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(c) Paul Fodor (CS Stony Brook) 

Set theory 
 Abstract set theory is one of the foundations of mathematical 

thought 

 Most mathematical objects (e.g. numbers) can be defined in 

terms of sets 

 Let S denote a set: 

 a ∈ S means that a is an element of S 

 Example: 1 ∈ {1,2,3}, 3 ∈ {1,2,3} 

 a ∉ S means that a is not an element of S 

 Example: 4 ∉ {1,2,3} 

 If S is a set and P(x) is a property that elements of S may or may 

not satisfy: A = {x ∈ S | P(x)} is the set of all elements x of S 

such that P(x) 
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Subsets: Proof and Disproof 

 Def.: A ⊆ B ⇔ ∀x, if x ∈ A then x ∈ B  

      (it is a formal universal conditional statement) 

 Negation: A ⊈ B ⇔ ∃x such that x ∈ A and x ∉ B 

 A is a proper subset of B (A⊂B) ⇔ 

 (1) A⊆B      AND 

 (2) there is at least one element in B that is not in A 

 Examples: 

{1} ⊆ {1}   {1} ⊆ {1, {1}} 

{1} ⊂ {1, 2}   {1} ⊂ {1, {1}} 
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Set Theory 

Element Argument: The Basic Method for 

Proving That One Set Is a Subset of Another 

Let sets X and Y be given. To prove that X ⊆ Y, 

1. Suppose that x is a particular [but 

arbitrarily chosen] element of X, 

2. show that x is also an element of  Y. 
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Set Theory 

 Example of an Element Argument Proof: A ⊆ B? 

 A = {m ∈ Z|m = 6r + 12 for some r ∈ Z} 

 B = {n ∈ Z | n = 3s for some s ∈ Z} 

Suppose x is a particular but arbitrarily chosen element of A. 

[We must show that x ∈ B]. 

By definition of A, there is an integer r such that    

x = 6r + 12   x = 3(2r + 4) 

But, s = 2r + 4 is an integer because products and sums of 

integers are integers. 

x=3s.  By definition of B, x is an element of B. 

     A ⊆ B 
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Set Theory 

 Disprove B ⊆ A:   B ⊈ A. 

A = {m ∈ Z|m = 6r + 12 for some r ∈ Z} 

B = {n ∈ Z | n = 3s for some s ∈ Z} 

Disprove = show that the statement B ⊆ A is false. 

We must find an element of B (x=3s) that is not an element of 

A (x=6r+12). 

Let x = 3 = 3 * 1  3 ∈ B 

3 ∈ A? We assume by contradiction ∃r ∈ Z, such that: 

6r+12=3 (assumption) 2r + 4 = 12r = -3r=-3/2 

But r=-3/2 is not an integer(∉Z).Thus, contradiction 3∉A. 

3 ∈ B and 3∉A, so B ⊈ A. 
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Set Equality 

 A = B, if, and only if, every element of A is in B and every element 

of B is in A. 

   A = B     ⇔     A ⊆ B and B ⊆ A 

 Example:  

A = {m ∈ Z | m = 2a for some integer a} 

B = {n ∈ Z | n = 2b − 2 for some integer b} 

 Proof  Part 1: A ⊆ B 

Suppose x is a particular but arbitrarily chosen element of A. 

By definition of A, there is an integer a such that x = 2a 

Let b = a + 1, 2b − 2 = 2(a + 1) − 2 = 2a + 2 − 2 = 2a = x 

Thus, x ∈ B. 

 Proof  Part 2: B ⊆ A (proved in similar manner) 
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Venn Diagrams 

A ⊆ B 

 

 

 

A ⊈ B 
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Relations among Sets of Numbers 

 Z, Q, and R denote the sets of integers, rational numbers, 

and real numbers 

 Z ⊆ Q because every integer is rational (any integer n can be 

written in the form n/1) 

 Z is a proper subset of Q: there are rationals that are not 

integers (e.g., 1/2) 

 Q ⊆ R because every rational is real 

 Q is a proper subset of R because there are real numbers that 

are not rational (e.g., √2) 
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Operations on Sets 

Let A and B be subsets of a universal set U. 

