Set Theory

CSE 215, Foundations of Computer Science
Stony Brook University

http: / / WWW. cs.stonybrook.edu/ ~cse215



http://www.cs.stonybrook.edu/~cse215

4 ™
Set theory

® Abstract set theory is one of the foundations of mathematical

thought

® Most mathematical objects (e.g. numbers) can be defined in
terms of sets
® Let S denote a set:
® 3 € S means that a is an element of S
Example: 1 € {1,2,3},3 € {1,2,3}
® 3 & S means that a is not an element of S
Example: 4 € {1,2,3}
® If Sis a set and P(x) is a property that elements of S may or may
not satisfy: A = {x € S | P(x)} is the set of all elements x of S

such that P(x)
@ (c) Paul Fodor (CS Stony Brook) /
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Subsets: Proof and Disproof

®*Def.:AC B Vx,if x EAthenx €EB
(it is a tormal universal conditional statement)

® Negation: A € B & Ix such thatx EA and x € B
* Ais a proper subset of B (ACB) &

(1)ASB AND

(2) there is at least one element in B that is not in A
® Examples:

Uy &l Uy &1

1y &l 25 Uy el i1y

@ (c) Paul Fodor (CS Stony Brook)
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Set Theory

* Element Argument: The Basic Method for
Proving That One Set Is a Subset of Another

Let sets X andY be given. To prove that X &Y,

1. Suppose that x is a particular [but
arbitrarily chosen] element of X,

2. show that x is also an element of Y.

@ (c) Paul Fodor (CS Stony Brook) /
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Set Theory

* Example of an Element Argument Proof: A & B?
A={mEZ|m=6r+ 12 for somer € Z}
B={n€Z | n=3sforsomes€Z}

Suppose x is a particular but arbitrarily chosen element of A.
[We must show that x € B].
By definition of A, there is an integer r such that
x =6r+ 12 < x=32r +4)
But, s = 2r + 4 is an integer because products and sums of
integers are integers.
x=3s. = By definition of B, x is an element of B.
ACB

(c) Paul Fodor (CS Stony Brook)
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Set Theory

® Disprove B& A: B A,

A={mEZ|m=6r + 12 for somer EZ}

B={n€Z | n=3sforsomes€Z}

Disprove = show that the statement B & A is false.

We must find an element of B (x=3s) that is not an element of
A (x=6rt+12).

Letx=3=3*1=»3€EB

3 € A? We assume by contradiction dr € Z, such that:
6r+12=3 (assumption) >0r +4=1=P2r = -3=Pr=-3/2

But r=-3/2 is not an integer(€&Z).Thus, contradiction® 3€A.

3E€Band 3€¢A,so BZA.

(c) Paul Fodor (CS Stony Brook) /
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Set Equality

* A = B, if, and only if, every element of A is in B and every element

of Bisin A.
A=B & ACBandBCcCA

* Example:
A= {m E€Z | m = 2afor some integer a}
B={n€Z|n=2b— 2for some integer b}
® Proof Part 1:A € B
Suppose x is a particular but arbitrarily chosen element of A.
By definition of A, there is an integer a such that x = 2a
Letb=a+1,2b—2=2G+1)—2=2a+2—-2=2a=x
Thus, x € B.

® Proot Part 2: B € A (proved in similar manner)

(c) Paul Fodor (CS Stony Brook) /
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Venn Diagrams
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Relations among Sets of Numbers

* Z,Q, and R denote the sets of integers, rational numbers,

and real numbers

® Z S Q because every integer is rational (any integer n can be
written in the form n/ 1)
® Z is a proper subset of Q: there are rationals that are not
integers (e.g., 1/2)
* Q S R because every rational is real

® Qs a proper subset of R because there are real numbers that

are not rational (e.g., \/E) /}_Tm_
.'ff_ﬂ\\.\‘.\ﬁ'
Z JQIR|
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Operations on Sets

Let A and B be subsets of a universal set U.

1.The union of A and B: A U B is the set of all elements that are in

at least one of A or B:
AUB={x€U | xEAorxE€B}

2. The intersection of A and B: A N B is the set of all elements that - -
are common to both A and B. ( AEBX
ANB={x€U | xEAandx EB} \— —/

3.The difference of B minus A (relative complement of A in B):
B—A (or B\A) is the set of all elements that are in B and not A.

