
CSE219, Computer Science III

Stony Brook University

http://www.cs.stonybrook.edu/~cse219

Threads & Timers

http://www.cs.stonybrook.edu/~cse219

(c) Paul Fodor & Pearson Inc.

Multi-tasking
• When you’re working, how many different

applications do you have open at one time?

Many! ~100 even if you have only a few visible.

2

(c) Paul Fodor & Pearson Inc.

Multithreaded?
• When you request a Web page. Should

the IE client:

– wait for the page before doing anything else

OR
– do other work while waiting

• like responding to user input/rendering

3

(c) Paul Fodor & Pearson Inc.

OS Multi-tasking
• How many tasks is the OS performing?

• Press CTRL+Shift+ESC

4

(c) Paul Fodor & Pearson Inc.

OS Multi-tasking
• How many CPUs does your PC have?

5

(c) Paul Fodor & Pearson Inc.

Program Multi-Tasking
 Most apps need to do multiple tasks “simultaneously”

 For example:

getting user input

printing

 Internet browsing

 How would you do this?

using threads (that you define)

AND

using a thread scheduler (that the JVM provides)

6

(c) Paul Fodor & Pearson Inc.

Tools for OS Multi-tasking
Thread scheduling

Time-sharing

Virtual Memory

Operating Systems

topics covered in:

CSE 306 at Stony

Brook U.

 7

(c) Paul Fodor & Pearson Inc.

Multi-Core Complicates Everything

Intel Xeon E7

10+ Cores

20+ Threads

let the OS work it out

8

(c) Paul Fodor & Pearson Inc.
9

Multiple

threads on

multiple

CPUs

Multiple

threads

sharing a

single CPU

Thread 3

Thread 2

Thread 1

Thread 3

Thread 2

Thread 1

Multi-Core Complicates Everything

(c) Paul Fodor & Pearson Inc.

Threads and the Thread Scheduler

You define your own threads

Extend java.lang.Thread

i.e. tasks

Note: main is its own thread

You make your threads runnable

i.e. start them

Java's thread scheduler decides order!

10

(c) Paul Fodor & Pearson Inc.

State transitions of a thread

11

dead

runnable

new

start

unblock

thread

blocked

block

thread

run

method

ends

(c) Paul Fodor & Pearson Inc.

new state

A constructed Thread object

Not yet started

Not yet known to thread scheduler

Not runnable

12

new

(c) Paul Fodor & Pearson Inc.

New – to – Runnable Transition

Constructed thread is started

call start method on it

Can be scheduled!

There may be many threads in

this state.

13

runnable

new

start

(c) Paul Fodor & Pearson Inc.

Runnable – to – Blocked Transition

Runnable thread made unrunnable

call sleep method on it (for X milliseconds)

directly or via lock method

Can not be scheduled!

Again, there may be many threads in this state

 14

runnable

blocked

block

thread

(c) Paul Fodor & Pearson Inc.

Blocked – to – Runnable Transition

Unrunnable thread made runnable

sleep time expires

and is not renewed

unlock method ensures this

Can be scheduled

15

runnable

unblock

thread

blocked

(c) Paul Fodor & Pearson Inc.

Runnable – to – Dead Transition

Run method completes

Cannot be rescheduled

A dead thread is Dead

Call isAlive to take a pulse

16

dead

runnable

run

method

ends

(c) Paul Fodor & Pearson Inc.

Defining your own threads
public class MyThread extends Thread {

 ...

 public void run() {

 // task to do when

 // the thread is started

 }

}

 Create a new thread:

 MyThread mT = new MyThread();

 Run the thread:

 mT.start();

17

(c) Paul Fodor & Pearson Inc.

The Thread Class

18

java.lang.Thread

+Thread()

+Thread(task: Runnable)

+start(): void

+isAlive(): boolean

+setPriority(p: int): void

+join(): void

+sleep(millis: long): void

+yield(): void

+interrupt(): void

Creates a default thread.

Creates a thread for a specified task.

Starts the thread that causes the run() method to be invoked by the JVM.

Tests whether the thread is currently running.

Sets priority p (ranging from 1 to 10) for this thread.

Waits for this thread to finish.

Puts the runnable object to sleep for a specified time in milliseconds.

Causes this thread to temporarily pause and allow other threads to execute.

Interrupts this thread.