1. The union of A and B: A ∪ B is the set of all elements that are in 

at least one of A or B: 

  A ∪ B = {x ∈ U | x ∈ A or x ∈ B} 

2. The intersection of A and B: A ∩ B is the set of all elements that 

are common to both A and B. 

  A ∩ B = {x ∈ U | x ∈ A and x ∈ B} 

3. The difference of B minus A (relative complement of A in B): 

B−A (or B\A) is the set of all elements that are in B and not A. 

  B − A = {x ∈ U | x ∈ B and x ∉ A} 

4. The complement of A: Ac is the set of all elements in U that are 

not in A. 

   Ac = {x ∈ U | x ∉ A} 
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Operations on Sets 

Example: Let U = {a, b, c, d, e, f, g} and let 

A = {a, c, e, g} and B = {d, e, f, g}. 

A ∪ B = {a, c, d, e, f, g} 

A ∩ B = {e, g} 

B − A = {d, f } 

Ac = {b, d, f } 
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Subsets of real numbers 

 Given real numbers a and b with a ≤ b: 

 (a, b) = {x ∈ R | a < x < b}  

 (a, b] = {x ∈ R | a < x ≤ b}  

 [a, b) = {x ∈ R | a ≤ x < b} 

 [a, b] = {x ∈ R | a ≤ x ≤ b} 

 The symbols ∞ and −∞ are used to indicate intervals that are 

unbounded either on the right or on the left: 

 (a,∞)={x ∈ R | a < x}  

 [a,∞) ={x ∈ R | a ≤ x} 

 (−∞, b)={x ∈ R | x < b}  

 (−∞, b]={x ∈ R | x ≤ b} 
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Subsets of real numbers 

 Example: Let 

A = (−1, 0] = {x ∈ R|−1 < x ≤ 0}  

B = [0, 1) = {x ∈ R| 0 ≤ x < 1} 

A ∪ B = {x ∈ R| x ∈ (−1, 0] or  

                             x ∈ [0, 1)}  

           = {x ∈ R| x ∈ (−1, 1)} = (−1, 1) 

A ∩ B = {x ∈ R| x ∈ (−1, 0] and  

                              x ∈ [0, 1)} = {0}. 

B − A={x ∈ R| x ∈ [0, 1) and x ∉ (−1, 0]}= (0, 1) 

 

Ac = {x ∈ R| it is not the case that x ∈ (−1, 0]}  

     = (−∞, −1] ∪ (0, ∞) 
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Set theory 

 Unions and Intersections of an Indexed Collection 

of Sets 

 Given sets A0, A1, A2,... that are subsets of a universal set U and 

given a nonnegative integer n (set sequence) 

         Ai = {x ∈ U | x ∈ Ai for at least one i = 0, 1, 2,..., n} 

 

         Ai ={x ∈ U |x ∈ Ai for at least one nonnegative integer i } 

 

         Ai = {x ∈ U | x ∈ Ai for all i = 0, 1, 2, . . . , n} 

 

         Ai = {x ∈ U | x ∈ Ai for all nonnegative integers i } 
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Indexed Sets 

 Example: for each positive integer i,  

Ai  = {x ∈ R| −1/i <x< 1/i} = (−1/i , 1/i) 

 A1 ∪ A2 ∪ A3 ={x ∈ R|x is in at least one of the intervals 

(−1,1), (−1/2, 1/2), (−1/3, 1/3) } = (−1, 1) 

 A1 ∩ A2 ∩ A3 ={x ∈ R|x is in all of the intervals (−1,1), 

(−1/2,1/2), (−1/3, 1/3) } = (−1/3, 1/3) 

       Ai ={x ∈ R|x is in at least one of the intervals (−1/i,1/i) 

where i is a positive integer} = (−1, 1) 

       Ai ={x ∈ R|x is in all of the intervals (−1/i,1/i), where i is 

a positive integer} = {0} 
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The Empty Set ∅ ({}) 

