Threads & Timers

CSE219, Computer Science III
Stony Brook University

http: / / WWW. cs.stonybrook.edu/ ~cse219

http://www.cs.stonybrook.edu/~cse219

~ Multi-tasking

- When you’re working, how many different
applications do you have open at one time?
Many! ~100 even If you have only a few visi

[Facebook X\L
C f & hitps://www.google.com/calendar/render?taby € C & @ htips:

/I Al - fodor pavi@gmalc. % | [Google Calencr x 4

wwww.facebook.com

+Paul Search

Images Maps Play YouTube places and things

Paul Fodor [£] update Status Add Photos/Video

Edit Profile

Google

What's on your mind?

FAVORITES

Calendar < > bay I Blackboard Learn % _;
C i [blackboard.stonybrook.edu/

bapps/portal /fframese

m SUn 915 lion 9/16 - 3 Fairotr |y WPy e @ reb -3 Lo
' \\\ Stony Brook University
-4 SeDtember 2013 ' GMT-05 m B Community Library Info for Instructors. What's Happening 3t 58
Mmoo o T o - it
L06-ThreadsAndTimers.ppt [Compatibility Made] - Microsoft PowerPoint = =2
Design Transitions Animations Slide Show Review View Acobat Storyboarding o @
out ~ . v @ | = it) Find
v 13 v A A E ik I_T'}J D—I_L‘]
et E-] - 23 Replace ~
B J U 8 abe - Az A Shapes Arrange
= v Style W Select ~ over in Blactboard
Font Paragraph Drawing Editing
4 |lsr with your mobile phane:
Threads & Timers = e E e e
|vour courses.
CSE219, Computer Science I
Stony Brock University \able to help you with
cs stenvhrook edu/~cse?19 t: £31-632-2777 or e-mail
Computer Science | - Fall 2012
o :
=

€.

Multithreaded?
- When you request a Web page. Should

the IE clier

L:

—walit for the

OR

nage before doing anything else

2 U

—do other work while waliting
like responding to user input/rendering

(-,

(c) Paul Fodor & Pearson Inc

e

0S Multi-tasking

- How many tasks is the OS performing?
» Press CTRL+Shift+ESC

i) Windows Task Manager =10 x|
File Options View Help
| Applications Processes | Services I Performance | Metworking | Izers I
Image Name | User Namel CFU | Me... - | Description | -~
POWERPNT.EXE pfodor Qo 30,668 K Microsoft PowerPoint
explorer.exe pfodor Qo 21,636 K Windows Explorer
TOTALCMD.EXE pfodor Qo 16,000 K Total Commander 32 bit international version, file manager replacem...
C5rS5. 868 SYSTEM Qo 10,088 K Client Server Runtime Process
nvxdsync, exe SYSTEM 0o 7,972 K MVIDIA User Experience Driver Component
TeamViewer.exe pfodor a0 5,430 K TeamViewer 8
TSVMCache.exe pfodor a0 2,990 K TortoiseSyM status cache
jusched.exe pfodor a0 2,712 K Java(TM) Update Scheduler
acrotray.exe pfodor Qo 2,376 K AcroTray |
taskhost.exe pfodor Qo 2,340 K Host Process for Windows Tasks
taskmar.exe pfodor Qo 2,172 K Windows Task Manager
NYVSYC.eXe SYSTEM 0o 2,092 K MNVIDIA Driver Helper Service, Version 311,00
MSOSYMC.EXE pfodor a0 2,088 K Microsoft Office Document Cache
avgnt.exe pfodor a0 1,456 K. Awira System Tray Tool
SynTPEnh.exe pfodor a0 1,268 K Synaptics TouchPad Enhancements
iTunesHelper.... pfodor aa 1,128 K TunesHelper LI
™ show processes from all users End Process |
k |Pro::esses: a3 CPU Usage: 0% Physical Memory: 31% o

e

i Windows Task Manager
File Options Wiew Help

Applimﬁunsl Processes I Services |

~CPUUsage — [CPU Lisage History

OS Multi-tasking

- How many CPUs does your PC have?

=10l x|

| Metworking | Users |

—Physical Memory Usage History

~ Physical Memory (ME) System
Total 2691 Handles 24151
Cached 11496 Threads 1007
Available 1834 Processes a1
Free 708 Up Time 0:158:30:16

Commit {MB) 1785 / 5330

— Kernel Memory (ME)
Faged 285
Monpaged 0 Resource Manitor. ..

