
CSE219, Computer Science III

Stony Brook University

http://www.cs.stonybrook.edu/~cse219

Properties of High Quality Software

http://www.cs.stonybrook.edu/~cse219

(c) Paul Fodor & O'Reilly Media

Software Engineering Basics

Important Principles for creating a

Software Solution:

First, define the problem

Design, then code

Always Provide Feedback

Learn a methodology for constructing

software systems of high quality.

 2

(c) Paul Fodor & O'Reilly Media

What properties make a software

system of high quality?
 Correctness

 Efficiency

 Ease of use

 for the user

 for other programmers using your framework

 Reliability/robustness

 Reusability (i.e., code reuse with slight or no modification)

 Extensibility

 Scalability (i.e., to handle a growing amount of work in a

capable manner)

 Maintainability, Readability, Modifiability, Testability, etc.

3

(c) Paul Fodor & O'Reilly Media

 Correctness (think of GE or IBM large engineering systems)

 Efficiency (think of Google Search)

 Ease of use

 for the user (think of Apple UI and products)

 for other programmers using your framework (see MS Visual...)

 Reliability/robustness (think of NASA software)

 Reusability (see Apache Software Foundation software, e.g. HTTP server)

 Extensibility (see Android OS growth to most popular mobile platform)

 Scalability (think of Oracle DBs)

 Maintainability, Readability, Modifiability, Testability, etc.

 4

What properties make a software

system of high quality?

(c) Paul Fodor & O'Reilly Media

Correctness
Does the program perform its intended function?

And does it produce the correct results?

This is not just an implementation (coding) issue

Correctness is a function of the problem

definition

A flawed Requirements Analysis results in a

flawed Design

A flawed Design results in a flawed program

Garbage In – Garbage Out

5

(c) Paul Fodor & O'Reilly Media

Efficiency
 Plan for efficiency

 wisely choose your data structures & algorthms (including their

complexity, e.g., O(N)) in the design phase.

 tools & technologies too.

 Does the program meet user performance expectations?

 If not, find the bottlenecks

 done after implementation

 called profiling

6

(c) Paul Fodor & O'Reilly Media

Ease of Use for End User
 Is the GUI easy to learn to use?

a gently sloped learning curve

 What makes a GUI easy to use?

 familiar GUI structures

 familiar icons when possible instead of text

components logically organized & grouped

appealing to look at

 colors, alignment, balance, etc.

 forgiving of user mistakes

help, tooltips, and other cues available

etc.

7

(c) Paul Fodor & O'Reilly Media

Ease of Use for other Programmers
 In particular for frameworks and tools

 the Java API is developed to be easy to use

 Should you even build a framework?

Yes, you will be a software developer.

 What makes a framework easy to use?

 logical structure

naming choices (classes, methods, etc.)

 flexibility (usable for many purposes)

 feedback (exceptions for improper use)

documentation (APIs & tutorials)

etc.

8

(c) Paul Fodor & O'Reilly Media

Reliability/Robustness
 Does your program:

anticipate erroneous input?

anticipate all potential program conditions?

handle erroneous input intelligently?
 think about this in the design stage

provide graceful degradation?

 Graceful degradation (or Fault-tolerance) is the property that enables a system to

continue operating properly in the event of the failure of (or one or more faults

within) some of its components.

 If an error condition occurs in your program, should your program:

o crash?, exit?, notify the user and exit?, provide an approximated service?

Not always possible to save it.

 For example: What should Web Browsers do with poorly formatted HTML?

9

(c) Paul Fodor & O'Reilly Media

Feedback
Provide feedback to End users due to: bad input,

equipment failure, missing files, etc.

How?

popup dialogs, highlighting (red text in Web

form), etc.

Provide feedback to other programmers using

your framework due to: passing bad data,

incorrect initialization, etc.

How?

exception throwing, error value returning, etc.

10

(c) Paul Fodor & O'Reilly Media

Flexibility in a Framework
 Programmers need to know:

when and why things in a framework might go wrong

AND

when and why things in a framework do go wrong

 How?

customized response:

System.out.println notifications

GUI notifications

 Web page generated and sent via Servlet notification

 etc.

 11

(c) Paul Fodor & O'Reilly Media

Applications Using Frameworks

 Making a framework is much more difficult than
making a single application

12

Framework

Application #1 Application #2

App1 calls

methods of

Framework

objects

App2 calls

methods of

Framework

objects
Framework calls

methods of App1 &

App2 objects

(c) Paul Fodor & O'Reilly Media

Reusability
 Code serving multiple purposes.