∅ = {} a set that has no elements 

Examples:  

{1,2} ∩ {3,4}= ∅ 

{x ∈ R| 3 < x < 2} = ∅ 
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Partitions of Sets 

 A and B are disjoint ⇔ A ∩ B = ∅ 

 the sets A and B have no elements in common 

 Sets A1, A2, A3,... are mutually disjoint (pairwise disjoint or 

non-overlapping)  no two sets Ai and Aj (i ≠ j) have any 

elements in common 

 ∀ i,j = 1,2,3,..., i ≠ j Ai ∩ Aj = ∅ 

 A finite or infinite collection of nonempty sets{A1,A2, A3,...} 

is a partition of a set A  

  1. A =      Ai 
 

  2. A1,A2, A3,... are mutually disjoint 
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Partitions of Sets 
 Examples: 

 A = {1, 2, 3, 4, 5, 6} 

A1 = {1, 2}   A2= {3, 4}   A3 = {5, 6} 

{A1,A2, A3}is a partition of A: 

 - A = A1 ∪ A2 ∪ A3 

 - A1,A2 and A3 are mutually disjoint:  

  A1∩A2=A1∩A3=A2∩A3= ∅ 

 T1 = {n ∈ Z| n = 3k, for some integer k} 

T2 = {n ∈ Z| n = 3k + 1, for some integer k} 

T3 = {n ∈ Z| n = 3k + 2, for some integer k} 

{T1,T2, T3}is a partition of Z 
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Power Set 

Given a set A, the power set of A, P(A), 

is the set of all subsets of A 

Examples:  

P({x, y}) = {∅, {x}, {y}, {x, y}} 

P(∅) = {∅} 

P({∅}) = {∅, {∅}} 
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Cartesian Product 

 An ordered n-tuple (x1,x2,...,xn) consists of the elements 

x1,x2,...,xn  together with the ordering: first x1, then x2, and so 

forth up to xn 

 Two ordered n-tuples (x1,x2,...,xn) and (y1,y2,...,yn) are equal: 

(x1,x2,...,xn)=(y1,y2,...,yn) x1=y1and x2=y2 and ... xn=yn 

 The Cartesian product of A1,A2,...,An:     

 A1×A2×... ×An={(a1, a2,..., an) | a1∈A1, a2∈A2,..., an∈An} 

 Example: A={1,2}, B={3,4} 

  A×B ={(1,3), (1,4), (2,3), (2,4)} 
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Cartesian Product 

 Example: let A = {x, y}, B = {1, 2, 3}, and C = {a, b} 

A × B × C = {(u,v,w) | u ∈ A, v ∈ B, and w ∈ C} 

  = {(x, 1, a), (x, 2, a), (x, 3, a), (y, 1, a), (y, 2, a), 

    (y, 3, a), (x, 1, b), (x, 2, b), (x, 3, b), (y, 1, b), 

    (y, 2, b), (y, 3, b)} 

(A × B) × C = {(u,v) | u ∈ A × B and v ∈ C} 

  = {((x, 1), a), ((x, 2), a), ((x, 3), a), ((y, 1), a), 

    ((y, 2), a), ((y, 3), a), ((x, 1), b), ((x, 2), b), ((x, 3), b), 

    ((y, 1), b), ((y, 2), b), ((y, 3), b)} 
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  Supplemental: Algorithm to Check Subset 
Input: m, n [positive integers], a,b [one-dimensional arrays] 

Algorithm Body: 

 i := 1,     answer := “A ⊆ B” 

 while (i ≤ m    and   answer = “A ⊆ B”) 

  j := 1,    found := “no” 

  while (j ≤ n   and   found = “no”) 

   if a[i] = b[j] then found := “yes” 

   j := j + 1 

  end while 

  if found = “no” then answer := “A ⊈ B” 

  i := i + 1 

 end while 

Output: answer [a string]: “A ⊆ B” or “A ⊈ B” 
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Properties of Sets 
 Inclusion of Intersection:  

