Set Theory

CSE 215, Foundations of Computer Science
Stony Brook University
http://www.cs.stonybrook.edu/~cse215
Set theory

- Abstract set theory is one of the foundations of mathematical thought
 - Most mathematical objects (e.g. numbers) can be defined in terms of sets
- Let S denote a set:
 - $a \in S$ means that a is an element of S
 - Example: $1 \in \{1,2,3\}$, $3 \in \{1,2,3\}$
 - $a \notin S$ means that a is not an element of S
 - Example: $4 \notin \{1,2,3\}$
- If S is a set and $P(x)$ is a property that elements of S may or may not satisfy: $A = \{ x \in S \mid P(x) \}$ is the set of all elements x of S such that $P(x)$
Subsets: Proof and Disproof

- **Def.:** $A \subseteq B \iff \forall x, \text{ if } x \in A \text{ then } x \in B$

 (it is a formal universal conditional statement)

- **Negation:** $A \not\subseteq B \iff \exists x \text{ such that } x \in A \text{ and } x \notin B$

- **A is a proper subset of B** ($A \subset B$) \iff

 (1) $A \subseteq B \quad \text{AND}$

 (2) there is at least one element in B that is not in A

- **Examples:**

 $\{1\} \subseteq \{1\}$

 $\{1\} \subseteq \{1, \{1\}\}$

 $\{1\} \subset \{1, 2\}$

 $\{1\} \subset \{1, \{1\}\}$
Set Theory

• **Element Argument**: The Basic Method for Proving That One Set Is a **Subset** of Another

Let sets X and Y be given. To prove that $X \subseteq Y$,

1. Suppose that x is a particular [but arbitrarily chosen] element of X,

2. show that x is also an element of Y.
Example of an Element Argument Proof: $A \subseteq B$?

$A = \{m \in \mathbb{Z} | m = 6r + 12 \text{ for some } r \in \mathbb{Z}\}$

$B = \{n \in \mathbb{Z} \mid n = 3s \text{ for some } s \in \mathbb{Z}\}$

Suppose x is a particular but arbitrarily chosen element of A.

[We must show that $x \in B$].

By definition of A, there is an integer r such that

$x = 6r + 12 \iff x = 3(2r + 4)$

But, $s = 2r + 4$ is an integer because products and sums of integers are integers.

$x = 3s$. \Rightarrow By definition of B, x is an element of B.

$A \subseteq B$
Set Theory

- Disprove \(B \subseteq A \): \(B \not\subseteq A \).

\[
A = \{ m \in \mathbb{Z} \mid m = 6r + 12 \text{ for some } r \in \mathbb{Z} \}
\]
\[
B = \{ n \in \mathbb{Z} \mid n = 3s \text{ for some } s \in \mathbb{Z} \}
\]

Disprove = show that the statement \(B \subseteq A \) is false.

We must find an element of \(B \) (\(x=3s \)) that is not an element of \(A \) (\(x=6r+12 \)).

Let \(x = 3 = 3 \times 1 \rightarrow 3 \in B \)

\(3 \in A \)? We assume by contradiction \(\exists r \in \mathbb{Z} \), such that:

\[
6r + 12 = 3 \text{ (assumption) } \rightarrow 2r + 4 = 1 \rightarrow 2r = 3 \rightarrow r = 3/2
\]

But \(r = 3/2 \) is not an integer (\(\notin \mathbb{Z} \)). Thus, contradiction \(\rightarrow 3 \notin A \).

\(3 \in B \) and \(3 \notin A \), so \(B \not\subseteq A \).
Set Equality

• A = B, if, and only if, every element of A is in B and every element of B is in A.

\[\text{A} = \text{B} \iff \text{A} \subseteq \text{B} \text{ and } \text{B} \subseteq \text{A} \]

• Example:

\[\text{A} = \{m \in \mathbb{Z} \mid m = 2a \text{ for some integer } a\} \]
\[\text{B} = \{n \in \mathbb{Z} \mid n = 2b - 2 \text{ for some integer } b\} \]

• Proof Part 1: A \subseteq B

Suppose \(x \) is a particular but arbitrarily chosen element of \(A \).
By definition of \(A \), there is an integer \(a \) such that \(x = 2a \)
Let \(b = a + 1 \), \(2b - 2 = 2(a + 1) - 2 = 2a + 2 - 2 = 2a = x \)
Thus, \(x \in B \).