B-A={x€EU|xEBandx&A}

4.The complement of A: A¢is the set of all elements in U that are

ot in A (RTB\

Ac={x€EU | x&A}

@ (c) Paul Fodor (CS Stony Brook)




- ™
Operations on Sets

®Example: Let U = {a, b, c,d, e, f, g} and let
A=1{a,ce gt and B={d, e, f, g}.
*AUB={a,c,d,e,f,g}

*AMNB={e, g}
°B—A={d,f}
°A°={b,d, f}
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4 ™
Subsets of real numbers

® Given real numbers a and b with a <b:
®(a,b) = {xE€R | a<x<b}
¢(a,b]= {xER | a<x<b!
®la,b)= {xER | a<x <b}
°la,b] = {xER | as<x<b}

® The symbols 00 and —0o0 are used to indicate intervals that are
unbounded either on the right or on the left:
® (a,0)={x ER | a <x}
®la,0) ={x ER | a <x}
®(—oo,b)={x €ER | x <b}
®(—oo,b]={x ER | x<b}

o )
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Subsets of real numbers
* Example: Let I
A=(-1,0]= {x ER|—1 <x<0 I
B=1[0,1)= {xER| 0<x <1} < e i
AUB={x€R|x€E(—1,0]or
x € [0, 1)}
= (xER| xE(—1, 1)} = (=1, 1) e
ANB={xER| x€(—1,0]and o
x € [0, 1)} = {0}, e
B—A={xER| x€E[0, 1)and x & (—1,0]}= (0, 1)
R =

A° = {x € R| itis not the case that x € (—1, O]}
-2 -1 0 1 2
= (—o0, ~1]U (0,00) i
\A(}

(c) Paul Fodor (CS Stony Brook)
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Set theory

e Unions and Intersections of an Indexed Collection
of Sets

® Given sets Ay, A, A,,... that are subsets of a universal set U and

1ven a nonnegative integer n (set sequence
giv g ger n (set sequence)

° U A, ={x€U | x €A, foratleastonei=0,1,2,...,n}

=0

° A {x € U |x EA, for at least one nonnegative integer i }
i=1
i

° mA—{XEU|XEAfOI‘aHl—012 , N}

o

A= {x€U | x €A, forall nonnegative integers i }

—
e

(c) Paul Fodor (CS Stony Brook)




Indexed Sets

* Example: for each positive integer i,
A = {x€eR| —1/i<x<1/i} = (—1/i, 1/i)
* Ay UA, UA, ={x € R|x s in at least one of the intervals
(—1,1), (—1/2,1/2), (=1/3,1/3) } = (=1, 1)
* A, NA,NA; ={x € R|xisin all of the intervals (—1,1),
(—1/2 1/2),(=1/3,1/3) } = (—1/3,1/3)
o UA ={x € R|x is in at least one of the intervals (—1/i,1/1)

Where iis a positive integer} = (—1, 1)

o ﬂ A, ={x € R|x is in all of the intervals (—1/1,1/1i), where i is
i=1
a positive integer} = {0}

(c) Paul Fodor (CS Stony Brook)




The Empty Set @ ({})

@ = {! a set that has no elements

*Examples:
° 1,2} N {3,4}= 1),
*{x ER|[3<x<2}=0

(c) Paul Fodor (CS Stony Brook)




Partitions of Sets

* A and B are disjoint & AN B=0Q
® the sets A and B have no elements in common

® Sets A, A,, As,... are mutually disjoint (pairwise disjoint or
non-overlapping) < no two sets A; and A, (i # j) have any
elements in common
eVij=1,23,..,i#j2A, NA=0

* A finite or infinite collection of nonempty sets{A,A,, A;,...}

is a partition of a set A & A

i=1

2.A,A,, A;,... are mutually disjoint

(c) Paul Fodor (CS Stony Brook) /
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Partitions of Sets

* Examples:

°A=1{1,2,3,4,5,6}
A= 41,2} A= 3,4 A= 15,6}
{A;,A,, A;}is a partition of A:

A=A UA, UA,

-A;,A, and A; are mutually disjoint:

A,NA,=A NA,=A,NA,= @

*T, = {n € Z| n = 3k, for some integer k}
T,={n €Z| n= 3k + 1, for some integer k}
T;={n €Z| n= 3k + 2, for some integer k}
{T,,T,, T;}is a partition of Z

K (c) Paul Fodor (CS Stony Brook)




Power Set

°* Given a set A, the power set ot A, P(A),
is the set of all subsets of A

eExamples:

P({x,y}) = {D, {x}, {y}, {x, y}}
P(®) = {0}

P{D}) = {9, {0} }

(c) Paul Fodor (CS Stony Brook)
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Cartesian Product

* An ordered n-tuple (x,,x,,...,x,) consists of the elements
X{,X,,...,X, together with the ordering: first x,, then x,, and so

forth up to x
* Two ordered n-tuples (x;,x,,...,x,) and (y,,y,,...,y,) are equal:
(XXX )T (Y Y25 0¥n) X =yjand x,=y,and ... x, =y,
® The Cartesian product of A ,A,,... A :
A XA X XA ={(a;, a,,...,a) | a,€A,a,€EA,,...,;a EA }
* Example: A={1,2}, B={3,4}
AXB ={(1,3), (1,4), (2,3), 2,4)}

