Properties of High Quality Software

CSE219, Computer Science III
Stony Brook University

http: / / WWW. cs.stonybrook.edu/ ~cse219

http://www.cs.stonybrook.edu/~cse219

" Software Engineering Basics

*[mportant Principles for creating a

Software Solution:

eLirst, define the problem

®Design, then code

'Always Provide Feedback

®] carn a methodology for constructing

software systems of high quality.

@ (c) Paul Fodor & O'Reilly Media /

~ What properties make a software
system of high quality?

® Correctness
o Efficiency

® Ease of use
® for the user

® for other programmers using your framework
* Reliability/robustness
® Reusability (i.e., code reuse with slight or no moditication)
* Extensibility

® Scalability (i.e., to handle a growing amount of work in a

capable manner)

@ ® Maintainability, Readability, Modifiability, Testability, etc.

(c) Paul Fodor & O'Reilly Media /

~ What properties make a software
system of high quality?

® Correctness (think of GE or IBM large engineering systems)
* Efficiency (think of Google Search)

® Ease of use
® for the user (think of Apple Ul and products)

® for other programmers using your framework (see MS Visual...)
® Reliability/robustness (think of NASA software)
® Reusability (see Apache Software Foundation software, e¢.g. HTTP server)
* Extensibility (see Android OS growth to most popular mobile platform)
® Scalability (think of Oracle DBs)
® Maintainability, Readability, Modifiability, Testability, etc.

(c) Paul Fodor & O'Reilly Media /

" Correctness h

® Does the program perform its intended function?

® And does it produce the correct results?

® This is not just an implementation (coding) issue
* Correctness is a function of the problem
definition
* A tlawed Requirements Analysis results in a

flawed Design

e A flawed Design results in a flawed program

o Garbage In — Garbage Out
@ (c) Paul Fodor & O'Reilly Media /

" Efficiency

® Plan for efficiency
* wisely choose your data structures & algorthms (including their
complexity, e.g., O(N)) in the design phase.

® tools & technologies too.

® Does the program meet user performance expectations?

¢ If not, find the bottlenecks :); \—vt :);

[© Netbeans e 65 =T)|

Yiew Navigate Scurce Refactor Bun Debug Profite Versioning Jocls Window Help

® done after implementation

® called profiling e

Projecte

EBH D@ b JT B PEB-G- Q| Seorch (Cri+
Files i Profier 4@ % | [Lve ProfingResits & | SR E [prisoown

= Methed categories

aagrams (profie) [o]

e

Ease of Use for End User

e [s the GUI casy to learn to use?

L F gently sloped learning curve

® What makes a GUI casy to use?

® famil

® famil

iar GUI structures

iar icons when possible instead of text

® com

®appe

bonents logically organized & grouped

aling to look at

colors, alignment, balance, etc.

. forgiving of user mistakes

® help, tooltips, and other cues available

® ctc.

(c) Paul Fodor & O'Reilly Media

™

s R
Ease of Use for other Programmers

® In particular for frameworks and tools
® the Java APl is developed to be casy to use
¢ Should you even build a framework?

® Yes, you will be a software developer.

® What makes a framework easy to use?
® logical structure
® naming choices (classes, methods, etc.)
® flexibility (usable for many purposes)
* teedback (exceptions for improper use)

® documentation (APIs & tutorials)

® ctC. (c) Paul Fodor & O'Reilly Media /

e

Reliability/Robustness

® Does your program:
° anticipate erroneous input?
® anticipate all potential program conditions?

® handle erroneous input intelligently?

think about this in the design stage

® provide graceful degradation?

Graceful degradation (or Fault-tolerance) is the property that enables a system to
continue operating properly in the event of the failure of (or one or more faults

within) some of its components.
¢ If an error condition occurs in your program, should your program:

o crash?, exit?, notify the user and exit?, provide an approximated service?

Not always possible to save it.

° * For example: What should Web Browsers do with poorly formatted HTML?

(c) Paul Fodor & O'Reilly Media

/

" Feedback

™

® Provide feedback to End users due to: bad input,

equipment failure, missing files, etc.
*How?
popup dialogs, highlighting (red text in Web
form), etc.
® Provide feedback to other programmers using
your framework due to: passing bad data,

incorrect initialization, etc.

eHow?