• Proof Part 2: B \subseteq A \text{ (proved in similar manner)}
Venn Diagrams

- $A \subseteq B$

- $A \not\subseteq B$
Relations among Sets of Numbers

- \mathbb{Z}, \mathbb{Q}, and \mathbb{R} denote the sets of integers, rational numbers, and real numbers.
- $\mathbb{Z} \subseteq \mathbb{Q}$ because every integer is rational (any integer n can be written in the form $n/1$).
 - \mathbb{Z} is a proper subset of \mathbb{Q}: there are rationals that are not integers (e.g., $1/2$).
- $\mathbb{Q} \subseteq \mathbb{R}$ because every rational is real.
 - \mathbb{Q} is a proper subset of \mathbb{R} because there are real numbers that are not rational (e.g., $\sqrt{2}$).
Operations on Sets

Let \(A \) and \(B \) be subsets of a universal set \(U \).

1. The union of \(A \) and \(B \): \(A \cup B \) is the set of all elements that are in at least one of \(A \) or \(B \):
 \[
 A \cup B = \{ x \in U \mid x \in A \text{ or } x \in B \}
 \]

2. The intersection of \(A \) and \(B \): \(A \cap B \) is the set of all elements that are common to both \(A \) and \(B \):
 \[
 A \cap B = \{ x \in U \mid x \in A \text{ and } x \in B \}
 \]

3. The difference of \(B \) minus \(A \) (relative complement of \(A \) in \(B \)): \(B - A \) (or \(B \setminus A \)) is the set of all elements that are in \(B \) and not \(A \):
 \[
 B - A = \{ x \in U \mid x \in B \text{ and } x \notin A \}
 \]

4. The complement of \(A \): \(A^c \) is the set of all elements in \(U \) that are not in \(A \):
 \[
 A^c = \{ x \in U \mid x \notin A \}
 \]
Operations on Sets

- Example: Let $U = \{a, b, c, d, e, f, g\}$ and let $A = \{a, c, e, g\}$ and $B = \{d, e, f, g\}$.
 - $A \cup B = \{a, c, d, e, f, g\}$
 - $A \cap B = \{e, g\}$
 - $B - A = \{d, f\}$
 - $A^c = \{b, d, f\}$
Subsets of real numbers

- Given real numbers a and b with $a \leq b$:
 - $(a, b) = \{x \in \mathbb{R} \mid a < x < b\}$
 - $(a, b] = \{x \in \mathbb{R} \mid a < x \leq b\}$
 - $[a, b) = \{x \in \mathbb{R} \mid a \leq x < b\}$
 - $[a, b] = \{x \in \mathbb{R} \mid a \leq x \leq b\}$

- The symbols ∞ and $-\infty$ are used to indicate intervals that are unbounded either on the right or on the left:
 - $(a, \infty) = \{x \in \mathbb{R} \mid a < x\}$
 - $[a, \infty) = \{x \in \mathbb{R} \mid a \leq x\}$
 - $(-\infty, b) = \{x \in \mathbb{R} \mid x < b\}$
 - $(-\infty, b] = \{x \in \mathbb{R} \mid x \leq b\}$
Subsets of real numbers

Example: Let

\[A = (-1, 0] = \{x \in \mathbb{R} \mid -1 < x \leq 0\} \]
\[B = [0, 1) = \{x \in \mathbb{R} \mid 0 \leq x < 1\} \]

\[A \cup B = \{x \in \mathbb{R} \mid x \in (-1, 0] \text{ or } x \in [0, 1)\} = (-1, 1) \]
\[A \cap B = \{x \in \mathbb{R} \mid x \in (-1, 0] \text{ and } x \in [0, 1)\} = \{0\} . \]
\[B - A = \{x \in \mathbb{R} \mid x \in [0, 1) \text{ and } x \notin (-1, 0]\} = (0, 1) \]

\[A^c = \{x \in \mathbb{R} \mid \text{it is not the case that } x \in (-1, 0]\} = (-\infty, -1] \cup (0, \infty) \]

(c) Paul Fodor (CS Stony Brook)
Set theory

- **Unions and Intersections of an Indexed Collection of Sets**
 - Given sets \(A_0, A_1, A_2, \ldots \) that are subsets of a universal set \(U \) and given a nonnegative integer \(n \) (set sequence)
 - \(\bigcup_{i=0}^{n} A_i = \{ x \in U \mid x \in A_i \text{ for at least one } i = 0, 1, 2, \ldots, n \} \)
 - \(\bigcup_{i=1}^{\infty} A_i = \{ x \in U \mid x \in A_i \text{ for at least one nonnegative integer } i \} \)
 - \(\bigcap_{i=0}^{n} A_i = \{ x \in U \mid x \in A_i \text{ for all } i = 0, 1, 2, \ldots, n \} \)
 - \(\bigcap_{i=1}^{\infty} A_i = \{ x \in U \mid x \in A_i \text{ for all nonnegative integers } i \} \)
Indexed Sets