 Who cares?

management does

avoid duplication of work (save $)

software engineering does

avoid duplication of work (save time & avoid mistakes)

 How can we achieve this?

careful program decomposition (from methods to classes

and packages)

separate technology-dependent components

13

(c) Paul Fodor & O'Reilly Media

Extensibility
 Can the software easily be extended?

can it be used for other purposes

 plug-ins,

 exporters,

 add-ons,

 etc

 Extensibility Example:

 In NetBeans, Tools → Plugins

 Anyone can make a plugin

 Download, install, and use

 In Eclipse IDE, Help → Install New Software plugin

14

(c) Paul Fodor & O'Reilly Media

Scalability
How will the program perform when we increase:

# of users/connections

amount of data processed

# of geographic locations users are from

A function of design as well as technology

15

(c) Paul Fodor & O'Reilly Media

More Software Engineering steps

Maintainability

Readability

Modifiability

Testability

etc.

All of these, as with the others,

must be considered early in design

16

(c) Paul Fodor & O'Reilly Media

How can these properties be achieved?

By using well proven, established

processes:

preferably while taking advantage of

good tools

Software Development Life Cycle

17

Requirements

Analysis

Design &

Document
Code Test

Debug

Profile

Deploy Evaluate

Design

(c) Paul Fodor & O'Reilly Media

Software Development Life Cycle

 Requirements Analysis & design stages:

 Correctness, Efficiency, Ease of use,

Reliability/robustness, Reusability, Maintainability,

Modifiability, Testability, Extensibility, Scalability

 do we consider these properties in the implementation stages?

 Little because it is too late to make a big impact.
18

Requirements

Analysis

Design &

Document
Code Test

Debug

Profile

Deploy Evaluate

Design

(c) Paul Fodor & O'Reilly Media

Where to begin?
Understand and Define the problem

the point of a requirements analysis

What are system input & output?

How will users interact with the system?

What data must the system maintain?

Generate a problem specification document

defines the problem

defines what needs to be done to solve the

problem

19

(c) Paul Fodor & O'Reilly Media

Requirements Analysis
 i.e. Software Specification (spec.)

 A textual document

 It serves two roles. It:

 defines the problem to be solved

 explains how to solve it

 This is the input into the software design stage

 What goes in a requirements analysis (RA)?
 The why, where, when, what, how, and who:

 Why are we making this software?

 Where and when will it be created?

 What, exactly, are we going to make?

 How are we going to make it?

 Who will be performing each role?
20

(c) Paul Fodor & O'Reilly Media

Requirements Analysis
What really goes in a RA?
Detailed descriptions of all:

 necessary data (including how to query it, views, forms,

inserts)

 program input and output

 GUI screens & controls

 user actions and program reactions

Where do you start?
 Interviews with the end users

 What do they need?

 What do they want?

21

(c) Paul Fodor & O'Reilly Media

UML Use Case Diagrams
 A set of scenarios that describe an interaction between a

user and a system

 Done first in a project design

helps you to better understand the system

requirements

 To draw a Use Case Diagram:

List a sequence of steps a user might take in order to

complete an action.

Example actor: a user placing an order with a sales

company

 22

(c) Paul Fodor & O'Reilly Media

UML Use Case Diagrams

 Human Actor: Stick figure with name underneath.

Name usually identifies type of actor.

Use Case: Oval enclosing name of use case.

 Non-Human Actor: Stick figure, or a rectangle enclosing the

stereotype <<actor>> and the name of the actor. A stereotype

indicates the type of UML element (when it isn’t evident from

the shape).

23

(c) Paul Fodor & O'Reilly Media

UML Use Case Diagrams
 Relationships Between Actors and Use Cases:

Solid edge between an actor A and a use case U

means that actor A participates in use case U.

24

(c) Paul Fodor & O'Reilly Media

UML Use Case Diagrams
 Relationships Between Use Cases:

 Include: dashed arrow labeled <<include>> from use case U1 to

use case U2 means U2 is part of the primary flow of events of U1.

 Extend: dashed arrow labeled <<extend>> from use case U2 to

use case U1 means U2 is part of a secondary flow of events of U1.

25

(c) Paul Fodor & O'Reilly Media

Relationships Between Actors
 Generalization: Solid line with triangular arrowhead

from actor A1 to actor A2 means that A2 is a

generalization of A1. This implies that A1 participates in

all use cases that A2 participates in. Generalization is

similar to inheritance.

26

(c) Paul Fodor & O'Reilly Media

Relationships Between Use Cases
 Generalization: Solid line with triangular arrowhead

from use case U1 to use case U2 means that U2 is a

generalization of U1 (equivalently, U1 is a specialized

version of U2). Generalization is similar to inheritance.

27

(c) Paul Fodor & O'Reilly Media
28

(c) Paul Fodor & O'Reilly Media

Formal UML

Use Case

Diagram

(c) Paul Fodor & O'Reilly Media

Textbook example: Design well,

Then code.
 Head First Object Oriented Analysis and Design (chapter 1):

“Rick decided to throw out his paper-based system for keeping track

of guitars, and start using a computer-based system to store his

inventory.”

30

Down and dirty!

Company

produced:

AND

(c) Paul Fodor & O'Reilly Media

Eliminate Strings and add enumerations of types

More design needed to meet

the user demands