«interface»
java.lang.Runnable

(c) Paul Fodor & Pearson Inc.

The 2 key Thread methods

 start()

 makes thread runnable

 calls the run method

 Thread class’ start method already does this

 if your class that extends Thread you don’t have to define start

 run()

 executed when a thread is started (with the method start())

run() is where thread work is done

 The Thread superclass’ run method does nothing

 if your class extends Thread you must define run()

 to specify what work your thread will do

 19

(c) Paul Fodor & Pearson Inc.

run()

•run() may do one thing or many

–via iteration

–it may even exist for the duration of

the program

20

Method Summary

 void run()

When an object implementing interface Runnable is used to

create a thread, starting the thread causes the object's run

method to be called in that separately executing thread.

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Runnable.html

(c) Paul Fodor & Pearson Inc.

start vs. run
 The main method has a thread

 We write:

 public static void main(String[] args) {

 MyThread t = new MyThread();

 t.start();

 …

 }

• Now we have 2 threads: main and t.

• What about:

 public static void main(String[] args) {

 MyThread t = new MyThread();

 t.run();

 …

}

• Still just 1 thread: t.run() is just a method call! 21

(c) Paul Fodor & Pearson Inc.
22

public class RandomThread extends Thread {

 public void run() {

 while (true) {

 int num = (int) (Math.random() * 10);

 System.out.println("\t\t\t\t" + num);

 try { Thread.sleep(10);

 } catch(InterruptedException ie) {}

 }

 }

}

/* An InterruptedException is thrown when a thread is waiting,

sleeping, or otherwise occupied, and the thread is interrupted,

either before or during the activity. Occasionally a method may

wish to test whether the current thread has been interrupted,

and if so, to immediately throw this exception. E.g.,
 if (Thread.interrupted())

 throw new InterruptedException();

 // Clears interrupted status!

*/

start vs. run

(c) Paul Fodor & Pearson Inc.
23

start vs. run
import java.util.Calendar;

import java.util.GregorianCalendar;

public class StartTester {

 public static void main(String[] args){

 RandomThread thread = new RandomThread();

 thread.start();

 while (true) {

 Calendar today = new GregorianCalendar();

 long hour = today.get(Calendar.HOUR);

 long minute = today.get(Calendar.MINUTE);

 long second = today.get(Calendar.SECOND);

 System.out.println(hour + ":"

 + minute + ":" + second);

 try { Thread.sleep(10);

 } catch(InterruptedException ie) {}

 }

 }

} THIS IS A MULTITHREADED APPLICATION!

(c) Paul Fodor & Pearson Inc.
24

start vs. run
import java.util.Calendar;

import java.util.GregorianCalendar;

public class RunTester {

 public static void main(String[] args) {

 RandomThread thread = new RandomThread();

 thread.run(); // Only this main thread is running

 while (true) {

 Calendar today = new GregorianCalendar();

 long hour = today.get(Calendar.HOUR);

 long minute = today.get(Calendar.MINUTE);

 long second = today.get(Calendar.SECOND);

 System.out.println(hour + ":"

 + minute + ":" + second);

 try {

 Thread.sleep(10);

 } catch (InterruptedException ie) {

 }

 }

 }

}

(c) Paul Fodor & Pearson Inc.

Creating Tasks and Threads

25

// Custom task class

public class TaskClass implements Runnable {

 ...

 public TaskClass(...) {

 ...

 }

 // Implement the run method in Runnable

 public void run() {

 // Tell system how to run custom thread

 ...

 }

 ...

}

// Client class

public class Client {

 ...

 public void someMethod() {

 ...

 // Create an instance of TaskClass

 TaskClass task = new TaskClass(...);

 // Create a thread

 Thread thread = new Thread(task);

 // Start a thread

 thread.start();

 ...

 }

 ...

}

java.lang.Runnable

TaskClass

(c) Paul Fodor & Pearson Inc.

Runnable interface
The Runnable interface has 1 method: run()

Alternative threading approach:

use implements Runnable

AND

define run()

26

(c) Paul Fodor & Pearson Inc.

Using the Runnable Interface to

Create and Launch Threads

 Create and run three threads:

The first thread prints the letter a 100 times.

The second thread prints the letter b 100 times.

The third thread prints the integers 1 through

100.