- Example: for each positive integer i,

$$A_i = \{ x \in \mathbb{R} \mid -1/i < x < 1/i \} = (-1/i, 1/i)$$

- $A_1 \cup A_2 \cup A_3 = \{ x \in \mathbb{R} \mid x \text{ is in at least one of the intervals } (-1,1), (-1/2, 1/2), (-1/3, 1/3) \} = (-1, 1)$

- $A_1 \cap A_2 \cap A_3 = \{ x \in \mathbb{R} \mid x \text{ is in all of the intervals } (-1,1), (-1/2, 1/2), (-1/3, 1/3) \} = (-1/3, 1/3)$

- $\bigcup_{i=1}^{\infty} A_i = \{ x \in \mathbb{R} \mid x \text{ is in at least one of the intervals } (-1/i, 1/i) \text{ where } i \text{ is a positive integer} \} = (-1, 1)$

- $\bigcap_{i=1}^{\infty} A_i = \{ x \in \mathbb{R} \mid x \text{ is in all of the intervals } (-1/i, 1/i), \text{ where } i \text{ is a positive integer} \} = \{0\}$
The Empty Set $\emptyset (\{\})$

- $\emptyset = \{\}$ a set that has no elements
- **Examples:**
 - $\{1,2\} \cap \{3,4\} = \emptyset$
 - $\{x \in \mathbb{R} \mid 3 < x < 2\} = \emptyset$
Partitions of Sets

• A and B are disjoint \(\iff A \cap B = \emptyset \)
 • the sets A and B have no elements in common

• Sets \(A_1, A_2, A_3, \ldots \) are mutually disjoint (pairwise disjoint or non-overlapping) \(\iff \) no two sets \(A_i \) and \(A_j \) \((i \neq j)\) have any elements in common
 • \(\forall i,j = 1,2,3,\ldots, i \neq j \rightarrow A_i \cap A_j = \emptyset \)

• A finite or infinite collection of nonempty sets \(\{A_1, A_2, A_3, \ldots\} \)
 is a partition of a set A \(\iff \)
 1. \(A = \bigcup_{i=1}^{\infty} A_i \)
 2. \(A_1, A_2, A_3, \ldots \) are mutually disjoint
Partitions of Sets

• Examples:

 • $A = \{1, 2, 3, 4, 5, 6\}$

 $A_1 = \{1, 2\}$ \hspace{1cm} $A_2 = \{3, 4\}$ \hspace{1cm} $A_3 = \{5, 6\}$

 $\{A_1, A_2, A_3\}$ is a partition of A:

 - $A = A_1 \cup A_2 \cup A_3$

 - A_1, A_2 and A_3 are mutually disjoint:

 $A_1 \cap A_2 = \emptyset$ \hspace{1cm} $A_1 \cap A_3 = \emptyset$ \hspace{1cm} $A_2 \cap A_3 = \emptyset$

 • $T_1 = \{n \in \mathbb{Z} \mid n = 3k, \text{ for some integer } k\}$

 $T_2 = \{n \in \mathbb{Z} \mid n = 3k + 1, \text{ for some integer } k\}$

 $T_3 = \{n \in \mathbb{Z} \mid n = 3k + 2, \text{ for some integer } k\}$

 $\{T_1, T_2, T_3\}$ is a partition of \mathbb{Z}
Power Set

• Given a set A, the **power set** of A, \(P(A) \), is the **set of all subsets of A**

• Examples:

\[
P(\{x, y\}) = \{\emptyset, \{x\}, \{y\}, \{x, y\}\}
\]

\[
P(\emptyset) = \{\emptyset\}
\]

\[
P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}
\]
Cartesian Product

• An **ordered n-tuple** \((x_1,x_2,\ldots,x_n)\) consists of the elements \(x_1,x_2,\ldots,x_n\) together with the ordering: first \(x_1\), then \(x_2\), and so forth up to \(x_n\).

• Two ordered n-tuples \((x_1,x_2,\ldots,x_n)\) and \((y_1,y_2,\ldots,y_n)\) are **equal**: \((x_1,x_2,\ldots,x_n)=(y_1,y_2,\ldots,y_n)\) \(\iff\) \(x_1=y_1\) and \(x_2=y_2\) and \(\ldots\ \) \(x_n=y_n\).

