
CSE219, Computer Science III

Stony Brook University

http://www.cs.stonybrook.edu/~cse219

Test-Driven Development

(a.k.a. Design to Test)

http://www.cs.stonybrook.edu/~cse219

(c) Paul Fodor

Man-hours

Labor is sometimes measured in man-hours,

man-months, or man-years.

Example: Doom3 took 5 years and more

than 100 man-years of labor to develop

Company Spokesman: "It will be ready when

it's done"

Why not double the size of the team and

halve the lead time (concept date to release

date)?
2

http://www.spectrum.ieee.org/sep05/1685

(c) Paul Fodor

Man-hours: The Mythical Man-Month

 Assume that a software program might take one expert

programmer a year to develop = 12 man-months

 Market pressures might be such that we want to get the

program finished in a month, rather than a year

 1 programmer * 12 months = 12 programmers * 1

month?

When you throw additional programmers at a project

that is late, you are likely to make it more late!

Remove promised-but-not-yet-completed features,

rather than multiplying workers bees.

Also, at least one team member must have detailed

knowledge of the entire system (all the modules).
3

http://www.spectrum.ieee.org/sep05/1685

(c) Paul Fodor

Design to Implementation
 Assume a modular design has been completed

Can all the modules be developed in parallel?

most likely not - due to dependencies

division of work within a module may also be necessary

can classes within a module be developed in parallel?

most likely not - due to dependencies

division of work within a class may also be necessary

ocan methods within a class be developed in

parallel?

oAgain most likely not - due to dependencies

4

(c) Paul Fodor

Bottom-Up Development
Traditional approach:

All modules used by module M are implemented

and tested before M is implemented.

Requires the use of drivers (i.e., testers).

 Example of Module dependencies:

 Bottom-up development can place less of a

 load on system resources.

 Bottom-up development can lead to earlier

 completion of useful subsystems.

 5

A

B C

D E

(c) Paul Fodor

Top-Down Development
 All modules that use module M are implemented and

tested before M is implemented.

 Modules themselves will probably use bottom-up

development

Requires the use of stubs.

Testing procedures are important

Example of module dependencies:
 If the design contains a type hierarchy, top-

 down development is required.

6

A

B C

D E

(c) Paul Fodor

The Development Strategy
 Should be defined explicitly before implementation begins

 Should be primarily top-down, with bottom-up used mainly

for modules that are easier to implement than to simulate

 Advantages of top-down outweigh bottom-up

 simplifies system integration & test

makes it possible to produce useful partial versions of the

system

 allows critical high-level design errors to be caught early

 Bottom-up development may be used for each module

we’ll see this with module testing as well

 7

(c) Paul Fodor

What is design to test?
 Approach to implementation

design modular classes and methods

before coding:

 determine what needs to be tested

 design test cases for those important methods

 test incrementally, as you implement your solution

8

(c) Paul Fodor

Don't Design to Fail

 1

Design to Test = --------------------

 Design to Fail

• Things to avoid:

– coding without a design

– not planning on how a design will be tested

– creating large amounts of untested code

– coding very large methods

– lack of modularity can doom an implementation

 9

(c) Paul Fodor
10

Testing vs. Debugging
Testing

Debugging

Does the code

work properly

YES

NO

Coding

(c) Paul Fodor

Important Definitions
 Testing

 a process of running a program on a set of test cases and

comparing the actual results with expected results

 Verification

 a formal or informal argument that a program works as intended

for all possible inputs

 Validation

 a process designed to increase confidence that a program works

as intended

 performed through verification or testing

 Defensive Programming

 writing programs in a way designed to ease the process of

validation and debugging

11

(c) Paul Fodor

Kinds of Testing
 Unit Testing

Test each module in a program separately.

 Integration Testing

Test interfaces between modules.

Much more difficult than unit testing

 Regression Testing

Test programs after modifications to ensure

correct behavior of the original program is

preserved.

 System Testing

Test overall system behavior.

12

(c) Paul Fodor

Aspects of Testing
 How do we generate test cases?

Exhaustive

 Consider all possible combinations of inputs.

 Often infeasible – why?

 Is it feasible with your project?

Sampled

 A small but representative subset of all input combinations.

