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Multi-tasking 
• When you’re working, how many different 

applications do you have open at one time? 

Many! ~100 even if you have only a few visible. 
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Multithreaded? 
• When you request a Web page. Should 

the IE client:  

– wait for the page before doing anything else 

 

OR 
– do other work while waiting 

• like responding to user input/rendering 
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OS Multi-tasking 
• How many tasks is the OS performing? 

• Press CTRL+Shift+ESC 
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OS Multi-tasking 
• How many CPUs does your PC have? 
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Program Multi-Tasking 
 Most apps need to do multiple tasks “simultaneously” 

 For example: 

getting user input 

printing 

 Internet browsing 

 How would you do this? 

using threads (that you define) 

AND 

using a thread scheduler (that the JVM provides) 
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Tools for OS Multi-tasking 
Thread scheduling 

Time-sharing 

Virtual Memory 

Operating Systems 

topics covered in: 

CSE 306 at Stony  

Brook U. 
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Multi-Core Complicates Everything 

Intel Xeon E7 

10+ Cores 

20+ Threads 

 

let the OS work it out 
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Threads and the Thread Scheduler 

You define your own threads 

Extend java.lang.Thread 

i.e. tasks 

Note: main is its own thread 

 

You make your threads runnable 

i.e. start them 

 

Java's thread scheduler decides order! 
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State transitions of a thread 
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new state 

A constructed Thread object 

Not yet started 

Not yet known to thread scheduler 

Not runnable 
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New – to – Runnable Transition 

Constructed thread is started 

call start method on it 

Can be scheduled! 

 

There may be many threads in 

this state. 
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Runnable – to – Blocked Transition 

Runnable thread made unrunnable 

call sleep method on it (for X milliseconds) 

directly or via lock method 

Can not be scheduled! 

 

 

 

Again, there may be many threads in this state 
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Blocked – to – Runnable Transition 

Unrunnable thread made runnable 

sleep time expires 

and is not renewed 

unlock method ensures this 

Can be scheduled 
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Runnable – to – Dead Transition 

Run method completes 

 

Cannot be rescheduled 

 

A dead thread is Dead 

 

Call isAlive to take a pulse 
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Defining your own threads 
public class MyThread extends Thread { 

 ... 

 public void run() { 

  // task to do when 

  // the thread is started 

 } 

} 

 Create a new thread: 

 MyThread mT = new MyThread(); 

 Run the thread: 

 mT.start(); 

 
17 



(c) Paul Fodor & Pearson Inc. 

The Thread Class  
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java.lang.Thread 

+Thread() 

+Thread(task: Runnable) 

+start(): void 

+isAlive(): boolean 

+setPriority(p: int): void 

+join(): void 

+sleep(millis: long): void 

+yield(): void 

+interrupt(): void 

 

Creates a default thread. 

Creates a thread for a specified task. 

Starts the thread that causes the run() method to be invoked by the JVM. 

Tests whether the thread is currently running. 

Sets priority p (ranging from 1 to 10) for this thread. 

Waits for this thread to finish.  

Puts the runnable object to sleep for a specified time in milliseconds. 

Causes this thread to temporarily pause and allow other threads to execute. 

Interrupts this thread. 

 

«interface» 
java.lang.Runnable 
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The 2 key Thread methods 

 start() 

 makes thread runnable 

 calls the run method 

 Thread class’ start method already does this 

 if your class that extends Thread you don’t have to define start 

 run() 

 executed when a thread is started (with the method start()) 

run() is where thread work is done 

 The Thread superclass’ run method does nothing 

 if your class extends Thread you must define run() 

 to specify what work your thread will do 
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run() 

•run() may do one thing or many 

–via iteration 

–it may even exist for the duration of 

the program 
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Method Summary 

 void run()  

When an object implementing interface Runnable is used to 

create a thread, starting the thread causes the object's run 

method to be called in that separately executing thread. 

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Runnable.html
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start vs. run 
 The main method has a thread 

 We write:  

 public static void main(String[] args) { 

   MyThread t = new MyThread(); 

   t.start(); 

   …  

       } 

• Now we have 2 threads: main and t. 

