Designing with Exceptions

CSE219, Computer Science III
Stony Brook University

http: / / WWW. cs.stonybrook.edu/ ~cse219

http://www.cs.stonybrook.edu/~cse219

: Testing vs. Debugging

Testing

Does the code
work properly

{ Coding -

YES

NO

Debuéging

(c) Paul Fodor

: Testing

e Tells us when something is wrong

enot how to fix it

Acceptance Testing

T

System Testing

T

Integration Testing

T

Unit Testing

@ (c) Paul Fodor

: Debugging

® Process of understanding and correcting errors

¢ First locate the problem

¢ find line of your code that produces initial problem

® Then address the algorithrn

OR

o change algorithm

(c) Paul Fodor

4 R
Debugging is an important skill

® Become proficient ASAP
* Why?
*Reveal bugs that are not otherwise evident
like infinite loops
® Don’t design to debug

°Don’t rely on debugging to write your code

Try to define and implement correct algorithms

®fast debugging << correct algorithm

implementation
@ (c) Paul Fodor /

: Debugging Strategy

® When you know a bug exists for a particular case
® Determine in which class the error originates

® Determine in which method the error originates

® Determine on which line of code the error originates

® Knowing where the problem originates is half the
battle

o Reproducing an error helps

@ (c) Paul Fodor /

4 ™
Common Bugs Revealed by Debugging

Un-constructed

Objects Improper
Iteration
Un-initialized
Variables Missing
Implementations
Failing to
reinitialize a
variable in loop Incomplete
Changes

(c) Paul Fodor /

Not all errors are created equal
® On difficulty scale:

® syntax errors << runtime errors << logical erTors
® Note:

® runtime errors may be due to logical errors

QOutput - PoseurSolution (run) 2

rurmn:
Exception in thresd "main" javae.leng.MullPointerException

I at poseur.files.ColorPalletloasder.initlolorPallet (ColorPalletloader . jJjava:4z)

gt poseur.gui_ PoseurEZUI constructEUIControls (PoseurEU0I . java:5e3)

g 0T <

at poseur.gui_ PoseurEZU0I _ initlE0TI (PoseurEU0I_Jjawa:457)

at poseur.gui.PoseurEUIl. <inits (PoseurEUI.java:lsz)

at poseur.Poseur.init (Poseur.java:eh)

at poseur.Poseur.main(Poseur.java:l73)
Java BEesult: 1
BUOITLD STUCCESSFUL {total time: 13 seconds)

@ (c) Paul Fodor /

" Plan to Debugging

® Assumption:
*every program will contain faults
®no programmer gets it right the first time
® So’
®Design, write, & document your programs in

ways that will make them easier to test & debug
® How?

owrite well-documented modular code

eavoid “I'll tix this later” approach
@ (c) Paul Fodor /

Professionals use tools
*Even for tracking bugs (e.g., Bugzilla)

* Bug 305134 - Remove FeedView from Firefox 1.5 - Mozilla Firefox 1.0+ (Build 2005082 Gecko 1.8b4

Fichier Edition Affichage Aller & Marque-pages Qutils 7

<:§| - E@I @ £ [} |, https:|bugzila.mozilla.orgfshow _bug.cgizid=305134

Buggzilla Bug 305134
Search page

Description : Remove FeedView from Firefox 1.5 Last modified; 2005-08-28 01:41 POT

Enter new bug

Ben Goodger {use her

Reporter: org for email)
zbugs@bengoodger.c

Bug#:205134 alias: |:| Hardware:

Eruduct:| Firefox hd | QS:| Al hd | Add CC:|
Cnmgunent:| RSS Discovery and Presview v | Yersion: CC:| alex@spamcop.net
. Lo axel@pike.org
Status: RESOLYED Priority: [~ v bugsmano@aent com
Resolution: FIXED severity: hugtrap@psychoticwal
Ben Goodger {use ben at mozila Target bugzila@daugweb.org
Assigned To:dot org for email) . J— Cremove selected ¢
Milestone:
<bugs@bengoodger.comzs —_—
QA Cl:lntal:t:|n0b0dy@mozi|la.org |
QRL:| | Flags: {(Help!)
mtschrep: blockingl.gb4re |
§ummar\;:|Remove FeedView from Firefox 1.5 | bugs: blacking1.8h4 |
blockingl.9a1 |
Status| |))
Whiteboard: block|ng—a\r|ary1.0.?|
blocking-aviaryz.0 |
Keywords:[fixed1 8 | testoase |
Attachment |Tvpe |Created |Size |Flags |A|::ti|:|ns| Z
< | >
Terming bugzills. mozila.org (% 124 Adblock

e
Debugging by Brute Force

o].c. the print statement

'cﬁis*alay contents of select variables

Oé_iS'aj_ay benchmarks of program progress

i.e. Is this line of code reached?

