• Please turn off (or use vibrate for) your cellphones

…

• On-topic questions are welcome
Welcome and Enjoy!