@ exception throwing, error value returning, etc.

(c) Paul Fodor & O'Reilly Media

/

" Flexibility in a Framework

o Programmers need to know:

® when and Why things in a framework might go wrong
AND

® when and Why things in a framework do g0 wrong

® How?
® customized response:
System.out.println notifications
GU1I notifications

Web page generated and sent via Servlet notification

etc.

(c) Paul Fodor & O'Reilly Media /

/Applications Using Frameworks

e Making a framework is much more difficult than
making a single application

Appi calls Framework App2 calls
methods of methods of
Framework Framework calls Framework
objects methods of Appl & objects
App2 objects
Application #1 Application #2

(c) Paul Fodor & O'Reilly Media /

" Reusability

¢ Code serving multiple purposes.

® Who cares?

® management does
avoid duplication of work (save §)
® software engineering does

avoid duplication of work (save time & avoid mistakes)

® How can we achieve this?

® careful program decomposition (from methods to classes

and packages)

® separate technology-dependent components

@ (c) Paul Fodor & O'Reilly Media /

" Extensibility
® Can the software easily be extended?
® can it be used for other purposes
plug-ins,
exporters,

add-ons,

etc
o Extensibility Example:

® In NetBeans, Tools — Plugins
Anyone can make a plugin

Download, install, and use

@ ® In Eclipse IDE, Help — Install New Software plugin
A

(c) Paul Fodor & O'Reilly Media /

4 .y N
Scalability
® How will the program perform when we increase:
® 7+ of users/connections
*amount of data processed

o 7 of geographic locations users are from

® A function of design as well as technology

@ (c) Paul Fodor & O'Reilly Media /

(-

More Software Engineering stepg
*® Maintainability
*Readability
* Modifiability
*Testability
®etc.

® All of these, as with the others,

must be con51dered early in de&gn
(c)P dor & O /

4 ™
How can these properties be achieved?

*By using well proven, established

PI’OCQSS@SI

epreferably while taking advantage of

good tools
Software Development Life Cycle
__,| Requirements .| Design & ,| Evaluate .| Code o Test o Deploy |—»
Analysis Document Design 3 L
[Profile [

Q Debug [
K (c) Paul Fodor & O'Reilly Media /

4 N
Software Development Life Cycle

* Requirements Analysis & design stages:

Requirements s

Analysis

Design &
Document

»
»

Evaluate
Design

(-

|

\ 4

Code

A 4

I

Test

\ 4

Deploy

Profile

A

Debug

® Correctness, Efficiency, Ease of use,

Reliability /robustness, Reusability, Maintainability,
Modifiability, Testability, Extensibility, Scalability

® do we consider these properties in the implementation stages?

Little because it is too late to make a big impact.

(c) Paul Fodor & O'Reilly Media

/

" Where to begin?

® Understand and Detine the problem
*the point of a requirements analysis
® What are system input & output?
*How will users interact with the system?

e What data must the system maintain?

® Generate a problem specification document

oC

oC

@ problem

P
hed

4
;64

ines the problem

ines what needs to be done to solve the

(c) Paul Fodor & O'Reilly Media

/

: Requirements Analysis

® i.e. Software Specification (spec.)
® A textual document

® [t serves two roles. It:
defines the problem to be solved

explains how to solve it

® This is the input into the software design stage
e What goes In a requirements analysis (RA)?

® The why, where, when, what, how, and who:
Why are we making this software?
Where and when will it be created?
What, exactly, are we going to make?

How are we going to make it?

@ Who will be performing each role?

(c) Paul Fodor & O'Reilly Media

: Requirements Analysis

e What really goes in a RA?
® Detailed descriptions of all:

necessary data (including how to query it, views, forms,

inserts)
program input and output
GUI screens & controls

user actions and program reactions

e Where do you start?
® Interviews with the end users
What do they need?
What do they want?
(- '

(c) Paul Fodor & O'Reilly Media

" UML Use Case Diagrams

® A set of scenarios that describe an interaction between a

user and a system

® Done first in a project design

® helps you to better understand the system

requirements

® To draw a Use Case Diagram:

® List a sequence of steps a user might take in order to

complete an action.