 Black-box testing - Test cases generated from program

specifications and not dependent on the implementation

 Glass-box testing - Test cases generated from program’s

code

13

(c) Paul Fodor

Black-box testing
 It is the best place to start when attempting to test a program

thoroughly

 Test cases based on program’s specification, not on its

implementation (see the homework grading sheets)

 Test cases are not affected by:

 Invalid assumptions made by the programmer

 Implementation changes

 Use same test cases even after program structures has changed

 Test cases can be generated by an “independent” agent,

unfamiliar with the implementation.

 Test cases should cover all paths (not all cases) through the

specification, including exceptions.

14

(c) Paul Fodor

Boundary Conditions
A boundary condition is an input that is “one away”

from producing a different behavior in the program

code

 Such checks catch 2 common types of errors:

Logical errors, in which a path to handle a special

case presented by a boundary condition is

omitted

Failure to check for conditionals that may cause

the underlying language or hardware system to

raise an exception (ex: arithmetic overflow)

15

(c) Paul Fodor

Glass-box testing
Black-box testing is generally not enough.

For Glass-box testing, the code of a program

being tested is taken into account

Path-completeness:

Test cases are generated to exercise each path

through a program.

May be insufficient to catch all errors.

Can be used effectively only for a program

fragment that contains a reasonable number of

paths to test.

16

(c) Paul Fodor

Testing paths through specification
• Examine the method specifications (preconditions) & all paths

through method to generate unique test cases for testing.
/* REQUIRES: x >= 0 && y >= 10 */

public static int calc(int x, int y) { ... }

• Translate paths to test cases:
x = 0, y = 10 (x == 0 && y == 10)

x = 5, y = 10 (x > 0 && y == 10)

x = 0, y = 15 (x == 0 && y > 10)

x = 5, y = 15 (x > 0 && y > 10)

x = -1, y = 10 (x < 0 && y == 10)

x = -1, y = 15 (x < 0 && y > 10)

x = -1, y = 9 (x < 0 && y < 10)

x = 0, y = 9 (x == 0 && y < 10)

x = 1, y = 9 (x > 0 && y < 10)

17

(c) Paul Fodor

JUnit
 Unit-test framework for Java programs

open source software

hosted on SourceForge:

http://junit.sourceforge.net/javadoc

Moved to http://junit.org (for JUnit 4 and later)

not in the standard JDK:

import junit.framework.*;

 //for JUnit 3.8 and earlier

import org.junit.*; //for JUnit 4 and later

 Associate a Test class with each unit

one or more classes
18

http://blog.takipi.com/we-

analyzed-30000-github-

projects-here-are-the-top-

100-libraries-in-java-js-and-

ruby research survey

performed in 2013 across

30,000 GitHub projects

found that 40-50% of all

projects use an automatic

testing framework (JUnit in

Java and RSpec in Ruby)

http://junit.sourceforge.net/javadoc
http://junit.org/
http://junit.sourceforge.net/javadoc/

(c) Paul Fodor

JUnit
The test class has a set of test methods

 public void testX()

where X is the method to be tested

The test methods use “assertions” to perform the

tests, ex:

 Assert.assertTrue(c)

 Assert.assertEquals(x,y)

 Assert.assertSame(obj1, obj2)

19

(c) Paul Fodor

(c) Paul Fodor

JUnit

21

Calculator.java
public class Calculator {

 public int evaluate(String expression) {

 int sum = 0;

 for (String summand: expression.split("\\+"))

 sum += Integer.valueOf(summand);

 return sum;

 }

}

(c) Paul Fodor

JUnit

22

CalculatorTest.java
import static org.junit.Assert.assertEquals;

import org.junit.Test;

public class CalculatorTest {

 @Test

 public void evaluatesExpression() {

 Calculator calculator = new Calculator();

 int sum = calculator.evaluate("1+2+3");

 assertEquals(6, sum);

 }

}

(c) Paul Fodor

JUnit

23

java -cp .:junit-4.12.jar:hamcrest-core-
 1.3.jar org.junit.runner.JUnitCore
 CalculatorTest

JUnit version 4.12

Time: 0,006

OK (1 test)

(c) Paul Fodor

JUnit

24

Calculator.java
public class Calculator {

 public int evaluate(String expression) {

 int sum = 0;

 for (String summand: expression.split("\\+"))

 sum -= Integer.valueOf(summand);

 return sum;

 }

}

(c) Paul Fodor

JUnit

25

java -cp .:junit-4.12.jar:hamcrest-core-
 1.3.jar org.junit.runner.JUnitCore
 CalculatorTest
JUnit version 4.12
.E
Time: 0,007
There was 1 failure:
1) evaluatesExpression(CalculatorTest)
java.lang.AssertionError: expected:<6> but was:<-6>
 at org.junit.Assert.fail(Assert.java:88)
 ...
FAILURES!!!
Tests run: 1, Failures: 1

(c) Paul Fodor
26

Netbeans IDE Right-click Calculator.java and choose Tools > Create Tests.