System.out.println (“"Before Foo0”) ;
foo ()

System.out.println (“After Foo”);
® Advantage:

@ ®casy to implement

(c) Paul Fodor

4 ™
Disadvantages of print Approach

® Makes a mess of code
® Hit-or-miss
eCan't identify certain types of problems

* Not easy to use for:
®Large-scale programs
® Graphical programs
*Web apps

*Mobile apps

™
Debugging by Brute Force Example

private static boolean debug = true;

public int calculate (int y, int z) {
int x;
x = mystery(y)
if (debug) {
System.out.println (“"DEBUG: x = " + x
+Yy="+y);
}
X += mystery(z);
return x;

}

(c) Paul Fodor /

: Debugging by IDE

® All modern IDEs provide:

® examination of the contents of variables

® setting and removing of breakpoints

® query and search commands

o single—step execution through a program

® examination of different threads of execution

Output | Variables & |
g; MName Type
<Enter new watch
& this ColorPallet oader
<> colorPalletyMLFile String
O colorPalletState ColorPalletstate
B | xmilti XMLUtilities
[+l 4 colorPalletDoc DeferredDocumentimpl
¢ colorPalletSize int

@ (c) Paul Fodor

Value

#1856

1853
1559

BE-’M
[25]
]

&) @) @) @) @) @D

", fdata/settings /poseur_color_pallet_settings. xml”

[CR[CRICRCB B B[CE

o

L Stop
® Pause
® Continue

® Step Over

L Step Into

@ ® Step Out

® eclipse, Visual Studio, etc. 72

73

® Set Breakpoints -
76

® place where debugger will stop =
e Walk through code via:

-

" NetBeans Debugger

e Similar to other IDE debuggers

TH 1

72
73
T4
73
76

O O & =

S e oy —

Hode colorNode = xmlUt

.

colarPallet[i] = exXtra

Hode colorlHode = zmlUrCi
colorPallet[i] = extrac

B4

° Step Over Expression

(c) Paul Fodor

" Robust Programs

Methods have domain (arguments) & range (results)
Total methods — behavior is defined for all inputs in the method
domain

* By definition these are robust methods
Partial methods can lead to programs that are not robust

Robust program continues to behave reasonably even in the

presence Of Crrors

® If an error occurs, robust programs behave in a well-defined way.
Either:

Providing some approximation of its behavior in the absence of an error =
(qraceful degradation
OR

Halt with a meaningful error message without crashing or damage to permanent

(c) Paul Fodor /

data or software systems

Exceptions

e Allow the flow of control to move from the location of an

error to an error handler

® Better than returning -17

Treats errors differently from normal results

Forces the programmer to deal with these errors
* Types of errors:
® User input errors
® Device errors
® Physical limitations

® Code errors

® An exception is an abstraction

(c) Paul Fodor

@ ® allows us to handle errors in a more general way

: Exceptions/Errors in Java :

® An exception may be thrown because:

* A method is called that throws a checked exception.
FileNotFoundException, IOException
® A method is called that detects an error and explicitly
throws a checked exception.
Create your own class that extends Exception.
* A method throws an unchecked exception due to a
programming error (i.e. a run-time logical error).
ArithmeticException,NullPointerException
® An internal error occurs in the Java Virtual Machine (JVM)
or runtime library.

c.g. VirtualMachineError, OutOfMemoryError

@ (c) Paul Fodor /

" Method Design w/ Exception§

® Throw an exception when a method’s preconditions are
not met

e As well as any other error condition found in the
method

® Throw different types of exceptions for ditferent types

of problems

o Specify detailed information about the reason for the

exception in the Exception message

® Provide a specification of all exceptions possibly thrown

inside a method

@ (c) Paul Fodor /

" Exceptions in Java

Throwable

//// \\\\\ Exception
/ \Checked

RuntimeException

Unchecked
Exceptions

Error

Exceptions

® A method throvving a checked exception must declare

the exception in the header via throws

® A method throwing an unchecked exception does not

have to declare the exception in its header

® but it is advisable to do so!

@ also, make sure your specification explains the conditions that generate each

excepﬁon, (c) Paul Fodor ‘//

" Handling Exceptions

® An exception is handled in two ways:

® Enclose the method call that can cause an exception in a try
block.
Use a catch block to handle the possible exception.