  A ∩ B ⊆ A      and A ∩ B ⊆ B 

 Inclusion in Union:  

  A ⊆ A ∪ B  and  B ⊆ A ∪ B 

 Transitive Property of Subsets:  

  A ⊆ B and B ⊆ C  A ⊆ C 

 x ∈ A ∪ B ⇔ x ∈ A or x ∈ B 

 x ∈ A ∩ B ⇔ x ∈ A and x ∈ B 

 x ∈ B − A ⇔ x ∈ B and x ∉ A 

 x ∈ Ac ⇔ x ∉ A 

 (x, y) ∈ A × B ⇔ x ∈ A and y ∈ B 
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Proof of a Subset Relation 
 For all sets A and B, A ∩ B ⊆ A. 

The statement to be proved is universal:  

   ∀ sets A and B, A∩B ⊆ A 

Suppose A and B are any (particular but arbitrarily 

chosen) sets. 

A ∩ B ⊆ A, we must show ∀x, x∈A∩B  x ∈ A 

Suppose x is any (particular but arbitrarily chosen) 

element in A ∩ B. 

By definition of A ∩ B, x ∈ A and x ∈ B. 

Therefore, ∴ x ∈ A     Q.E.D. 
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Set Identities 
 For all sets A, B, and C: 

 Commutative Laws: A∪B = B∪A and A∩B = B∩A 

 Associative Laws: (A∪B)∪C=A∪(B∪C) and (A∩B)∩C=A∩(B∩C) 

 Distributive Laws: A∪(B∩C)=(A∪B)∩(A∪C),A∩(B∪C)=(A∩B)∪(A∩C) 

 Identity Laws: A∪∅ = A and A∩U = A 

 Complement Laws: A∪Ac = U and A∩Ac = ∅ 

 Double Complement Law: (Ac)c = A 

 Idempotent Laws: A∪A = A and A∩A = A 

 Universal Bound Laws: A ∪ U = U and A∩∅ = ∅ 

 De Morgan’s Laws: (A ∪ B)c = Ac∩Bc and (A∩B)c = Ac ∪ Bc 

 Absorption Laws: A ∪ (A ∩ B) = A and A ∩ (A ∪ B) = A 

 Complements of U and ∅: Uc = ∅ and ∅c = U 

 Set Difference Law:  A − B = A ∩ Bc 
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Proof of a Set Identity 

 For all sets A, B, and C, A∪(B∩C)=(A∪B)∩(A∪C) 

Suppose A, B, and C are arbitrarily chosen sets. 

1. A∪(B∩C) ⊆ (A∪B)∩(A∪C) 

Show: ∀x, if x∈A∪(B∩C) then x∈(A∪B)∩(A∪C) 

Suppose x ∈ A ∪ (B ∩ C), arbitrarily chosen.          (1) 

We must show x∈(A∪B)∩(A∪C). 

From (1), by definition of union, x ∈ A or x ∈ B∩C 

Case 1.1: x∈A. By definition of union: x∈A∪B and x∈A∪C 

By definition of intersection: x∈(A∪B)∩(A∪C).  (2) 

Case 1.2: x∈B∩C. By definition of intersection: x∈B and x∈C 

By definition of union: x∈A∪B and x∈A∪C. And (2) again. 

2. (A∪B)∩(A∪C) ⊆ A∪(B∩C) (proved in similar manner) 
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Proof of a De Morgan’s Law for Sets 

 For all sets A and B: (A ∪ B)c = Ac∩Bc  

Suppose A and B are arbitrarily chosen sets. 

() Suppose x ∈(A ∪ B)c . 

By definition of complement: x ∉ A ∪ B 

    it is false that (x is in A or x is in B) 

By De Morgan’s laws of logic: x is not in A and x is not in B. 

      x ∉ A and x ∉ B 

Hence x ∈ Ac and x ∈ Bc 

  x ∈ Ac ∩ Bc 

() Proved in similar manner. 
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Intersection and Union with a Subset 

 For any sets A and B, if A ⊆ B, then A∩B=A and A∪B=B 

A∩B=A  (1) A ∩ B ⊆ A and (2) A ⊆ A ∩ B 

(1) A ∩ B ⊆ A is true by the inclusion of intersection property 

(2) Suppose x ∈ A (arbitrary chosen). 