• The **Cartesian product** of \(A_1,A_2,\ldots,A_n\):

\[
A_1 \times A_2 \times \ldots \times A_n = \{(a_1, a_2,\ldots, a_n) \mid a_1 \in A_1, a_2 \in A_2,\ldots, a_n \in A_n\}
\]

• Example: \(A=\{1,2\}\), \(B=\{3,4\}\)

\[
A \times B = \{(1,3), (1,4), (2,3), (2,4)\}
\]
Cartesian Product

- Example: let $A = \{x, y\}$, $B = \{1, 2, 3\}$, and $C = \{a, b\}$

$A \times B \times C = \{(u,v,w) \mid u \in A, v \in B, \text{ and } w \in C\}$

$= \{(x, 1, a), (x, 2, a), (x, 3, a), (y, 1, a), (y, 2, a),$

$(y, 3, a), (x, 1, b), (x, 2, b), (x, 3, b), (y, 1, b),$

$(y, 2, b), (y, 3, b)\}$

$(A \times B) \times C = \{(u,v) \mid u \in A \times B \text{ and } v \in C\}$

$= \{((x, 1), a), ((x, 2), a), ((x, 3), a), ((y, 1), a),$

$((y, 2), a), ((y, 3), a), ((x, 1), b), ((x, 2), b), ((x, 3), b),$

$((y, 1), b), ((y, 2), b), ((y, 3), b)\}$
Input: m, n [positive integers], a, b [one-dimensional arrays]

Algorithm Body:

\[
i := 1, \quad \text{answer} := "A \subseteq B"
\]

while (i \leq m \quad \text{and} \quad \text{answer} = "A \subseteq B")

\[
j := 1, \quad \text{found} := "no"
\]

while (j \leq n \quad \text{and} \quad \text{found} = "no")

\[
\text{if } a[i] = b[j] \text{ then } \text{found} := "yes"
\]

\[
j := j + 1
\]

end while

\[
\text{if } \text{found} = "no" \text{ then } \text{answer} := "A \nsubseteq B"
\]

\[
i := i + 1
\]

end while

Output: answer [a string]: "A \subseteq B" or "A \nsubseteq B"
Properties of Sets

• Inclusion of Intersection:
 \[A \cap B \subseteq A \quad \text{and} \quad A \cap B \subseteq B \]

• Inclusion in Union:
 \[A \subseteq A \cup B \quad \text{and} \quad B \subseteq A \cup B \]

• Transitive Property of Subsets:
 \[A \subseteq B \quad \text{and} \quad B \subseteq C \rightarrow A \subseteq C \]

• \(x \in A \cup B \iff x \in A \text{ or } x \in B \)

• \(x \in A \cap B \iff x \in A \text{ and } x \in B \)

• \(x \in B - A \iff x \in B \text{ and } x \notin A \)

• \(x \in A^c \iff x \notin A \)

• \((x, y) \in A \times B \iff x \in A \text{ and } y \in B \)
Proof of a Subset Relation

- For all sets A and B, $A \cap B \subseteq A$.

The statement to be proved is universal:

$$\forall \text{ sets } A \text{ and } B, \ A \cap B \subseteq A$$

Suppose A and B are any (particular but arbitrarily chosen) sets.

$A \cap B \subseteq A$, we must show $\forall x, x \in A \cap B \Rightarrow x \in A$

Suppose x is any (particular but arbitrarily chosen) element in $A \cap B$.

By definition of $A \cap B$, $x \in A$ and $x \in B$.

Therefore, $\therefore x \in A$

Q.E.D.
Set Identities

- For all sets A, B, and C:
 - Commutative Laws: $A \cup B = B \cup A$ and $A \cap B = B \cap A$
 - Associative Laws: $(A \cup B) \cup C = A \cup (B \cup C)$ and $(A \cap B) \cap C = A \cap (B \cap C)$
 - Distributive Laws: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - Identity Laws: $A \cup \emptyset = A$ and $A \cap U = A$
 - Complement Laws: $A \cup A^c = U$ and $A \cap A^c = \emptyset$
 - Double Complement Law: $(A^c)^c = A$
 - Idempotent Laws: $A \cup A = A$ and $A \cap A = A$
 - Universal Bound Laws: $A \cup U = U$ and $A \cap \emptyset = \emptyset$
 - De Morgan’s Laws: $(A \cup B)^c = A^c \cap B^c$ and $(A \cap B)^c = A^c \cup B^c$
 - Absorption Laws: $A \cup (A \cap B) = A$ and $A \cap (A \cup B) = A$
 - Complements of U and \emptyset: $U^c = \emptyset$ and $\emptyset^c = U$
 - Set Difference Law: $A - B = A \cap B^c$
Proof of a Set Identity

- For all sets A, B, and C, \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \)

Suppose A, B, and C are arbitrarily chosen sets.