® Pass the exception back to the current method’s caller.
Java automatically passes the exception to the method’s caller if:

* the exception type of one of its supertypes is listed in the
method’s header (in a throws clause)

* the exception type is unchecked

o Again! Make sure that any exception your code raises is listed

in the header and is described in the method’s specification.

@ (c) Paul Fodor /

: Tips on Using Exceptions :

® Too much exception handling will slow your code

down dramatically.

® Exception handling is not supposed to replace a simple

test by an application.
® Robust GUIs should check input from users before

processing information.

* Exceptions serve to protect the methods & classes that

throw them,

@ Defensive programming: writing each procedure to

defend itself against errors.

@ (c) Paul Fodor /

: Tips on Using Exceptions

- Do not micromanage exceptions
— Example: Read a string and convert it to an int

try {
line = inFile.readLine () ;

} catch (IOException e) {
System.out.println(e) ;

}

try {
num = Integer.parselnt(line);

} catch (NumberFormatException e) ({
System.out.println(e);

@ } Put both exceptions into a single catch!
A

(c) Paul Fodor

™

/

: Tips on Using Exceptions :

- Continue example:

try {
line = inFile.readLine () ;

num = Integer.parselnt(line);
} catch (IOException e) {
System.out.println(e) ;
} catch (NumberFormatException e) ({
System.out.println(e) ;

And separate normal processing from error handling.
@ (c) Paul Fodor /

: Tips on Using Exceptions

- Do not squelch/suppress/ignore exceptions.
— Example: Popping off a stack with 100 elements.
sum = 0;
for (i=1; i <= 100; i++) {
try {
sum += s.pop();
}catch (EmptyStackException e) {
} // squelched!

)
—Logical errors can be completely
missed If exceptions are ignored!

(c) Paul Fodor

™

" Reflecting is Good

® Method A calls method B, which throws an exception,

rather than passing the exception:

® The caller A explicitly catches the exception from B

and throws a different type of exception.

Example: Find the min of an array.

* Method begins by trying to get the element in position O.

If the array is empty, IndexOutOfBoundsException is thrown.
The min method may catch this and return EmptyArrayException.

° Why would we want to do this?

Turn vague exceptions into more relevant ones!

Turn unchecked exceptions into checked ones!

(c) Paul Fodor /

public static int min(int[] a) throws
EmptyArrayException {

try{
int min = a[0];

}catch (IndexOutOfBoundsException e)
throw new EmptyArrayException() ;

(c) Paul Fodor

e

(-

Masking

® Method A calls method B, which throws an exception.
® The caller A explicitly catches and handles the

exception and continues with the normal flow

® Any method calling A is none the wiser
Example: Sorting an array.
* Method tries to get element in position O.
* It the array is empty, the array is already sorted (by
detinition).
* Method catches
IndexOutOfBoundsException and masks it.

(c) Paul Fodor

e
Design Issues with Exceptions

® When should one use them?

® Checked or unchecked?

o Use existing Exception classes or

make your own?

(c) Paul Fodor

4 I
When Do We Use Exceptions?

® Exceptions should be used to prevent data (static or instance

variables) from reaching an illegal state

® Make a partial method more like a total method

* Exceptions may be avoided (by returning an 1nt error code)

if a method is used only locally

* Ex: private helper methods
* Use exceptions for exceptional situations
® Special Java rule for overriding:

® If you override a method, the subclass method cannot throw
more checked exceptions than the superclass that you

replace.

@ (c) Paul Fodor /

: Use checked or unchecked’?\

o Always use checked exceptions!

(-

0 Why?

®let other programmers (and yourself) be aware of

potential errors

® make them anticipate these errors

® make them handle these errors as they see fit

® Many exceptions in the]!

¢ [t would clutter the cod

DK are unchecked. Why?

e (example: having a try

block for every indexed

use).

| array, division or object

(c) Paul Fodor

/

e
Programmer vs. User

® Unchecked exceptions occurring are

generally the fault of the programmer

® Checked exceptions occurring may be
the fault of the user/ system/Internet

ACCCSS

(c) Paul Fodor

~ Testing and debugging in
arge projects

® Testing using frameworks:
¢ JUnit

Unit testing framework for the Java programming language

° Testing individual components

Used in regression testing

import org.junit.*;. .. TestSuite suite= new TestSuite(); suite.addTest(new Test(...))
* Apache Log4]
Logging results of applications
* Also used in debugging Web applications
Properties stored in property file log4;. properties:
log = /usr/home/log4j

log4j.rootLogger = DEBUG, FILE

Use: import org.apache.log4j.Logger; ... static Logger log = Logger.getLogger(
@ log4jExample.class.getName()); log.debug("this is an debug message");

(c) Paul Fodor

™

/