. Example actor: a user placing an order with a sales

COmP any

@ (c) Paul Fodor & O'Reilly Media /

" UML Use Case Diagrams

® Human Actor: Stick figure with name underneath.

Name usually identifies type of actor.

A

Actor

® UUse Case: Oval enclosing name of use case.

® Non-Human Actor: Stick figure, or a rectangle enclosing the
stereotype <<actor>> and the name of the actor. A stereotype
indicates the type of UML element (when it isn’t evident from
the shape).

<=actor==
' Event Dispatcher
(c) Paul Fodor & O'Reilly Media ' : /

s

UML Use Case Diagrams

o Relationships Between Actors and Use Cases:

e Solid edge between an actor A and a use case U

means that actor A participates in use case U.

(c) Paul Fodor & O'Reilly Media /

s

(-

UML Use Case Diagrams

o Relationships Between Use Cases:

® Include: dashed arrow labeled <<include>> from use case U1 to
use case U2 means U2 is part of the primary flow of events of U1.
® Extend: dashed arrow labeled <<extend>> from use case U2 to

use case U1 means U2 is part of a secondary flow of events of U1.

- <<include>= : ___
Withdraw Money f-==--===-"===---~ Authenticate

A

<<extend>>

Hint: To remember the direction of ¢\
the arrow, read the edge label as Authentication
“includes™ or “extends”. Eﬂi’y

(c) Paul Fodor & O'Reilly Media /

: Relationships Between Actors

® Generalization: Solid line with triangular arrowhead
from actor A1 to actor A2 means that A2 is a
generalization of A1.This implies that A1 participates in

all use cases that A2 participates in. Generalization is

similar to inheritance. " Make
@ewation

Member T

i ree Up g@

Platinum Member
(c) Paul Fodor & O'Reilly Media

4 I
Relationships Between Use Cases

® Generalization: Solid line with triangular arrowhead
from use case U1 to use case U2 means that U2 is a
generalization of Ul (equivalently, U1 is a specialized

version ot U2). Generalization is similar to inheritance.

- pay>

/

PW with Pay Wlth

let w gift card

(c) Paul Fodor & O'Reilly Media /

Use Case

<<actor>>
Visa Authorization System

<<actor>>
Bank Information System

i

.

Diagram
For ATM
\—1
Visa Cardholder

N

Bank Customer

I

\

Elite Bank Customer

secondary

ithdraw Using
Visa Card

\

ithdraw Using
Bank Card

— -

«includes»

el S s
—
-

Reward Points
Inquiry

« u&cl)udes»
448\“.@ \\ —

ATM System econdary

—

\
\

Deposit Check

(c) Paul Fodor & O'Reilly Media

Use-case:

ApplicationSearch

Primary actor:

Undergraduate Secretary, Admin

Goal in context:

Display a list of applications that match the secretary’s search term
and eriteria.

Preconditions:

The actor has been authenticated and identified as an undergraduate
secretary.

Trigger:

The undergraduate secretary clicks on the “Application Search™
button.

Scenario:

I. UG secretary: observes search page.

2. UG secretary: selects ‘Search by ID’, *Search by Name', or
*Search by Matriculation Date’ radio button.

3. UG secretary: enters the ID number, first and last name, or date
range in the text fields corresponding to the selected radio button.

4. UG secretary: clicks the *Search’ button.

5. UG secretary: observes all the records in the database that match

the given search terms and criteria in a table below the search
fields.

Exceptions:

. *Search by ID" button is selected: if the ID is not provided in the
correct format, and error message is displayed that contains the
correct format.

2. There are no records that match the given search terms and criteria
(the message “No maiching records could be found” will be
displayed below the search fields) : UG secretary enters different
search terms and clicks the *Search” button

Priority:

Essential, must be implemented.

When available:

First increment.

Frequency of use:

Many times per day.

Channel to actor

Via web browser interface.

Secondary actors:

Admin, server

Channels to
secondary actors:

Admin: web browser interface, program modification
server: network and local interface

Open issues:

1. Where on the web interface will the search fields and buttons be
displayed?

2. What other criteria will the UG secretary want to search by?

3. Should we have a ‘Clear Fields™ button that clears all entered text
in the search fields?

Formal UML
Use Case
Diagram

(-

Textbook example: Design well,

Then code.