1. \(A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C) \)

Show: \(\forall x, \text{ if } x \in A \cup (B \cap C) \text{ then } x \in (A \cup B) \cap (A \cup C) \)

Suppose \(x \in A \cup (B \cap C) \), arbitrarily chosen. (1)

We must show \(x \in (A \cup B) \cap (A \cup C) \).

From (1), by definition of union, \(x \in A \) or \(x \in B \cap C \)

Case 1.1: \(x \in A \). By definition of union: \(x \in A \cup B \) and \(x \in A \cup C \)

By definition of intersection: \(x \in (A \cup B) \cap (A \cup C) \). (2)

Case 1.2: \(x \in B \cap C \). By definition of intersection: \(x \in B \) and \(x \in C \)

By definition of union: \(x \in A \cup B \) and \(x \in A \cup C \). And (2) again.

2. \((A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C) \) (proved in similar manner)
Proof of a De Morgan’s Law for Sets

• For all sets A and B: \((A \cup B)^c = A^c \cap B^c\)

Suppose A and B are arbitrarily chosen sets.

\(\implies\) Suppose \(x \in (A \cup B)^c\).

By definition of complement: \(x \notin A \cup B\)

it is false that \((x \text{ is in } A \text{ or } x \text{ is in } B)\)

By De Morgan’s laws of logic: \(x \text{ is not in } A \text{ and } x \text{ is not in } B\).

\[x \notin A \text{ and } x \notin B\]

Hence \(x \in A^c\) and \(x \in B^c\)

\[x \in A^c \cap B^c\]

\(\iff\) Proved in similar manner.
Intersection and Union with a Subset

- For any sets A and B, if $A \subseteq B$, then $A \cap B = A$ and $A \cup B = B$

$A \cap B = A \iff (1) \ A \cap B \subseteq A$ and (2) $A \subseteq A \cap B$

(1) $A \cap B \subseteq A$ is true by the inclusion of intersection property

(2) Suppose $x \in A$ (arbitrary chosen).

From $A \subseteq B$, then $x \in B$ (by definition of subset relation).

From $x \in A$ and $x \in B$, thus $x \in A \cap B$ (by definition of \cap)

$A \subseteq A \cap B$

$A \cup B = B \iff (3) \ A \cup B \subseteq B$ and (4) $B \subseteq A \cup B$

(3) and (4) proved in similar manner to (1) and (2)
The Empty Set

• **A Set with No Elements Is a Subset of Every Set:**
 If E is a set with no elements and A is any set, then $E \subseteq A$
 Proof (by contradiction): Suppose there exists an empty set E with no elements and a set A such that $E \not\subseteq A$.
 By definition of $\not\subseteq$: there is an element of E ($x \in E$) that is not an element of A ($x \notin A$).
 Contradiction with E was empty, so $x \notin E$. **Q.E.D.**

• **Uniqueness of the Empty Set:** There is only one set with no elements.
 Proof: Suppose E_1 and E_2 are both sets with no elements.
 By the above property: $E_1 \subseteq E_2$ and $E_2 \subseteq E_1 \Rightarrow E_1 = E_2$ **Q.E.D.**
The Element Method

- To prove that a set $X = \emptyset$, prove that X has no elements by contradiction:
 - suppose X has an element and derive a contradiction.
- Example 1: For any set A, $A \cap \emptyset = \emptyset$.

Proof: Let A be a particular (arbitrarily chosen) set.

$A \cap \emptyset = \emptyset \iff A \cap \emptyset$ has no elements

Proof by contradiction: suppose there is x such that $x \in A \cap \emptyset$.

By definition of intersection, $x \in A$ and $x \in \emptyset$

Contradiction since \emptyset has no elements

Q.E.D.
Example 2: For all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C^c$, then $A \cap C = \emptyset$.

Proof: Suppose A, B, and C are any sets such that

$A \subseteq B$ and $B \subseteq C^c$

Suppose there is an element $x \in A \cap C$.

By definition of intersection, $x \in A$ and $x \in C$.

From $x \in A$ and $A \subseteq B$, by definition of subset, $x \in B$.

From $x \in B$ and $B \subseteq C^c$, by definition of subset, $x \in C^c$.

By definition of complement $x \notin C$ (contradiction with $x \in C$).

Q.E.D.
Disproofs

- Disproving an alleged set property amounts to finding a counterexample for which the property is false.

- Example: Disprove that for all sets $A, B,$ and C,

\[(A \setminus B) \cup (B \setminus C) \neq A \setminus C \]

The property is false \iff there are sets A, B, and C for which the equality does not hold.