In the project Properties -> Add

Library JUnit

(c) Paul Fodor
27

Eclipse IDE Open the New wizard (File > New > JUnit Test Case).

(c) Paul Fodor

Building unit tests with JUnit

Initialize any instance variables

necessary for testing in the test object

Define tests for emptiness, equality,

boundary conditions, ...

Define test suites, if necessary, to group

tests.

Use Assert methods to perform tests

28

(c) Paul Fodor

JUnit 3.8 vs. 4
 JUnit 4: all test methods are annotated with

@Test.

Unlike JUnit3 tests, you do not need to prefix the

method name with "test“.

 JUnit 4 does not have the test classes extend

junit.framework.TestCase (directly or indirectly).

Usually, tests with JUnit4 do not need to extend

anything (which is good, since Java does not

support multiple inheritance).

29

(c) Paul Fodor

JUnit Example – StatCompiler.java

public class StatCompiler {

 /**

 * a, b, & c must all be positive

 **/

 public static int averageOfPosInts(int a, int b, int c)

 throws IllegalArgumentException{

 if ((a < 0) || (b <0) || (c < 0))

 throw new IllegalArgumentException("No neg values");

 int sum = a + b + c;

 return sum/3;

 }

 public static int median(int a, int b, int c){

 if ((a >=b) && (a <=c)) return a;

 else if ((a >= b) && (a >=c)) return b;

 else return c;

 }

} 30

(c) Paul Fodor

StatCompilerTest_3_8.java import junit.framework.*;

 // JUnit 3.8

public class StatCompilerTest extends TestCase {

 public StatCompilerTest(java.lang.String testName) {

 super(testName);

 }

 public void testAverageOfPosInts() {

 System.out.println("testAverageOfPosInts");

 Assert.assertEquals(StatCompiler.averageOfPosInts (1, 2, 3), 2);

 try{

 StatCompiler.averageOfPosInts(-1, 2, 3);

 fail("Exception should have been thrown");

 } catch (IllegalArgumentException iae) {}

 }

 public void testMedian() {

 System.out.println("testMedian");

 Assert.assertEquals(2, StatCompiler.median(1, 2, 3));

 Assert.assertEquals(2, StatCompiler.median(3, 2, 1));

 }

}

31

(c) Paul Fodor

Run JUnit version 3.8

Junit version 3.8

testAverageOfPosInts

testMedian

===

Errors logged for the StatCompilerTest test:

 No errors.

===

Failures logged for the StatCompilerTest test:

 Total failures: 1

Test case testMedian(StatCompilerTest) failed with "expected:<2>
but was:<3>“ at
StatCompilerTest.testMedian(StatCompilerTest.java:42)

===

Summary of StatCompilerTest test:

 Result: Failed

 Run: 2

 Failures: 1

 Errors: 0

 Elapsed time: 0.01

32

(c) Paul Fodor

StatCompilerTest_4.java import org.junit.Test;

import static org.junit.Assert.*;

public class StatCompilerTest {

 @Test

 public void testAverageOfPosInts() {

 System.out.println("averageOfPosInts");

 int a = 1;

 int b = 2;

 int c = 3;

 int expResult = 2;

 int result = StatCompiler.averageOfPosInts(a, b, c);

 assertEquals(expResult, result);

 }

 @Test

 public void testMedian() {

 System.out.println("median");

 int a = 3;

 int b = 2;

 int c = 1;

 int expResult = 2;

 int result = StatCompiler.median(a, b, c);

 assertEquals(expResult, result);

 }

} 33

(c) Paul Fodor
34

NetBeans and Junit: Download the Junit library and add it in the path. The

Junit plugin is installed.

(c) Paul Fodor

Run JUnit version 4
Run: java org.junit.runner.JUnitCore [test class name]

JUnit version 4.11

.testAverageOfPosInts

.testMedian

Time: 0.005

There was 1 failure:

1) testMedian(JUnit_test_01)

java.lang.AssertionError: expected:<2> but was:<3>

FAILURES!!!