™

® Head First Object Oriented Analysis and Design (chapter 1):
“Rick decided to throw out his paper-based system for keeping track

of guitars, and start using a computer-based system to store his

: ”
InVentOU/.

Each quita

L R;'Lk'ls'

inventary is rc?rts.ch{:td by an

inskante of this tlass. _l,

Down and dirty!
Company
produced:

Here are
the variables
in the
ﬁ'-li'td'l' tlass.

—
These ave
the methods
for khe
ﬁ._;,{ar tlass.

AND

Guitar

senalNumber: Siring
price: double
builder: String
model: String

fype: Strng
backWood: String
topWood: String

getSenalNumber(): String
getPrice(): double
setPrice(float)
getBuilder(): Sfring
geilodel(): Sfring
getType(): Stnng
geiBackWood(): String
getTopWood(): String

Rick started losing customers

\VJ ! AU UUUL W ey

vivuiw

Here's Rick’s entive i
as well as 3 waly ;arI:::-hE:w

¥ : invertor stoves 3 ll;'s+'
sedrth -er Bultﬂl‘s. :;:“ “-Lhc 3:{35 that Rtk
ewrvently has available-
|
Inventory /
guitars: List
addGuitar{Siring, double, String, String, Sfring,
Stang, Sfring) V\\‘
getGuitar(Siring): Guitar This
<7 search|Guitar): Gurtar {:akgm:{;rd
or a Suiﬁrls
This method | \l df{'ﬂ”sl Ereates
Lakes 3 qotars THEiS the sonveh otny 3 Guitar chiegy
ceridl - .’{'- e in 3 {tfigh{-_‘s ! and adds .{-'Jﬁa
and veburns 'Hha{' rdr_'a.f 5"'.'{-9"1 and l‘:{'.urns ek’s i‘""'Ehfar
apitar’s object: a guitar from Riek's r

'rnu:r-.{:dr‘lr that mate hes up

with the tlient's Spets.

dc,sihilha
i ided these avt the T
. :L‘j;ﬁs{ics of a g.\'d;ar'- the sex a d:r &
o b osts, the builder awd. o ;
s (atoustit or eletbrit), an
the guitar-

how wuth ¥

what Eype it .
%':i \lt:ds e used n

More design needed to meet

the user demands

Now f_h: add Quitar() method
€3 in Spverg) Enums, instead of

Eliminate Strings and add enumerations of types Strings or inteser tomstants
H,rcr“: 'I'E]i'la.l',.gd Guitar I“‘I"Entﬂr}'
mosk of those | SerialNumber: String quilars: List
String propevti rice: double _ : : :
witlms,:.ﬂﬂ;l Euilder: Builder addGuitar(Stning, double, Builder, Sining, Type,
types. — | model: String _ wu'ﬂd, wnﬂd}
type: Type Qﬂtﬂlltﬂ'{ﬁhnf;}. Guitar
backWood: Wood search(Guitar): Guitar
topWood: Wood
getSep 1 String Even ‘IZ.H'A-?]'I'. it :
geﬂjnm{_ﬂﬂll"'hmba'{}: locks like nothing s
i) doukle i i tharged in seavehl(),
setPnt_JE{ﬁuaﬂ _ Builder o we've wsind
ol Stmg toString(): S Ty | s I ke
' gefType(): ;I'ype ! toString(): St - Wnnd u:a;; 5 hr::-; :;I
ﬂ:£;M Hmhtl getBackWood(): Wood / toString(): String of spelling or
15 5T Uh;lﬂl'ﬂ-EJ F |Im| l :wm . | |
we left model as 3 gettopWood() /’ Heve ave = = capitalization
if:ﬁ:::di a? Ca The Guitar tlass uses these erumerated types.
di-#-&l"th‘l:. 5!.&‘{:3*‘ :humc'l‘-ﬂ‘bld 42";|'E"¢5 to “?::“"f
models out Lhere data, in a way 4:'ha4:.wh ge
way too many for an sevewed wp by case mswes oF

ervors n speliing

erum £ be helphul