Counterexample 1: $A = \{1, 2, 4, 5\}, B = \{2, 3, 5, 6\}, C = \{4, 5, 6, 7\}$

\[(A \setminus B) \cup (B \setminus C) = \{1, 4\} \cup \{2, 3\} = \{1, 2, 3, 4\} \neq \{1, 2\} = A \setminus C \]

Counterexample 2: $A = \emptyset, B = \{1\}, C = \emptyset$
Cardinality of a set

- The cardinality of a set A: $N(A)$ or $|A|$ is a measure of the "number of elements of the set"
- Example: $|\{2, 4, 6\}| = 3$
- For any sets A and B,
 $$|A \cup B| + |A \cap B| = |A| + |B|$$
- If A and B are disjoint sets, then
 $$|A \cup B| = |A| + |B|$$
The Size of the Power Set

• For all int. \(n \geq 0 \), \(X \) has \(n \) elements \(\rightarrow P(X) \) has \(2^n \) elements.

Proof (by mathematical induction): \(Q(n) \): Any set with \(n \) elements has \(2^n \) subsets.

\(Q(0) \): Any set with 0 elements has \(2^0 \) subsets:

The power set of the empty set \(\emptyset \) is the set \(P(\emptyset) = \{\emptyset\} \).

\(P(\emptyset) \) has \(1 = 2^0 \) element: the empty set \(\emptyset \).

For all integers \(k \geq 0 \), if \(Q(k) \) is true then \(Q(k+1) \) is also true.

\(Q(k) \): Any set with \(k \) elements has \(2^k \) subsets.

We show \(Q(k+1) \): Any set with \(k + 1 \) elements has \(2^{k+1} \) subsets.

Let \(X \) be a set with \(k+1 \) elements and \(z \in X \) (since \(X \) has at least one element).

\(X - \{z\} \) has \(k \) elements, so \(P(X - \{z\}) \) has \(2^k \) elements.

Any subset \(A \) of \(X \) is a subset of \(X - \{z\} : A \in P(X) \).

Any subset \(A \) of \(X - \{z\} \), can also be matched with \(\{z\} : A \cup \{z\} \in P(X) \)

All subsets \(A \) and \(A \cup \{z\} \) are all the subsets of \(X \) \(\Rightarrow P(X) \) has \(2*2^k = 2^{k+1} \) elements
Algebraic Proofs of Set Identities

- Algebraic Proofs = Use of laws to prove new identities

1. Commutative Laws: \(A \cup B = B \cup A \) and \(A \cap B = B \cap A \)
2. Associative Laws: \((A \cup B) \cup C = A \cup (B \cup C) \) and \((A \cap B) \cap C = A \cap (B \cap C) \)
3. Distributive Laws: \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \) and \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \)
4. Identity Laws: \(A \cup \emptyset = A \) and \(A \cap U = A \)
5. Complement Laws: \(A \cup A^c = U \) and \(A \cap A^c = \emptyset \)
6. Double Complement Law: \((A^c)^c = A \)
7. Idempotent Laws: \(A \cup A = A \) and \(A \cap A = A \)
8. Universal Bound Laws: \(A \cup U = U \) and \(A \cap \emptyset = \emptyset \)
9. De Morgan’s Laws: \((A \cup B)^c = A^c \cap B^c \) and \((A \cap B)^c = A^c \cup B^c \)
10. Absorption Laws: \(A \cup (A \cap B) = A \) and \(A \cap (A \cup B) = A \)
11. Complements of U and \(\emptyset \): \(U^c = \emptyset \) and \(\emptyset^c = U \)
12. Set Difference Law: \(A - B = A \cap B^c \)
Algebraic Proofs of Set Identities

Example: for all sets $A, B,$ and C, $(A \cup B) - C = (A - C) \cup (B - C)$.

Algebraic proof:

$$(A \cup B) - C = (A \cup B) \cap C^c$$

by the set difference law

$$= C^c \cap (A \cup B)$$

by the commutative law for \cap

$$= (C^c \cap A) \cup (C^c \cap B)$$

by the distributive law

$$= (A \cap C^c) \cup (B \cap C^c)$$

by the commutative law for \cap

$$= (A - C) \cup (B - C)$$

by the set difference law.
Example: for all sets A and B, $A - (A \cap B) = A - B$.