Processes: 81 CPU Usage: 0% |P'hysiml Memory: 31% 4

(c) Paul Fodor & Pearson Inc.

e

Program Multi-Tasking

® Most apps need to do multiple tasks “simultaneously”

Program Running

® For example:

¢ gettlng uscer IHPUt Thread 1 Thread 2 Thread 3
Get User Input | | Talk to Printer Render

o printing

® Internet browsing

® How would you do this?

® using threads (that you define)
AND

® using a thread scheduler (that the JVM provides)

@ (c) Paul Fodor & Pearson Inc.

e

Tools for OS Multi-tasking

®Thread scheduling
OTime—sharing

e Virtual Memory

° Operating Systems

topics covered in:

CSE 306 at Stony
Brook U.

(-

(c) Paul Fodor & Pearson Inc

OPERATING
_SYSTEMS

s and Design Principles

William Stallings

- A
Multi-Core Complicates Everything

eIntel Xeon E7
10+ Cores
©)(0+ Threads

®let the OS work it out

(c) Paul Fodor & Pearson Inc. /

Multiple
threads
sharing a
single CPU

Multiple
threads on
multiple
CPUs

a N
Multi-Core Complicates Everything

Thread 1 — >
Thread2 |—— —>
Thread 3 >
Thread 1 — —>
Thread 2 — —>
Thread 3 — —>

(c) Paul Fodor & Pearson Inc. /

4 ™
Threads and the Thread Scheduler

® You define your own threads
Extend java.lang.Thread

®i.c. tasks

e Note: main is its own thread

® You make your threads runnable

®j. e. start them

!
@ ® Java's thread scheduler decides order!

(c) Pau Fodor & /

e
State transitions of a thread

start

unblock
thread

run
method

ends thread

(c) Paul Fodor & Pearson Inc.

new state

* A constructed Thread obj ect

*Not yet started
*Not yet known to thread scheduler

®Not runnable

(c) Paul Fodor & Pearson Inc

New - to - Runnable Transition

™

® Constructed thread is started o

ecall start method on it
® Can be scheduled!

® There may be many threads in
this state.

start

(c) Paul Fodor & Pearson Inc.

e
Runnable - to - Blocked Transition

® Runnable thread made unrunnable

o call sIeep method on it (for X milliseconds)

blocked

directly or via 1 0Cck method
® Can not be scheduled!

block
thread

® Again, there may be many threads in this state

@ (c) Paul Fodor & Pearson Inc.

™
Blocked - to -— Runnable Transition

® Unrunnable thread made runnable
'sleep time expires
and is not renewed

e unlock method ensures this

® Can be scheduled

unblock
thread

blocked

(c) Paul Fodor & Pearson Inc. /

4 ™
Runnable - to - Dead Transition

® Run method completes
® Cannot be rescheduled

® A dead thread is Dead

eCall 1sAl1ve to take a pulse

@ (c) Paul Fodor & Pearson Inc

e

o

Defining your own threads

public class MyThread extends Thread ({

public void run() {
// task to do when
// the thread is started

}

® Create a new thread:

MyThread mT = new MyThread() ;
® Run the thread:

mT .start () ;

(c) Paul Fodor & Pearson Inc.

e

The Thread Class

«interface»
java.lang.Runnable

pZAN

java.lang.Thread

+Thread()

+Thread(task: Runnable)
+start(): void

+isAlive(): boolean
+setPriority(p: int): void
+join(): void
+sleep(millis: long): void
+yield(): void
+interrupt(): void

(-

Creates a default thread.

Creates a thread for a specified task.

Starts the thread that causes the run() method to be invoked by the JVM.
Tests whether the thread is currently running.

Sets priority p (ranging from 1 to 10) for this thread.

Waits for this thread to finish.

Puts the runnable object to sleep for a specified time in milliseconds.
Causes this thread to temporarily pause and allow other threads to execute.
Interrupts this thread.

(c) Paul Fodor & Pearson Inc.