 From A ⊆ B, then x ∈ B (by definition of subset relation). 

 From x ∈ A and x ∈ B, thus x ∈ A ∩ B (by definition of ∩) 

  A ⊆ A ∩ B  

A ∪ B = B  (3) A ∪ B ⊆ B and (4) B ⊆ A ∪ B  

  (3) and (4) proved in similar manner to (1) and (2) 
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The Empty Set 

 A Set with No Elements Is a Subset of Every Set:  

 If E is a set with no elements and A is any set, then E ⊆ A 

Proof (by contradiction): Suppose there exists an empty set E with 

no elements and a set A such that E ⊈ A. 

By definition of ⊈: there is an element of E (x∈E) that is not an 

element of A (x∉A). 

  Contradiction with E was empty, so x∉E.     Q.E.D. 

 Uniqueness of the Empty Set: There is only one set with no 

elements. 

Proof: Suppose E1 and E2 are both sets with no elements. 

By the above property: E1⊆E2 and E2⊆E1  E1=E2   Q.E.D. 
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The Element Method 

 To prove that a set X = ∅, prove that X has no elements 

by contradiction:  

suppose X has an element and derive a contradiction. 

 Example 1: For any set A,   A ∩∅ = ∅. 

Proof: Let A be a particular (arbitrarily chosen) set. 

A ∩∅ = ∅  A ∩∅ has no elements 

Proof by contradiction: suppose there is  x such that 

x∈A∩∅. 

By definition of intersection, x ∈ A and x ∈ ∅ 

 Contradiction since ∅ has no elements  Q.E.D. 
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The Element Method 

 Example 2: For all sets A, B, and C,  

 if A ⊆ B and B ⊆ Cc, then A ∩ C = ∅. 

Proof: Suppose A, B, and C are any sets such that  

      A ⊆ B and B ⊆ Cc 

Suppose there is an element x ∈ A ∩ C. 

By definition of intersection, x ∈ A and x ∈ C. 

From x ∈ A and A ⊆ B, by definition of subset, x ∈ B. 

From x ∈ B and B ⊆ Cc , by definition of subset, x ∈ Cc. 

By definition of complement x ∉ C (contradiction with x ∈ C). 

   

         Q.E.D. 
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Disproofs 
 Disproving an alleged set property amounts to finding a 

counterexample for which the property is false. 

 Example: Disprove that for all sets A,B, and C,   

  (A−B)∪(B−C)       =            A−C  ? 

 

 

 

 

The property is false  there are sets A, B, and C for which the 

equality does not hold 

Counterexample 1: A={1,2,4,5},B={2,3,5,6},C={4,5,6,7} 

(A−B)∪(B−C)={1,4}∪{2,3}={1,2,3,4} ≠ {1,2}=A−C 

Counterexample 2: A=∅,B={1},C=∅ 
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Cardinality of a set 

The cardinality of a set A: N(A) or|A| is a 

measure of the "number of elements of the set" 

Example: |{2, 4, 6}| = 3 

For any sets A and B,  

  |A ∪ B| + |A ∩ B| = |A|+|B| 

 If A and B are disjoint sets, then  

  |A ∪ B| = |A|+|B| 
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The Size of the Power Set 
 For all int. n ≥ 0, X has n elements  P(X) has 2n elements. 

Proof (by mathematical induction): Q(n): Any set with n elements has 2n subsets. 

Q(0): Any set with 0 elements has 20 subsets: 

 The power set of the empty set ∅ is the set P(∅) = {∅}. 

 P(∅) has 1=20 element: the empty set ∅. 

For all integers k ≥ 0, if Q(k) is true then Q(k+1) is also true. 

Q(k): Any set with k elements has 2k subsets. 