$A - (A \cap B) = A \cap (A \cap B)^c$ by the set difference law

$= A \cap (A^c \cup B^c)$ by De Morgan’s laws

$= (A \cap A^c) \cup (A \cap B^c)$ by the distributive law

$= \emptyset \cup (A \cap B^c)$ by the complement law

$= (A \cap B^c) \cup \emptyset$ by the commutative law for \cup

$= A \cap B^c$ by the identity law for \cup

$= A - B$ by the set difference law.
Correspondence between logical equivalences and set identities

<table>
<thead>
<tr>
<th>Logical Equivalences</th>
<th>Set Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>For all statement variables (p, q,) and (r):</td>
<td>For all sets (A, B,) and (C):</td>
</tr>
<tr>
<td>a. (p \lor q \equiv q \lor p)</td>
<td>a. (A \cup B = B \cup A)</td>
</tr>
<tr>
<td>b. (p \land q \equiv q \land p)</td>
<td>b. (A \cap B = B \cap A)</td>
</tr>
<tr>
<td>a. (p \land (q \land r) \equiv p \land (q \land r))</td>
<td>a. (A \cup (B \cup C) = A \cup (B \cup C))</td>
</tr>
<tr>
<td>b. (p \lor (q \lor r) \equiv p \lor (q \lor r))</td>
<td>b. (A \cap (B \cap C) = A \cap (B \cap C))</td>
</tr>
<tr>
<td>a. (p \land (q \lor r) \equiv (p \land q) \lor (p \land r))</td>
<td>a. (A \cap (B \cup C) = (A \cap B) \cup (A \cap C))</td>
</tr>
<tr>
<td>b. (p \lor (q \land r) \equiv (p \lor q) \land (p \lor r))</td>
<td>b. (A \cup (B \cap C) = (A \cup B) \cap (A \cup C))</td>
</tr>
<tr>
<td>a. (p \lor \neg p = t)</td>
<td>a. (A \cup \emptyset = A)</td>
</tr>
<tr>
<td>b. (p \land \neg p = p)</td>
<td>b. (A \cap U = A)</td>
</tr>
<tr>
<td>a. (p \lor \neg p = t)</td>
<td>a. (A \cup A^c = U)</td>
</tr>
<tr>
<td>b. (p \land \neg p = p)</td>
<td>b. (A \cap A^c = \emptyset)</td>
</tr>
<tr>
<td>(\neg(\neg p) \equiv p)</td>
<td>((A^c)^c = A)</td>
</tr>
<tr>
<td>a. (p \lor p \equiv p)</td>
<td>a. (A \cup A = A)</td>
</tr>
<tr>
<td>b. (p \land p \equiv p)</td>
<td>b. (A \cap A = A)</td>
</tr>
<tr>
<td>a. (p \lor t = t)</td>
<td>a. (A \cup U = U)</td>
</tr>
<tr>
<td>b. (p \land c = c)</td>
<td>b. (A \cap \emptyset = \emptyset)</td>
</tr>
<tr>
<td>a. (\neg(p \lor q) \equiv \neg p \land \neg q)</td>
<td>a. ((A \cup B)^c = A^c \cap B^c)</td>
</tr>
<tr>
<td>b. (\neg(p \land q) \equiv \neg p \lor \neg q)</td>
<td>b. ((A \cap B)^c = A^c \cup B^c)</td>
</tr>
<tr>
<td>a. (p \lor (p \land q) \equiv p)</td>
<td>a. (A \cup (A \land B) = A)</td>
</tr>
<tr>
<td>b. (p \land (p \lor q) \equiv p)</td>
<td>b. (A \land (A \cup B) = A)</td>
</tr>
<tr>
<td>a. (\neg t = c)</td>
<td>a. (U^c = \emptyset)</td>
</tr>
<tr>
<td>b. (\neg c = t)</td>
<td>b. (\emptyset^c = U)</td>
</tr>
</tbody>
</table>
Boolean Algebra

- \lor (or) corresponds to \cup (union)
- \land (and) corresponds to \cap (intersection)
- \neg (negation) corresponds to c (complementation)
- t (a tautology) corresponds to U (a universal set)
- c (a contradiction) corresponds to \emptyset (the empty set)

- Logic and sets are special cases of the same general structure Boolean algebra.
Boolean Algebra

- A Boolean algebra is a set B together with two operations $+$ and \cdot, such that for all a and b in B both $a + b$ and $a \cdot b$ are in B and the following properties hold:

1. **Commutative Laws**: For all a and b in B, $a + b = b + a$ and $a \cdot b = b \cdot a$

2. **Associative Laws**: For all $a, b,$ and c in B,

 $$(a + b) + c = a + (b + c)$$
 \[\text{and}\]
 $$ (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

3. **Distributive Laws**: For all a, b, and c in B, $a + (b \cdot c) = (a + b) \cdot (a + c)$ and $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

4. **Identity Laws**: There exist distinct elements 0 and 1 in B such that for all a in B, $a + 0 = a$ and $a \cdot 1 = a$