Tests run: 2, Failures: 1

35

(c) Paul Fodor

Notes on Static import
 Static import is a feature introduced in the Java

programming language that allows members (fields and

methods) defined in a class as public static to be used in

Java code without specifying the class in which the field is

defined.

 The mechanism can be used to reference individual

members of a class:
import static java.lang.Math.PI;

import static java.lang.Math.pow;

 or all the static members of a class:
import static java.lang.Math.*;

 36

(c) Paul Fodor

Static import example
import static java.lang.Math.*;

// OR

// import static java.lang.Math.PI;

// import static java.lang.Math.pow;

import static java.lang.System.out;

public class HelloWorld {

 public static void main(String[] args) {

 out.println("Hello World!");

 out.println("A circle with a diameter of 5 cm has:");

 out.println("A circumference of " + (PI * 5) + " cm");

 out.println("And an area of " + (PI * pow(2.5,2))

 + " sq. cm");

 }

}
37

(c) Paul Fodor

Notes on Assertions
An assertion is a Java statement that enables

you to assert an assumption about your

program.

An assertion contains a Boolean expression

that should be true during program

execution.

Assertions can be used to assure program

correctness and avoid logic errors.

38

(c) Paul Fodor

Declaring Assertions
An assertion is declared using the Java keyword

assert in JDK 1.5 as follows:

assert assertion; //OR

assert assertion : detailMessage;

where assertion is a Boolean expression and

detailMessage is a primitive-type or an Object

value.

39

(c) Paul Fodor

Executing Assertions Example
public class AssertionDemo {

 public static void main(String[] args) {

 int i; int sum = 0;

 for (i = 0; i < 10; i++) {

 sum += i;

 }

 assert i==10;

 assert sum>10 && sum<5*10 : "sum is " + sum;

 }

}

40

(c) Paul Fodor

Executing Assertions
 When an assertion statement is executed, Java evaluates the

assertion.

 If it is false, an AssertionError will be thrown.

 The AssertionError class has a no-arg constructor and seven

overloaded single-argument constructors of type int, long, float,

double, boolean, char, and Object.

 For the first assert statement with no detail message, the no-arg

constructor of AssertionError is used.

 For the second assert statement with a detail message, an appropriate

AssertionError constructor is used to match the data type of the

message.

 Since AssertionError is a subclass of Error, when an assertion becomes

false, the program displays a message on the console and exits.

 41

(c) Paul Fodor

Running Programs with Assertions
 By default, the assertions are disabled at runtime. To enable it,

use the switch –enableassertions, or –ea for short, as follows:

 java –ea AssertionDemo
public class AssertionDemo {

 public static void main(String[] args){

 int i; int sum = 0;

 for (i = 0; i < 10; i++) {

 sum += i;

 }

 assert i!=10;

 }

}

Exception in thread "main" java.lang.AssertionError

at AssertionDemo.main(AssertionDemo.java:7)

42

(c) Paul Fodor

Assertions can be selectively enabled or disabled at

class level or package level.

The disable switch is –disableassertions or –da

for short.

For example, the following command enables

assertions in package package1 and disables

assertions in class Class1.
java –ea:package1 –da:Class1 AssertionDemo

43

Running Programs with Assertions

(c) Paul Fodor

Using Exception Handling or Assertions?

 Assertion should not be used to replace exception

handling.

 Exception handling deals with unusual circumstances during

program execution.

 Assertions are to assure the correctness of the program.

 Exception handling addresses robustness and assertion

addresses correctness.

 Assertions are used for internal consistency and validity

checks.

 Assertions are checked at runtime and can be turned on or off

at startup time.

 44

(c) Paul Fodor

Do not use assertions for argument checking in

public methods:

Valid arguments that may be passed to a public method

are considered to be part of the method’s contract.

The contract must always be obeyed whether assertions

are enabled or disabled.

For example, the following code in the Circle class

should be rewritten using exception handling:
public void setRadius(double newRadius) {

 assert newRadius >= 0;

 radius = newRadius;

}

45

Using Exception Handling or Assertions?

(c) Paul Fodor

Use assertions to reaffirm assumptions.

This gives you more confidence to assure correctness

of the program.

A common use of assertions is to replace assumptions

with assertions in the code.

A good use of assertions is place assertions in a switch

statement without a default case. For example:
switch (month) {

 case 1: ... ; break;

 case 2: ... ; break;

 ...

 case 12: ... ; break;

 default: assert false : "Invalid month: " + month;

}

46

Using Exception Handling or Assertions?

