
CSE219, Computer Science III

Stony Brook University

http://www.cs.stonybrook.edu/~cse219

Designing with Exceptions

http://www.cs.stonybrook.edu/~cse219

(c) Paul Fodor

Testing vs. Debugging

2

Testing

Debugging

Does the code

work properly

YES

NO

Coding

(c) Paul Fodor

Testing
Tells us when something is wrong

not how to fix it

3

(c) Paul Fodor

Debugging

 Process of understanding and correcting errors

 First locate the problem

 find line of your code that produces initial problem

 Then address the algorithm

correct implementation of algorithm

 OR

change algorithm

4

(c) Paul Fodor

Debugging is an important skill

Become proficient ASAP

Why?

Reveal bugs that are not otherwise evident

 like infinite loops

Don’t design to debug

Don’t rely on debugging to write your code

Try to define and implement correct algorithms

fast debugging << correct algorithm

implementation

5

(c) Paul Fodor

Debugging Strategy
 When you know a bug exists for a particular case

Determine in which class the error originates

Determine in which method the error originates

Determine on which line of code the error originates

 Knowing where the problem originates is half the

battle

 Reproducing an error helps

6

(c) Paul Fodor

Common Bugs Revealed by Debugging

7

Un-constructed

Objects

Un-initialized

Variables

Improper

Iteration

Missing

Implementations

Incomplete

Changes

Failing to

reinitialize a

variable in loop

(c) Paul Fodor

Not all errors are created equal
 On difficulty scale:

syntax errors << runtime errors << logical errors

 Note:

runtime errors may be due to logical errors

8

(c) Paul Fodor

Plan to Debugging
Assumption:

every program will contain faults

no programmer gets it right the first time

 So?

Design, write, & document your programs in

ways that will make them easier to test & debug

How?

write well-documented modular code

avoid “I'll fix this later” approach

9

(c) Paul Fodor

Professionals use tools
Even for tracking bugs (e.g., Bugzilla)

10

(c) Paul Fodor

Debugging by Brute Force

I.e. the print statement

display contents of select variables

display benchmarks of program progress

i.e. Is this line of code reached?

System.out.println(“Before Foo”);

foo();

System.out.println(“After Foo”);

Advantage:

easy to implement

11

(c) Paul Fodor

Disadvantages of print Approach

Makes a mess of code

Hit-or-miss

Can't identify certain types of problems

Not easy to use for:

Large-scale programs

Graphical programs

Web apps

Mobile apps

12

(c) Paul Fodor

Debugging by Brute Force Example

private static boolean debug = true;

...

public int calculate (int y, int z) {

 int x;

 x = mystery(y);

 if (debug) {

 System.out.println(“DEBUG: x = ” + x

 + “ y = ” + y);

 }

 x += mystery(z);

 return x;

}

13

(c) Paul Fodor

Debugging by IDE
 All modern IDEs provide:

 examination of the contents of variables

 setting and removing of breakpoints

 query and search commands

 single-step execution through a program

 examination of different threads of execution

14

(c) Paul Fodor

NetBeans Debugger
 Similar to other IDE debuggers

 eclipse, Visual Studio, etc.

 Set Breakpoints

 place where debugger will stop

 Walk through code via:

 Stop

 Pause

 Continue

 Step Over

 Step Over Expression

 Step Into

 Step Out

15

(c) Paul Fodor

Robust Programs
 Methods have domain (arguments) & range (results)

 Total methods – behavior is defined for all inputs in the method

domain

 By definition these are robust methods

 Partial methods can lead to programs that are not robust

 Robust program continues to behave reasonably even in the

presence of errors

 If an error occurs, robust programs behave in a well-defined way.

Either:

 Providing some approximation of its behavior in the absence of an error =

graceful degradation

OR

 Halt with a meaningful error message without crashing or damage to permanent

data or software systems

16

(c) Paul Fodor

Exceptions
 Allow the flow of control to move from the location of an

error to an error handler

 Better than returning -1?

 Treats errors differently from normal results

 Forces the programmer to deal with these errors

 Types of errors:

 User input errors

 Device errors

 Physical limitations

 Code errors

 An exception is an abstraction

 allows us to handle errors in a more general way

17

(c) Paul Fodor

Exceptions/Errors in Java
 An exception may be thrown because:

 A method is called that throws a checked exception.

 FileNotFoundException, IOException

 A method is called that detects an error and explicitly

throws a checked exception.

 Create your own class that extends Exception.

 A method throws an unchecked exception due to a

programming error (i.e. a run-time logical error).

 ArithmeticException,NullPointerException

 An internal error occurs in the Java Virtual Machine (JVM)

or runtime library.

 e.g. VirtualMachineError, OutOfMemoryError

 18

(c) Paul Fodor

Method Design w/ Exceptions
 Throw an exception when a method’s preconditions are

not met

As well as any other error condition found in the

method

 Throw different types of exceptions for different types

of problems

 Specify detailed information about the reason for the

exception in the Exception message

 Provide a specification of all exceptions possibly thrown

inside a method

19

(c) Paul Fodor

Exceptions in Java

 A method throwing a checked exception must declare

the exception in the header via throws

 A method throwing an unchecked exception does not

have to declare the exception in its header

but it is advisable to do so!

 also, make sure your specification explains the conditions that generate each

exception

20

Throwable

Error Exception

RuntimeException
Checked

Exceptions

Unchecked

Exceptions

(c) Paul Fodor

Handling Exceptions
 An exception is handled in two ways:

 Enclose the method call that can cause an exception in a try

block.