5. **Complement Laws**: For each a in B, there exists an element in B, \overline{a}, complement or negation of a, such that $a + \overline{a} = 1$ and $a \cdot \overline{a} = 0$
Properties of a Boolean Algebra

- Uniqueness of the Complement Law: For all a and x in B, if $a+x=1$ and $a\cdot x=0$ then $x=\bar{a}$
- Uniqueness of 0 and 1: If there exists x in B such that $a+x=a$ for all a in B, then $x=0$, and if there exists y in B such that $a\cdot y=a$ for all a in B, then $y=1$.
- Double Complement Law: For all $a \in B$, $(\bar{\bar{a}})=a$
- Idempotent Law: For all $a \in B$, $a+a=a$ and $a\cdot a=a$.
- Universal Bound Law: For all $a \in B$, $a+1=1$ and $a\cdot 0=0$.
- De Morgan’s Laws: For all a and $b \in B$, $\bar{a+b}=\bar{a}\cdot \bar{b}$ and $\bar{a\cdot b}=\bar{a}+\bar{b}$
- Absorption Laws: For all a and $b \in B$, $(a+b)\cdot a=a$ and $(a\cdot b)+a=a$
- Complements of 0 and 1: $\bar{0}=1$ and $\bar{1}=0$.
Properties of a Boolean Algebra

- Uniqueness of the Complement Law: For all a and x in B, if $a + x = 1$ and $a \cdot x = 0$ then $x = \overline{a}$

Proof: Suppose a and x are particular (arbitrarily chosen) in B that satisfy the hypothesis: $a + x = 1$ and $a \cdot x = 0$.

\[
x = x \cdot 1 \quad \text{because 1 is an identity for } \cdot \\
x = x \cdot (a + \overline{a}) \quad \text{by the complement law for } + \\
x = x \cdot a + x \cdot \overline{a} \quad \text{by the distributive law for } \cdot \text{ over } + \\
x = a \cdot x + x \cdot \overline{a} \quad \text{by the commutative law for } \cdot \\
x = 0 + x \cdot \overline{a} \quad \text{by hypothesis} \\
x = a \cdot \overline{a} + x \cdot \overline{a} \quad \text{by the complement law for } \cdot \\
x = (\overline{a} \cdot a) + (\overline{a} \cdot x) \quad \text{by the commutative law for } \cdot \\
x = \overline{a} \cdot (a + x) \quad \text{by the distributive law for } \cdot \text{ over } + \\
x = \overline{a} \cdot 1 \quad \text{by hypothesis} \\
x = \overline{a} \quad \text{because 1 is an identity for } \cdot
\]
Russell’s Paradox

• Most sets are not elements of themselves.
• Imagine a set A being an element of itself $A \in A$.
• Let S be the set of all sets that are not elements of themselves:
 \[S = \{ A \mid A \text{ is a set and } A \notin A \} \]
• Is S an element of itself? Yes & No contradiction.
 • If $S \in S$, then S does not satisfy the defining property for S: $S \notin S$.
 • If $S \notin S$, then satisfies the defining property for S, which implies that: $S \in S$.
The Barber Puzzle

- In a town there is a male barber who shaves all those men, and only those men, who do not shave themselves.

Question: Does the barber shave himself?

- If the barber shaves himself, he is a member of the class of men who shave themselves. The barber does not shave himself because he doesn’t shave men who shave themselves.

- If the barber does not shave himself, he is a member of the class of men who do not shave themselves. The barber shaves every man in this class, so the barber must shave himself.

Both Yes & No derive contradiction!
Russell’s Paradox

- One possible solution: except powersets, whenever a set is defined using a predicate as a defining property, the set is a subset of a *known* set.
 - Then S (form Russell’s Paradox) is not a set in the universe of sets.
The Halting Problem

- There is no computer algorithm that will accept any algorithm X and data set D as input and then will output “halts” or “loops forever” to indicate whether or not X terminates in a finite number of steps when X is run with data set D.

Proof sketch (by contradiction): Suppose there is an algorithm CheckHalt such that for any input algorithm X and a data set D, it prints “halts” or “loops forever”.

A new algorithm Test(X)

- loops forever if CheckHalt(X, X) prints “halts” or
- stops if CheckHalt(X, X) prints “loops forever”.

Test(Test) = ?

- If Test(Test) terminates after a finite number of steps, then the value of CheckHalt(Test, Test) is “halts” and so Test(Test) loops forever. Contradiction!
- If Test(Test) does not terminate after a finite number of steps, then CheckHalt(Test, Test) prints “loops forever” and so Test(Test) terminates. Contradiction!

So, CheckHalt doesn’t exist.