27

(c) Paul Fodor & Pearson Inc.

public class TaskThreadDemo {

 public static void main(String[] args) {

 // Create tasks

 Runnable printA = new PrintChar('a', 100);

 Runnable printB = new PrintChar('b', 100);

 Runnable print100 = new PrintNum(100);

 // Create threads

 Thread thread1 = new Thread(printA);

 Thread thread2 = new Thread(printB);

 Thread thread3 = new Thread(print100);

 // Start threads

 thread1.start();

 thread2.start();

 thread3.start();

 }

}

28

TaskThreadDemo.java

(c) Paul Fodor & Pearson Inc.

// The task for printing a specified character in specified times

class PrintChar implements Runnable {

 private char charToPrint; // The character to print

 private int times; // The times to repeat

 /**

 * Construct a task with specified character and number of times to print

 * the character

 */

 public PrintChar(char c, int t) {

 charToPrint = c;

 times = t;

 }

 /**

 * Override the run() method to tell the system what the task to perform

 */

 public void run() {

 for (int i = 0; i < times; i++) {

 System.out.print(charToPrint);

 }

 }

}
29

TaskThreadDemo.java

(c) Paul Fodor & Pearson Inc.

// The task class for printing number from 1 to n for a given n

class PrintNum implements Runnable {

 private int lastNum;

 /**

 * Construct a task for printing 1, 2, ... i

 */

 public PrintNum(int n) {

 lastNum = n;

 }

 /**

 * Tell the thread how to run

 */

 public void run() {

 for (int i = 1; i <= lastNum; i++) {

 System.out.print(" " + i);

 }

 }

}
30

TaskThreadDemo.java

(c) Paul Fodor & Pearson Inc.

The Static yield() Method
You can use the yield() method to temporarily release
time for other threads.

public void run() {

 for (int i = 1; i <= lastNum; i++){

 System.out.print(" " + i);

 Thread.yield();

 }

}
Every time a number is printed, the print100 thread is
yielded. So, the numbers are printed after the characters.

31

(c) Paul Fodor & Pearson Inc.

The Static sleep(milliseconds) Method
The sleep(long mills) method puts the thread to
sleep for the specified time in milliseconds.

public void run() {

 for (int i = 1; i <= lastNum; i++) {

 System.out.print(" " + i);

 try {

 if (i >= 50) Thread.sleep(1);

 }

 catch (InterruptedException ex) {

 }

 }

}

Every time a number (>= 50) is printed, the
print100 thread is put to sleep for 1 millisecond.

32

(c) Paul Fodor & Pearson Inc.

isAlive(), interrupt(), and isInterrupted()

 The isAlive() method is used to find out the state of a thread.

 It returns true if a thread is in the Ready, Blocked, or Running

state;

 it returns false if a thread is new and has not started or if it is

finished.

 The interrupt() method interrupts a thread in the following

way: If a thread is currently in the Ready or Running state, its

interrupted flag is set; if a thread is currently blocked, it is

awakened and enters the Ready state, and an

java.io.InterruptedException is thrown.

 The isInterrupt() method tests whether the thread is

interrupted.

33

(c) Paul Fodor & Pearson Inc.

Thread Priority

Each thread is assigned a default

priority of Thread.NORM_PRIORITY.

You can reset the priority using

setPriority(int priority).

Some constants for priorities include

Thread.MIN_PRIORITY

Thread.MAX_PRIORITY

Thread.NORM_PRIORITY
34

(c) Paul Fodor & Pearson Inc.

GUIs and Threads
What if we want to make our frame multi-

threaded?

implement Runnable

GUI event handling and painting code executes

in a single thread, called the event dispatcher

thread.

This ensures that each event handler finishes

executing before the next one executes and the

painting isn’t interrupted by events.

35

(c) Paul Fodor & Pearson Inc.

Platform.runLater(): If you need to

update a GUI component from a non-

GUI thread, you can use that to put your

update in a queue and it will be handle

by the GUI thread as soon as possible.

36

GUIs and Threads

(c) Paul Fodor & Pearson Inc.

import javafx.application.Application;

import javafx.application.Platform;

import javafx.scene.Scene;

import javafx.scene.control.Label;

import javafx.scene.layout.StackPane;

import javafx.stage.Stage;

public class FlashText extends Application {

 private String text = "";

 @Override

 public void start(Stage primaryStage) {

 StackPane pane = new StackPane();

 Label lblText = new Label("Programming is fun");

 pane.getChildren().add(lblText);

 new Thread(new Runnable() {

 @Override

 public void run() {

 try {

 while (true) {

 if (lblText.getText().trim().length() == 0) {

 text = "Welcome";

 } else {

 text = "";

 }
37

FlashText.java

(c) Paul Fodor & Pearson Inc.