 Use a catch block to handle the possible exception.

 Pass the exception back to the current method’s caller.

 Java automatically passes the exception to the method’s caller if:

 the exception type of one of its supertypes is listed in the

method’s header (in a throws clause)

 the exception type is unchecked

 Again! Make sure that any exception your code raises is listed

in the header and is described in the method’s specification.

21

(c) Paul Fodor

Tips on Using Exceptions
 Too much exception handling will slow your code

down dramatically.

 Exception handling is not supposed to replace a simple

test by an application.

 Robust GUIs should check input from users before

processing information.

 Exceptions serve to protect the methods & classes that

throw them,

Defensive programming: writing each procedure to

defend itself against errors.

22

(c) Paul Fodor

Tips on Using Exceptions

• Do not micromanage exceptions
– Example: Read a string and convert it to an int

try {

 line = inFile.readLine();

} catch (IOException e) {

 System.out.println(e);

}

try {

 num = Integer.parseInt(line);

} catch (NumberFormatException e) {

 System.out.println(e);

}

23

Put both exceptions into a single catch!

(c) Paul Fodor

Tips on Using Exceptions

• Continue example:

try {

 line = inFile.readLine();

 num = Integer.parseInt(line);

} catch (IOException e) {

 System.out.println(e);

} catch (NumberFormatException e) {

 System.out.println(e);

}

24
And separate normal processing from error handling.

(c) Paul Fodor

Tips on Using Exceptions

• Do not squelch/suppress/ignore exceptions.
– Example: Popping off a stack with 100 elements.

 sum = 0;

 for (i=1; i <= 100; i++){

 try {

 sum += s.pop();

 }catch(EmptyStackException e){

 } // squelched!

 }

–Logical errors can be completely
missed if exceptions are ignored!

25

(c) Paul Fodor

Reflecting is Good
 Method A calls method B, which throws an exception,

rather than passing the exception:

The caller A explicitly catches the exception from B

and throws a different type of exception.
 Example: Find the min of an array.

 Method begins by trying to get the element in position 0.

 If the array is empty, IndexOutOfBoundsException is thrown.

 The min method may catch this and return EmptyArrayException.

 Why would we want to do this?

 Turn vague exceptions into more relevant ones!

 Turn unchecked exceptions into checked ones!

26

(c) Paul Fodor

public static int min(int[] a) throws

EmptyArrayException {

 try{

 int min = a[0];

 …

 }catch(IndexOutOfBoundsException e)

 throw new EmptyArrayException();

 }

}

27

(c) Paul Fodor

Masking
 Method A calls method B, which throws an exception.

The caller A explicitly catches and handles the

exception and continues with the normal flow

Any method calling A is none the wiser

 Example: Sorting an array.

 Method tries to get element in position 0.

 If the array is empty, the array is already sorted (by

definition).

 Method catches

IndexOutOfBoundsException and masks it.

28

(c) Paul Fodor

Design Issues with Exceptions

When should one use them?

Checked or unchecked?

Use existing Exception classes or

make your own?

29

(c) Paul Fodor

When Do We Use Exceptions?
 Exceptions should be used to prevent data (static or instance

variables) from reaching an illegal state

 Make a partial method more like a total method

 Exceptions may be avoided (by returning an int error code)

if a method is used only locally

 Ex: private helper methods

 Use exceptions for exceptional situations

 Special Java rule for overriding:

 If you override a method, the subclass method cannot throw

more checked exceptions than the superclass that you

replace.

 30

(c) Paul Fodor

Use checked or unchecked?
Always use checked exceptions!

Why?

let other programmers (and yourself) be aware of

potential errors

make them anticipate these errors

make them handle these errors as they see fit

Many exceptions in the JDK are unchecked. Why?

It would clutter the code (example: having a try

block for every indexed array, division or object

use). 31

(c) Paul Fodor

Programmer vs. User

Unchecked exceptions occurring are

generally the fault of the programmer

Checked exceptions occurring may be

the fault of the user/system/Internet

access

32

(c) Paul Fodor

Testing and debugging in

large projects
 Testing using frameworks:

 JUnit

 Unit testing framework for the Java programming language

 Testing individual components

 Used in regression testing

import org.junit.*;… TestSuite suite= new TestSuite(); suite.addTest(new Test(…))

 Apache Log4J

 Logging results of applications

 Also used in debugging Web applications

 Properties stored in property file log4j.properties:

log = /usr/home/log4j

log4j.rootLogger = DEBUG, FILE

 Use: import org.apache.log4j.Logger; … static Logger log = Logger.getLogger(

log4jExample.class.getName()); … log.debug("this is an debug message");
33