• What about: 

 public static void main(String[] args) { 

      MyThread t = new MyThread(); 

   t.run(); 

  …  

} 

• Still just 1 thread: t.run() is just a method call! 21 
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public class RandomThread extends Thread { 

    public void run() { 

        while (true) { 

            int num = (int) (Math.random() * 10); 

            System.out.println("\t\t\t\t" + num); 

            try { Thread.sleep(10);  

   } catch(InterruptedException ie) {} 

        } 

    } 

} 

/* An InterruptedException is thrown when a thread is waiting,  

sleeping, or otherwise occupied, and the thread is interrupted,  

either before or during the activity. Occasionally a method may  

wish to test whether the current thread has been interrupted,  

and if so, to immediately throw this exception. E.g., 
  if (Thread.interrupted()) 

      throw new InterruptedException(); 

 // Clears interrupted status! 

*/ 

start vs. run 
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start vs. run 
import java.util.Calendar; 

import java.util.GregorianCalendar; 

public class StartTester { 

    public static void main(String[] args){ 

        RandomThread thread = new RandomThread(); 

        thread.start(); 

        while (true) { 

            Calendar today = new GregorianCalendar(); 

            long hour = today.get(Calendar.HOUR); 

            long minute = today.get(Calendar.MINUTE); 

            long second = today.get(Calendar.SECOND); 

            System.out.println(hour + ":" 

                    + minute + ":" + second); 

            try { Thread.sleep(10);  

  } catch(InterruptedException ie) {} 

        } 

    } 

} THIS IS A MULTITHREADED APPLICATION! 
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start vs. run 
import java.util.Calendar; 

import java.util.GregorianCalendar; 

public class RunTester { 

    public static void main(String[] args) { 

        RandomThread thread = new RandomThread(); 

        thread.run(); // Only this main thread is running 

        while (true) { 

            Calendar today = new GregorianCalendar(); 

            long hour = today.get(Calendar.HOUR); 

            long minute = today.get(Calendar.MINUTE); 

            long second = today.get(Calendar.SECOND); 

            System.out.println(hour + ":" 

                    + minute + ":" + second); 

            try { 

                Thread.sleep(10); 

            } catch (InterruptedException ie) { 

            } 

        } 

    } 

} 
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Creating Tasks and Threads 
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// Custom task class 

public class TaskClass implements Runnable { 

  ... 

  public TaskClass(...) { 

    ... 

  } 

  

  // Implement the run method in Runnable 

  public void run() { 

    // Tell system how to run custom thread 

    ... 

  } 

  ... 

} 

  

// Client class 

public class Client { 

  ... 

  public void someMethod() { 

    ... 

    // Create an instance of TaskClass 

    TaskClass task = new TaskClass(...); 

 

    // Create a thread 

    Thread thread = new Thread(task); 

 

    // Start a thread 

    thread.start(); 

    ... 

  } 

  ... 

} 

  

java.lang.Runnable 

 

 

 

 

TaskClass 
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Runnable interface 
The Runnable interface has 1 method: run() 

Alternative threading approach: 

use implements Runnable 

AND 

define run() 
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Using the Runnable Interface to 

Create and Launch Threads 

 Create and run three threads: 

The first thread prints the letter a 100 times.  

The second thread prints the letter b 100 times. 

The third thread prints the integers 1 through 

100.  
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public class TaskThreadDemo { 

    public static void main(String[] args) { 

        // Create tasks 

        Runnable printA = new PrintChar('a', 100); 

        Runnable printB = new PrintChar('b', 100); 

        Runnable print100 = new PrintNum(100); 

        // Create threads 

        Thread thread1 = new Thread(printA); 

        Thread thread2 = new Thread(printB); 

        Thread thread3 = new Thread(print100); 

        // Start threads 

        thread1.start(); 

        thread2.start(); 

        thread3.start(); 