We show Q(k+1): Any set with k +1elements has 2k+1 subsets. 

Let X be a set with k+1 elements and z∈X (since X has at least one element). 

X−{z} has k elements, so P(X−{z}) has 2k elements. 

Any subset A of X−{z} is a subset of X: A ∈ P(X). 

Any subset A of X−{z}, can also be matched with {z}: A∪{z} ∈ P(X) 

All subsets A and A∪{z} are all the subsets of X  P(X) has 2*2k=2k+1 elements 

 

 

 

34 



(c) Paul Fodor (CS Stony Brook) 
35 

Algebraic Proofs of Set Identities 
 Algebraic Proofs = Use of laws to prove new identities 

1. Commutative Laws: A∪B = B∪A and A∩B = B∩A 

2. Associative Laws: (A∪B)∪C=A∪(B∪C) and (A∩B)∩C=A∩(B∩C) 

3. Distributive Laws: A∪(B∩C)=(A∪B)∩(A∪C) and 

A∩(B∪C)=(A∩B)∪(A∩C) 

4. Identity Laws: A∪∅ = A and A∩U = A 

5. Complement Laws: A∪Ac = U and A∩Ac = ∅ 

6. Double Complement Law: (Ac)c = A 

7. Idempotent Laws: A∪A = A and A∩A = A 

8. Universal Bound Laws: A ∪ U = U and A∩∅ = ∅ 

9. De Morgan’s Laws: (A ∪ B)c = Ac∩Bc and (A∩B)c = Ac ∪ Bc 

10. Absorption Laws: A ∪ (A ∩ B) = A and A ∩ (A ∪ B) = A 

11. Complements of U and ∅: Uc = ∅ and ∅c = U 

12. Set Difference Law:  A − B = A ∩ Bc 
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Algebraic Proofs of Set Identities 

 Example: for all sets A,B,and C,(A∪B)−C=(A−C)∪(B−C). 

Algebraic proof: 

(A ∪ B) − C = (A ∪ B) ∩ Cc  by the set difference law 

           = Cc ∩ (A ∪ B)  by the commutative law for ∩ 

           = (Cc ∩ A) ∪ (Cc ∩ B) by the distributive law 

           = (A ∩ Cc) ∪ (B ∩ Cc) by the commutative law for ∩ 

           = (A − C) ∪ (B − C) by the set difference law. 
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Algebraic Proofs of Set Identities 

 Example: for all sets A and B, A − (A ∩ B) = A − B. 

A − (A ∩ B) = A ∩ (A ∩ B)c   by the set difference law 

   = A ∩ (Ac ∪ Bc) by De Morgan’s laws 

   = (A ∩ Ac) ∪ (A ∩ Bc) by the distributive law 

   = ∅∪(A ∩ Bc)    by the complement law 

   = (A ∩ Bc) ∪ ∅  by the commutative law for ∪ 

   = A ∩ Bc     by the identity law for ∪ 

   = A − B     by the set difference law.  
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Correspondence between logical 

equivalences and set identities 
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Boolean Algebra 

∨ (or) corresponds to ∪ (union) 

∧ (and) corresponds to ∩ (intersection) 

∼ (negation) corresponds to c (complementation) 

 t (a tautology) corresponds to U (a universal set) 

c (a contradiction) corresponds to ∅ (the empty set) 

 Logic and sets are special cases of the same general 

structure Boolean algebra. 
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Boolean Algebra 
 A Boolean algebra is a set B together with two operations + and ·, 

such that for all a and b in B both a + b and a ·b are in B and the 

following properties hold: 

1. Commutative Laws: For all a and b in B, a+b=b+a and a·b=b·a 

2. Associative Laws: For all a,b, and c in B,     

  (a+b)+c=a+(b+c) and (a·b)·c=a·(b·c) 

3. Distributive Laws: For all a, b, and c in B, a+(b·c)=(a+b)·(a+c) 

and      a·(b+c)=(a·b)+(a·c) 

4. Identity Laws: There exist distinct elements 0 and 1 in B such that 

for all a in B, a+0=a and a·1=a 

5. Complement Laws: For each a in B, there exists an element in B, 

a, complement or negation of a, such that a+a=1 and a·a=0 
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Properties of a Boolean Algebra 
 Uniqueness of the Complement Law: For all a and x in B, if 

a+x=1 and a·x=0 then x=a 

 Uniqueness of 0 and 1: If there exists x in B such that a+x=a 

for all a in B, then x=0, and if there exists y in B such that 

a·y=a for all a in B, then y=1. 