4 ™
The 2 key Thread methods

e start ()

® makes thread runnable

® calls the run method

® Thread class’ start method already does this

if your class that extends Thread you don’t have to define start

° run ()

® executed when a thread is started (with the method start ())

e run () is where thread work is done

¢ The Thread superclass’ run method does nothing
if your class extends Thread you must define run ()

® to specify what work your thread will do

@ (c) Paul Fodor & Pearson Inc. /

e

(-

run ()

Method Summary

void

9

When an object implementing interface Runnable is used to
create a thread, starting the thread causes the object's run
method to be called in that separately executing thread.

-run () may do one thing or many

~Via Iteration
~It may even exist for the duration of

the program

(c) Paul Fodor & Pearson Inc.

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Runnable.html

start VS. run

e The main method has a thread

e We write:
public static void main(String[] args) {
MyThread t = new MyThread() ;
t.start () ;

}
- Now we have 2 threads: main and t.

- What about:

public static void main (String[] args) {
MyThread t = new MyThread() ;

t.run() ;

}
Still just 1 thread: t.run() is just a method call!

(c) Paul Fodor & Pearson Inc.

e

start VS. run

public class RandomThread extends Thread {
public void run() ({
while (true) {
int num = (int) (Math.random() * 10);
System.out.println("\t\t\t\t" + num);
try { Thread.sleep(10);
} catch(InterruptedException ie) ({}

} /* An InterruptedException is thrown when a thread is waiting,
sleeping, or otherwise occupied, and the thread is interrupted,
} either before or during the activity. Occasionally a method may
wish to test whether the current thread has been interrupted,
and if so, to immediately throw this exception. E.g.,
if (Thread.interrupted())
throw new InterruptedException() ;
// Clears interrupted status!

*/

(c) Paul Fodor & Pearson Inc. /

: start VS. run

import java.util.Calendar;
import java.util.GregorianCalendar;
public class StartTester {
public static void main (String[] args) {
RandomThread thread = new RandomThread() ;
thread.start () ;
while (true) {
Calendar today = new GregorianCalendar () ;
long hour = today.get(Calendar.HOUR) ;
long minute = today.get(Calendar.MINUTE) ;
long second = today.get(Calendar.SECOND) ;
System.out.println(hour + ":"
+ minute + ":" + second);
try { Thread.sleep(10);
} catch(InterruptedException ie) ({}

} THIS ISAMULTITHREADED APPLICATION!

(c) Paul Fodor & Pearson Inc. /

e

@ }

start VS. run

import java.util.Calendar;
import java.util.GregorianCalendar;
public class RunTester {
public static void main (String[] args) {
RandomThread thread = new RandomThread() ;

thread.run(); // Only this main thread is running
while (true) {

Calendar today = new GregorianCalendar () ;
long hour = today.get(Calendar.HOUR) ;
long minute = today.get(Calendar.MINUTE) ;
long second = today.get(Calendar.SECOND) ;
System.out.println(hour + ":"

+ minute + ":" + second);

try {
Thread.sleep(10) ;

} catch (InterruptedException ie) ({
}

(c) Paul Fodor & Pearson Inc.

Creating Tasks and Threads

// Client class

java.lang.Runnable

<| ----- TaskClass : ,
public class Client {

public void someMethod () {

}

// Custom task class
public class TaskClass implements Runnable { ce
// Create an instance of TaskClass

public TaskClass(...) {

public void run() {

).TaskClass task = new TaskClass(...);

// Create a thread

Thread thread = new Thread (task);

// Implement the run method in Runnable
// Start a thread

// Tell system how to run custom thread thread.start () ;

(c) Paul Fodor & Pearson Inc.

Runnable interface :

® The Runnable interface has 1 method: run ()

® Alternative threading approach:
euse Implements Runnable
AND

edefine run ()

(c) Paul Fodor & Pearson Inc. /

Using the Runnable Interface to"
Create and Launch Threads

® Create and run three threads:

= ml

e The first thread prints the letter a 100 times.

1]

® The second thread prints the letter b 100 times.

aml

® The third thread prints the integers 1 through
100.