    } 

} 
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// The task for printing a specified character in specified times 

class PrintChar implements Runnable { 

    private char charToPrint; // The character to print 

    private int times; // The times to repeat 

    /** 

     * Construct a task with specified character and number of times to print 

     * the character 

     */ 

 

    public PrintChar(char c, int t) { 

        charToPrint = c; 

        times = t; 

    } 

 

    /** 

     * Override the run() method to tell the system what the task to perform 

     */ 

    public void run() { 

        for (int i = 0; i < times; i++) { 

            System.out.print(charToPrint); 

        } 

    } 

} 
29 
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// The task class for printing number from 1 to n for a given n 

class PrintNum implements Runnable { 

 

    private int lastNum; 

 

    /** 

     * Construct a task for printing 1, 2, ... i 

     */ 

    public PrintNum(int n) { 

        lastNum = n; 

    } 

 

    /** 

     * Tell the thread how to run 

     */ 

    public void run() { 

        for (int i = 1; i <= lastNum; i++) { 

            System.out.print(" " + i); 

        } 

    } 

} 
30 
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The Static yield() Method 
You can use the yield() method to temporarily release 
time for other threads.  

public void run() { 

  for (int i = 1; i <= lastNum; i++){ 

    System.out.print(" " + i); 

    Thread.yield(); 

  } 

}  
Every time a number is printed, the print100 thread is 
yielded. So, the numbers are printed after the characters.  
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The Static sleep(milliseconds) Method 
The sleep(long mills) method puts the thread to 
sleep for the specified time in milliseconds.  

public void run() { 

  for (int i = 1; i <= lastNum; i++) { 

    System.out.print(" " + i); 

    try { 

      if (i >= 50) Thread.sleep(1); 

    } 

    catch (InterruptedException ex) { 

    } 

  } 

} 

Every time a number (>= 50) is printed, the 
print100 thread is put to sleep for 1 millisecond.  
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isAlive(), interrupt(), and isInterrupted() 

 The isAlive() method is used to find out the state of a thread.  

 It returns true if a thread is in the Ready, Blocked, or Running 

state;  

 it returns false if a thread is new and has not started or if it is 

finished. 

 The interrupt() method interrupts a thread in the following 

way: If a thread is currently in the Ready or Running state, its 

interrupted flag is set; if a thread is currently blocked, it is 

awakened and enters the Ready state, and an 

java.io.InterruptedException is thrown. 

 The isInterrupt() method tests whether the thread is 

interrupted. 
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Thread Priority 

Each thread is assigned a default 

priority of Thread.NORM_PRIORITY.  

You can reset the priority using 

setPriority(int priority).  

Some constants for priorities include 

Thread.MIN_PRIORITY 

Thread.MAX_PRIORITY 

Thread.NORM_PRIORITY 
34 
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GUIs and Threads 
What if we want to make our frame multi-

threaded? 

implement Runnable  

GUI event handling and painting code executes 

in a single thread, called the event dispatcher 

thread.  

This ensures that each event handler finishes 

executing before the next one executes and the 

painting isn’t interrupted by events.  
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Platform.runLater(): If you need to 

update a GUI component from a non-

GUI thread, you can use that to put your 

update in a queue and it will be handle 

by the GUI thread as soon as possible. 

36 
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import javafx.application.Application; 

import javafx.application.Platform; 

import javafx.scene.Scene; 

import javafx.scene.control.Label; 

import javafx.scene.layout.StackPane; 

import javafx.stage.Stage; 

public class FlashText extends Application { 

    private String text = ""; 

    @Override 

    public void start(Stage primaryStage) { 

        StackPane pane = new StackPane(); 

        Label lblText = new Label("Programming is fun"); 

        pane.getChildren().add(lblText); 

        new Thread(new Runnable() { 

            @Override 

            public void run() { 

                try { 

                    while (true) { 

                        if (lblText.getText().trim().length() == 0) { 

                            text = "Welcome"; 

                        } else { 

                            text = ""; 

                        } 
37 
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                        Platform.runLater(new Runnable() { 

                            @Override 

                            public void run() { 

                                lblText.setText(text); 

                            } 

                        }); 

                        Thread.sleep(200); 

