
CSE219, Computer Science III

Stony Brook University

http://www.cs.stonybrook.edu/~cse219

 Software versioning and

revision control systems

http://www.cs.stonybrook.edu/~cse219

(c) Paul Fodor

Software versioning and

revision control systems
 Revision control (also known as version control, source

control, and source code management) is the management

of changes to documents, computer programs, large

web sites, and other collections of information.

 A system for managing changes to files

Used by individuals and teams to keep:

 History of changes,

 Share and distribute common source code.

Think of it as a file database

2

(c) Paul Fodor

Version Control System Services

 Backup and Restore

 Synchronization

 Short-term undo

 Long-term undo

 Track Changes

 Track Ownership

 Sandboxing

 Branching and merging

3

(c) Paul Fodor

Backup and Restore

Files are saved as they are edited

One can jump to any moment in time

Need that file as it was on August 23, 2014?

no problem, just ask the VCS for it

4

(c) Paul Fodor

Synchronization

Lets developers:

share files

stay up-to-date with the latest version

Even while developers are working

simultaneously.

5

(c) Paul Fodor

Short-term Undo

Editing a file and messed it up?

Throw away your changes and go back

to the “last known good” version in the

database

6

(c) Paul Fodor

Long-term Undo

For particularly bad mistakes

Suppose you made a change a year ago,

and it had a bug

Jump back to the old version, and see

what change was made that day

7

(c) Paul Fodor

Track Changes

As files are updated, you can leave messages

explaining why the change happened

stored in the VCS, not the file

This makes it easy to see how a file is

evolving over time, and why

Developers should document every change

8

(c) Paul Fodor

Track Ownership

A VCS tags every change with:

the name of the person who made it

date/time of change

Helpful for blamestorming

9

(c) Paul Fodor

Sandboxing

Insurance against yourself

Making a big change?

You can make temporary changes in an

isolated area

test and work out the kinks before

“checking in” your changes

10

(c) Paul Fodor

Branching and Merging

A larger sandbox

You can branch a copy of your code into a

separate area and modify it in isolation

tracking changes separately

Later, you can merge your work back into

the common area.

11

(c) Paul Fodor

Setup Terms

 Repository (repo): The database storing the files.

Server: The computer storing the repository

Client: The computer connecting to the repository

 Working Set/Working Copy: Your local directory of

files, where you make changes.

 Trunk/Main: The “primary” location for code in the

repository

Think of code as a family tree — the “trunk” is the

main line.

12

(c) Paul Fodor

Basic Actions

 Add: Put a file into the repository for the first time, i.e.

begin tracking it with Version Control

 Revision: What version a file is on (v1, v2, etc.)

 Head: The latest revision in the repository

 Check out: Download a file from the repository

 Check in: Upload a file to the repository (if it has

changed).

 the file gets a new revision number, and people can

“check out” the latest one

13

(c) Paul Fodor

 Checkin Message: A short message describing

what was changed

 Changelog/History: A list of changes made to a

file since it was created

 Update/Sync: Synchronize your files with the

latest from the repository

 this lets you grab the latest revisions of all files

 Revert: Throw away your local changes and

reload the latest version from the repository

14

Basic Actions

(c) Paul Fodor

Advanced Actions

 Branch: Create a separate copy of a file/folder for

private use (bug fixing, testing, etc)

Branch is both a verb (”branch the code”) and a

noun (”Which branch is it in?”)

 Diff/Change/Delta: Finding the differences

between two files

useful for seeing what changed between

revisions.

15

(c) Paul Fodor

 Merge (or patch): Apply the changes from one

file to another, to bring it up-to-date

For example, you can merge features from one

branch into another

 Conflict: When pending changes to a file

contradict each other

both changes cannot be applied

 Resolve: Fixing the changes that contradict each

other and checking in the correct version

16

Advanced Actions

(c) Paul Fodor

 Locking: “Taking control” of a file so nobody else can edit

it until you unlock it.

 some VCSs use this to avoid conflicts.

 Breaking the lock: Forcibly unlocking a file so you can

edit it.

 may be needed if someone locks a file and leaves

 Check out for edit: Checking out an “editable” version of

a file

 some VCSes have editable files by default, others

require an explicit command.

17

Advanced Actions

(c) Paul Fodor

Types of VCSs
 Revision Control System (RCS)

 dead as a stand-alone system

 Concurrent Versioning System (CVS)

 dying

 Subversion (SVN)

 killing CVS

 open source under the Apache license

 http://subversion.apache.org/

 Distributed/decentralized revision control:

 Git

 Mercurial

 GNU Bazaar

 BitKeeper

18

- keeps track of software revisions

- allows many developers to work on a given

project without requiring that they maintain a

connection to a common network.

http://subversion.apache.org/
http://subversion.apache.org/

(c) Paul Fodor

git
 Git:

 GNU license

 Free download: http://git-scm.com

 Clients: http://www.sourcetreeapp.com,

http://www.syntevo.com/smartgit

 Repositories: GitHub, BitBucket (private repos. for <=5 users)

 Used by Linux kernel (original author Linus Torvalds)

 Used by permanent software development (report

by itjobswatch.co.uk):

 20.32% git

 16.14% Subversion

 10.80% Microsoft Team Foundation Server

 1.39% Mercurial

19

http://git-scm.com/
http://git-scm.com/
http://git-scm.com/
http://www.sourcetreeapp.com/
http://www.syntevo.com/smartgit

(c) Paul Fodor

git Common operations
 Setting Up a Git Repository:

 git init: initializes a new Git repository.

 If you want to place a project under revision control, this is the first

command you need to learn.

 git clone ?location: creates a copy of an existing Git repository.

 Cloning is the most common way for developers to obtain a working copy

of a central repository.

 Example: git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/

 git add ?file: moves changes from the working directory to the

staging area.

 git commit: takes the staged snapshot and commits it to the

project history.

 git pull: downloads a branch from a remote repository, then

immediately merges it into the current branch.

 git push: move a local branch to another repository.

20

(c) Paul Fodor

Apache Subversion (SVN)

 Developed by the Apache Software Foundation

 Distributed under Apache License (an open source license)

 Used by:

 Apache Software Foundation,

 Google Code,

 FreeBSD,

 GCC,

 Mono,

 SourceForge.

 Server-client model: Native SVN server or Apache HTTP

Server.

21

(c) Paul Fodor

SVN Common operations
 Import: is the act of copying a local directory tree (that is not

currently a working copy) into the repository for the first time.

 Checkout: is to create a local working copy from the repository.

A user may specify a specific revision or obtain the latest.

 Commit (check in or ci): is to write or merge the changes made

in the working copy back to the repository.

 Update (or sync): merges changes made in the repository (by

other people or by the same person on another machine) into

the local working copy.

 Merge: is an operation in which two sets of changes are applied

to a file or set of files: updates or syncs the user working copy

with changes made and checked into the repository by other

users + check in files + incorporate branches into

a unified trunk.
22

(c) Paul Fodor

Apache Subversion
How to run SVN?

Command line: svn executable
svn commit a.txt

svn update

SVN Clients: TortoiseSVN, Netbeans

SVN plugin, Eclipse Subclipse, etc.

23

(c) Paul Fodor

Homework 1 Help
Getting the Software:

NetBeans IDE

Java SE Development Kit 8.X

Git and a git client

24