 Platform.runLater(new Runnable() {

 @Override

 public void run() {

 lblText.setText(text);

 }

 });

 Thread.sleep(200);

 }

 } catch (InterruptedException ex) {

 }

 } }).start();

 Scene scene = new Scene(pane, 200, 50);

 primaryStage.setTitle("FlashText");

 primaryStage.setScene(scene);

 primaryStage.show();

 }

 public static void main(String[] args) {

 launch(args); } }

38

(c) Paul Fodor & Pearson Inc.

import javafx.application.Application;

import javafx.application.Platform;

import javafx.scene.Scene;

import javafx.scene.control.Label;

import javafx.scene.layout.StackPane;

import javafx.stage.Stage;

public class FlashTextUsingLambda extends Application {

 private String text = "";

 @Override

 public void start(Stage primaryStage) {

 StackPane pane = new StackPane();

 Label lblText = new Label("Programming is fun");

 pane.getChildren().add(lblText);

 new Thread(() -> {

 try {

 while (true) {

 if (lblText.getText().trim().length() == 0) {

 text = "Welcome";

 } else {

 text = "";

 }

39

FlashTextUsingLambda.java

(c) Paul Fodor & Pearson Inc.

 Platform.runLater(() -> lblText.setText(text));

 Thread.sleep(200);

 }

 } catch (InterruptedException ex) {

 }

 }).start();

 Scene scene = new Scene(pane, 200, 50);

 primaryStage.setTitle("FlashText");

 primaryStage.setScene(scene);

 primaryStage.show();

 }

 public static void main(String[] args) {

 launch(args);

 }

}

40

FlashTextUsingLambda.java

(c) Paul Fodor & Pearson Inc.

Killing a thread
 Threads usually perform actions repeatedly

 What if you want to tell a thread to stop doing what it’s doing?

 This takes cooperation between threads

 Do not use the stop method --- it's deprecated:

 It kills threads immediately

 A thread’s run method may be mid-algorithm when killed

 Preferred option: ask thread to kill itself. How?

 via your own instance variable

 make it a loop control for run

 lets the thread set its affairs in order before dying

41

(c) Paul Fodor & Pearson Inc.

Typical run structure
public class NiceThread extends Thread {

 private boolean die = false;

 public void askToDie() {

 die = true;

 }

 public void run() {

 while (!die) {

 // do work here

 try {

 sleep(1000);

 } catch (InterruptedException ie) {

 }

 }

 // set affairs in order: DEAD IS DEAD

 }

 public static void main(String[] args){

 NiceThread t = new NiceThread();

 t.start();

 t.askToDie();

 }

}

42

(c) Paul Fodor & Pearson Inc.

Timer Threads
 Common Problem:

Need program to do something X times/second

 Like what?

count time

display time

update and render scene

 2 Java Options:

have your thread do the counting

have a Java java.util.Timer instance do the

counting

43

(c) Paul Fodor & Pearson Inc.

Java Timers

 Execute TimerTasks on schedule

via its own hidden thread

 What do we do?

define our own TimerTask

put work in run() method

construct our task

construct a timer

schedule task on timer

 cancel method unschedules our task (i.e. kills it)

 44

(c) Paul Fodor & Pearson Inc.

import java.util.Timer;

import java.util.TimerTask;

public class TimerDemo {

 int i = 0;

 class MyTimerTask extends TimerTask {

 public void run() {

 System.out.println("Test " + (++i));

 }

 }

 public TimerDemo() {

 Timer timer = new Timer();

 timer.schedule(new MyTimerTask(), 0, 100);

 System.out.println("TimerTask scheduled.");

 try {

 Thread.sleep(5000);

 } catch (InterruptedException e) {

 System.out.println("got interrupted!");

 }

 timer.cancel();

 System.out.println("TimerTask finished.");

 }

 public static void main(String args[]) {

 TimerDemo td = new TimerDemo();

 }

}

45

Run:

TimerTask scheduled.

Test 1

Test 2

Test 3

Test 4

Test 5

…

Test 49

Test 50

TimerTask finished.