                    } 

                } catch (InterruptedException ex) { 

                } 

            } }).start(); 

        Scene scene = new Scene(pane, 200, 50); 

        primaryStage.setTitle("FlashText"); 

        primaryStage.setScene(scene); 

        primaryStage.show(); 

    } 

    public static void main(String[] args) { 

        launch(args); } } 
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import javafx.application.Application; 

import javafx.application.Platform; 

import javafx.scene.Scene; 

import javafx.scene.control.Label; 

import javafx.scene.layout.StackPane; 

import javafx.stage.Stage; 

public class FlashTextUsingLambda extends Application { 

    private String text = ""; 

    @Override 

    public void start(Stage primaryStage) { 

        StackPane pane = new StackPane(); 

        Label lblText = new Label("Programming is fun"); 

        pane.getChildren().add(lblText); 

        new Thread(() -> { 

            try { 

                while (true) { 

                    if (lblText.getText().trim().length() == 0) { 

                        text = "Welcome"; 

                    } else { 

                        text = ""; 

                    } 
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                    Platform.runLater(() -> lblText.setText(text)); 

                    Thread.sleep(200); 

                } 

            } catch (InterruptedException ex) { 

            } 

        }).start(); 

        Scene scene = new Scene(pane, 200, 50); 

        primaryStage.setTitle("FlashText"); 

        primaryStage.setScene(scene); 

        primaryStage.show(); 

    } 

    public static void main(String[] args) { 

        launch(args); 

    } 

} 

40 

FlashTextUsingLambda.java 



(c) Paul Fodor & Pearson Inc. 

Killing a thread 
 Threads usually perform actions repeatedly 

 What if you want to tell a thread to stop doing what it’s doing? 

 This takes cooperation between threads 

 Do not use the stop method --- it's deprecated: 

 It kills threads immediately 

 A thread’s run method may be mid-algorithm when killed 

 Preferred option: ask thread to kill itself. How? 

 via your own instance variable 

 make it a loop control for run 

 lets the thread set its affairs in order before dying 
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Typical run structure 
public class NiceThread extends Thread { 

    private boolean die = false; 

    public void askToDie() { 

        die = true; 

    } 

    public void run() { 

        while (!die) { 

            // do work here 

            try { 

                sleep(1000); 

            } catch (InterruptedException ie) { 

            } 

        } 

        // set affairs in order: DEAD IS DEAD 

    } 

    public static void main(String[] args){ 

        NiceThread t = new NiceThread(); 

        t.start(); 

        t.askToDie();  

    } 

} 
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Timer Threads  
 Common Problem: 

Need program to do something X times/second 

 Like what? 

count time 

display time 

update and render scene 

 2 Java Options: 

have your thread do the counting 

have a Java java.util.Timer instance do the 

counting 
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Java Timers 

 Execute TimerTasks on schedule 

via its own hidden thread 

 What do we do? 

define our own TimerTask 

put work in run() method 

construct our task 

construct a timer 

schedule task on timer 

 cancel method unschedules our task (i.e. kills it) 

 44 



(c) Paul Fodor & Pearson Inc. 

import java.util.Timer; 

import java.util.TimerTask; 

public class TimerDemo { 

    int i = 0; 

    class MyTimerTask extends TimerTask { 

        public void run() { 

     System.out.println("Test " + (++i)); 

        } 

    } 

    public TimerDemo() { 

        Timer timer = new Timer(); 

        timer.schedule(new MyTimerTask(), 0, 100); 

        System.out.println("TimerTask scheduled."); 

        try { 

            Thread.sleep(5000); 

        } catch (InterruptedException e) { 

            System.out.println("got interrupted!"); 

        } 

        timer.cancel(); 

        System.out.println("TimerTask finished."); 

    } 

    public static void main(String args[]) { 

        TimerDemo td = new TimerDemo(); 

    } 

} 
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Run:  

TimerTask scheduled. 

Test 1 

Test 2 

Test 3 

Test 4 

Test 5 

… 

Test 49 

Test 50 

TimerTask finished. 