(c) Paul Fodor & Pearson Inc. /

™~

TaskThreadDemo. java

4 public class TaskThreadDemo ({
public static void main(String[] args) {

// Create tasks
Runnable printA = new PrintChar('a', 100);
Runnable printB = new PrintChar('b', 100);
Runnable printl00 = new PrintNum(100) ;
// Create threads
Thread threadl = new Thread(printd);
Thread thread2 = new Thread(printB) ;
Thread thread3 = new Thread(printl00) ;
// Start threads
threadl.start() ;
thread2.start() ;
thread3.start() ;

(c) Paul Fodor & Pearson Inc. /

//, // The task for printing a specified character in specified times \\\
class PrintChar implements Runnable ({ TaskThreadDemo. java
private char charToPrint; // The character to print
private int times; // The times to repeat
[**
* Construct a task with specified character and number of times to print

* the character

*/

public PrintChar (char c, int t) {
charToPrint = c;

times = t;

/%%
* Override the run() method to tell the system what the task to perform
*/
public void run() {
for (int i = 0; i < times; i++) {

System.out.print (charToPrint) ;

}
k } (c) Paul Fodor & Pearson Inc. /

//' // The task class for printing number from 1 to n for a given n <\\

class PrintNum implements Runnable { TaskThreadDemo. java

private int lastNum;

/**
* Construct a task for printing 1, 2, ... i
*/

public PrintNum(int n) {

lastNum = n;

/**
* Tell the thread how to run
*/
public void run() {
for (int i = 1; i <= lastNum; i++) {
System.out.print(" " + 1i);

@ } (c) Paul Fodor & Pearson Inc. /

The Static yield() Method

You can use the yield() method to temporarily release

time for other threads.
public voild run() {
for (int 1 = 1; 1 <= lastNum; i++) {
System.out.print (" " + 1i);
Thread.yield() ;
}

}
Every time a number is printed, the print100 thread is

yielded. So, the numbers are printed after the characters.

(c) Paul Fodor & Pearson Inc. /

4 N
The Static sleep(milliseconds) Method
The sleep(long mills) method puts the thread to

sleep for the specified time in milliseconds.

public void run() {
for (int 1i = 1; 1 <= lastNum,; i++) {
System.out.print(" " + 1);
try {
if (i >= 50) Thread.sleep(l);
}
catch (InterruptedException ex) ({
}
}
}

Every time a number (>= 50) is printed, the

érinthO thread is put to sleep for 1 millisecond.
.

(c) Paul Fodor & Pearson Inc. /

e

™

ISAlive(), interrupt(), and isinterrupted()

® The isAlive() method is used to find out the state of a thread.
® It returns true if a thread is in the Ready, Blocked, or Running
state;

® it returns false if a thread is new and has not started or if it is

finished.

® The interrupt() method interrupts a thread in the following
way: If a thread is currently in the Ready or Running state, its
interrupted flag is set; if a thread is currently blocked, it is
awakened and enters the Ready state, and an

java.io. InterruptedException is thrown.

® The isInterrupt() method tests whether the thread is

interrupted.

@ (c) Paul Fodor & Pearson Inc.

(-

Thread Priority

® Each thread is assigned a default
priority of Thread. NORM_PRIORITY.

® You can reset the priority using
setPriority(int priority).

® Some constants for priorities include

Thread . MIN_PRIORITY

Thread. MAX_PRIORITY

Thread. NORM_PRIORITY

(c) Paul Fodor & Pearson Inc.

" GUIs and Threads :

® What if we want to make our frame multi-

threaded?

Cimplement Runnable

e GUI event handling and painting code executes

in a single thread, called the event dispatcher
thread.

® This ensures that each event handler finishes

executing betore the next one executes and the

painting isn’t interrupted by events.

@ (c) Paul Fodor & Pearson Inc. /

" GUIs and Threads :

Platform.runLater(): If you need to
update a GUI component from a non-
GUI thread, you can use that to put your
update in a queue and it will be handle
by the GUI thread as soon as possible.

(c) Paul Fodor & Pearson Inc. /

//, import

import
import
import
import
import

public

javafx.
javafx.
javafx.
javafx.

javafx.

javafx

application.Application; FlashText.java
application.Platform;

scene.Scene;

scene.control.Label;

scene.layout.StackPane;

.stage.Stage;

class FlashText extends Application {

private String text = "";

@Override

public void start(Stage primaryStage) {

StackPane pane =

Label

new StackPane () ;

1blText = new Label ("Programming is fun");

pane.getChildren () .add (1blText) ;

new Thread(new Runnable () {

@Override

public void run() {

try {
while (true) {
if (1lblText.getText().trim() .length()

0) {

text = "Welcome";
} else {

text = "";
} (c) Paul Fodor & Pearson Inc.