 Double Complement Law: For all a ∈ B, ( a ) = a 

 Idempotent Law: For all a ∈ B, a+a=a and a·a=a. 

 Universal Bound Law: For all a ∈ B, a+1=1 and a·0 = 0. 

 De Morgan’s Laws: For all a and b ∈ B, a+b=a·b and a·b=a+b 

 Absorption Laws: For all a and b ∈ B,(a+b)·a=a and (a·b)+a=a 

 Complements of 0 and 1: 0 = 1 and 1 = 0. 
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Properties of a Boolean Algebra 
 Uniqueness of the Complement Law: For all a and x in B, if 

a+x=1 and a·x=0 then x=a 

Proof: Suppose a and x are particular (arbitrarily chosen) in B that satisfy the 

hypothesis: a+x=1 and a·x=0. 

x  = x ·1   because 1 is an identity for · 

 = x · (a + a)  by the complement law for + 

 = x ·a + x ·a  by the distributive law for · over + 

 = a · x + x ·a  by the commutative law for · 

 = 0 + x ·a  by hypothesis 

 = a ·a + x ·a  by the complement law for · 

 = (a ·a) + (a · x)  by the commutative law for · 

 = a · (a + x)  by the distributive law for · over + 

 = a ·1   by hypothesis 

 = a   because 1 is an identity for · 
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Russell’s Paradox 
 Most sets are not elements of themselves. 

 Imagine a set A being an element of itself A∈A. 

 Let S be the set of all sets that are not elements of themselves: 

    S = {A | A is a set and A ∉ A} 

 Is S an element of itself? Yes&No contradiction. 

 If S∈S, then S does not satisfy the defining property for S: S∉S. 

 If S∉S, then satisfies the defining property for S, which implies 

that: S∈S. 
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The Barber Puzzle 
 In a town there is a male barber who shaves all those 

men, and only those men, who do not shave themselves.  

 Question: Does the barber shave himself? 

 If the barber shaves himself, he is a member of the class of 

men who shave themselves. The barber does not shave 

himself because he doesn’t shave men who shave 

themselves. 

 If the barber does not shave himself, he is a member of the 

class of men who do not shave themselves. The barber 

shaves every man in this class, so the barber must shave 

himself.                     Both Yes&No derive contradiction! 
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Russell’s Paradox 

 One possible solution: except powersets, whenever a set is 

defined using a predicate as a defining property, the set is a 

subset of a known set. 

 Then S (form Russell’s Paradox) is not a set in the universe of 

sets. 
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The Halting Problem 
 There is no computer algorithm that will accept any algorithm X and data set D 

as input and then will output “halts” or “loops forever” to indicate whether or 

not X terminates in a finite number of steps when X is run with data set D. 

Proof sketch (by contradiction): Suppose there is an algorithm CheckHalt such 

that for any input algorithm X and a data set D, it prints “halts” or “loops 

forever”. 

A new algorithm Test(X)  

 loops forever if CheckHalt(X, X) prints “halts” or 

 stops if CheckHalt(X, X) prints “loops forever”. 

Test(Test) = ? 

 If Test(Test) terminates after a finite number of steps, then the value of 

CheckHalt(Test, Test) is “halts” and so Test(Test) loops forever. Contradiction! 

 If Test(Test) does not terminate after a finite number of steps, then 

CheckHalt(Test, Test) prints “loops forever” and so Test(Test) terminates. 

Contradiction! 

So, CheckHalt doesn’t exist. 
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