™

/// Platform.runlLater (new Runnable () { \\\
@Override
public void run() {

1blText.setText (text) ;

});
Thread.sleep (200) ;

}
} catch (InterruptedException ex) ({

}
} 1) .start();
Scene scene = new Scene (pane, 200, 50);
primaryStage.setTitle ("FlashText") ;
primaryStage.setScene (scene) ;

primaryStage.show() ;

}
public static void main(String[] args) {

launch(args); } }

_Iojx _Iojx

Welcome Welcome

//, import

import
import
import
import
import

public

Javafx. FlashTextUsingLambda. java \

application.Application;
javafx.application.Platform;
javafx.scene.Scene;
javafx.scene.control.Label;
javafx.scene.layout.StackPane;
javafx.stage.Stage;

class FlashTextUsingLambda extends Application ({

private String text = "";

@Override

public void start(Stage primaryStage) {

StackPane pane = new StackPane() ;
Label 1blText = new Label ("Programming is fun");
pane.getChildren () .add (1blText) ;
new Thread(() -> {
try {
while (true) {

if (1lblText.getText().trim() .length()

0) {
text = "Welcome";
} else {

text = "";

(c) Paul Fodor & Pearson Inc.

/ FlashTextUsingLambda. java \
Platform.runlLater(() -> lblText.setText (text))

Thread.sleep (200) ;
}

} catch (InterruptedException ex) ({

}

}) .start();
Scene scene = new Scene (pane, 200, 50);
primaryStage.setTitle ("FlashText") ;
primaryStage.setScene (scene) ;

primaryStage.show() ;

}

public static void main(String[] args) {

launch (args) ;

(c) Paul Fodor & Pearson Inc. /

Killing a thread

® Threads usually perform actions repeatedly

e What if you want to tell a thread to stop doing what it’s doing?
® This takes cooperation between threads
® Do not use the stop method --- it's deprecated:

It kills threads immediately
A thread’ run method may be mid-algorithm when killed

® Preferred option: ask thread to kill itself. How?

® via your own instance variable
make it a loop control for run

lets the thread set its affairs in order before dying

@ (c) Paul Fodor & Pearson Inc. /

Typical run structure

public class NiceThread extends Thread ({
private boolean die = false;
public void askToDie () {
die = true;
}
public void run() {
while ('die) {
// do work here
try {
sleep (1000) ;
} catch (InterruptedException ie) {
}
}
// set affairs in order: DEAD IS DEAD
}
public static void main (String[] args) {
NiceThread t = new NiceThread() ;
t.start () ;
t.askToDie () ;

@ } (c) Paul Fodor & Pearson Inc.

Timer Threads

® Common Problem:

® Need program to do something X times/second
¢ Like what?

® count time

® display time

® update and render scene
® 2 Java Options:

® have your thread do the counting

®have a Java Java.utill.Timer instance do the

counting
@ (c) Paul Fodor & Pearson Inc. /

- . I
Java Timers

¢ Execute TimerTasks on schedule
® via its own hidden thread
® What do we do?
¢ define our own TimerTask
°* put work in run () method
® construct our task
® construct a timer

® schedule task on timer

* cancel method unschedules our task (i.e. kills it)

@ (c) Paul Fodor & Pearson Inc. /

//Emport java.util.Timer;
import java.util.TimerTask;
public class TimerDemo ({

int 1 = 0;

class MyTimerTask extends TimerTask {

}

public void run() {
System.out.println("Test " + (++1i));

public TimerDemo () {

}

Timer timer = new Timer();
timer.schedule (new MyTimerTask (), 0, 100);
System.out.println ("TimerTask scheduled.");
try {
Thread.sleep (5000) ;
} catch (InterruptedException e) {
System.out.println("got interrupted!");
}
timer.cancel () ;
System.out.println("TimerTask finished.");

public static void main(String args[]) {

@

TimerDemo td = new TimerDemo () ;

(c) Paul Fodor & Pearson Inc.

Run: \

TimerTask scheduled.
Test 1
Test 2
Test 3
Test 4
Test 5

Test 49
Test 50
TimerTask finished.

J