@ (c) Paul Fodor (CS Stony Brook) /




Cartesian Product

® Example: let A = {x,y},B={1,2,3},and C = {a, b}
AXBXC= {(uyv,w) | u€EA,vEB,andw € C}
={(x, 1,2),(x,2,2),(x,3,2),(y, 1,2), (y, 2, 2),
(y, 3,2), (x, 1,b), (%, 2, b), (x, 3,b), (y, 1, b),
(¥; 2,b), (3 3, b)J
(AXB)XC={(u,v) | u€A XBandv € C}
= {((x, 1), 2), ((x, 2),2), ((x, 3),2), ((y, 1), 2),
((, 2), ), ((, 3), ), ((x, 1), b), ((x, 2), b), ((x, 3), b),
((x; 1), b), ((x; 2), b), ((x; 3), b)}

(c) Paul Fodor (CS Stony Brook)




Supplemental: Algorithm to Check Subset

Input: m, n [positive integers], a,b [one-dimensional arrays]
Algorithm Body:
i:=1, answer:=“ACPB’
while i Sm and answer = “A € B”)
j:=1, found :=“no”
while (j £n and found = “no”)
if a[i] = b[j] then found := “yes”
=+
end while

if found = “no” then answer :=“A € B”
i:=1+1
end while

Output: answer [a string]: “A € B” or “A £ B”
@ Oumoriosen

(c) Paul Fodor (CS Stony Brook) /
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Properties of Sets

® Inclusion of Intersection:

ANMBESA and ANBCHB
® Inclusion in Union:

ACAUB and BEAUB
* Transitive Property of Subsets:

ACBandBEC2ACC
exEAUB&SxEAorx€B
*xEANB&S xEAandx EB
exEB—ASxEBandx €A
e XxXEASXEA

°*(x,y) EAXBox€EAandy EB
(-

(c) Paul Fodor (CS Stony Brook)
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Proof of a Subset Relation
® For all setsAand B,A (1 B € A.

The statement to be proved is universal:
V setsA and B,ANB € A
Suppose A and B are any (particular but arbitrarily

chosen) sets.
A N B E A, we must show Vx, xEANB 2 x EA

Suppose x is any (particular but arbitrarily chosen)
element in A 1 B.

By definition of A (1 B, x € A and x € B.
Theretore, ~ x EA Q.E.D.

(c) Paul Fodor (CS Stony Brook)




4 N
Set Identities
® For all sets A, B, and C:

e Commutative Laws: AUB = BUA and A(1B = BNA
® Associative Laws: (AUB)UC=AU(BUC) and (AMNB)NC=AN(BNC)
e Distributive Laws: AUBNC)=(AUB)N(AUC),AN(BUC)=(ANB)U(ANC)
e Identity Laws: AUQ = A and ANU = A
® Complement Laws: AUA® = U and A(A° = 1)
® Double Complement Law: (A€)¢ = A
® Idempotent Laws: AUA = A and ANA = A
® Universal Bound Laws: AU U =Uand AN@ =@
® De Morgan’s Laws: (A U B)* = A(1B¢ and (A(1B)° = A°U B¢
® Absorption Laws: A U (A (1 B) =AandA 1 (AUB)=A
e Complements of Uand @: U°= @ and @ = U
e Set Difference Law: A —B=A (1 B¢

(c) Paul Fodor (CS Stony Brook) /
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Proof of a Set Identity

® Forall sets A, B, and C, AU(BNC)=(AUB)N(AUC)

Suppose A, B, and C are arbitrarily chosen sets.

1.AUBNC) € (AUB)N(AUC)

Show: Vx, if x€EAU(BNC) then xE(AUB)N(AUC)

Suppose x € A U (B (1 C), arbitrarily chosen. (1)
We must show x€E(AUB)N(AUC).

From (1), by definition of union, x € A or x € BM1C

Case 1.1: xEA. By definition of union: x€EAUB and x€EAUC

By definition of intersection: x€E(AUB)M(AUC). (2)
Case 1.2: xEBINC. By definition of intersection: xEB and xE€C
By definition of union: x€EAUB and x€EAUC. And (2) again.

@ 2. (AUB)N(AUC) € AU(BINC) (proved in similar manner)
A,

(c) Paul Fodor (CS Stony Brook)




4 N

Proof of a De Morgan’s Law for Sets

® For all sets A and B: (A U B)° = A“[ B¢
Suppose A and B are arbitrarily chosen sets.
() Suppose x E(A U B)°.
By definition of complement: x A U B
it is false that (x is in A or x is in B)
By De Morgan’s laws of logic: x is not in A and x is not in B.
x&Aandx & B
Hence x € A€ and x € B¢
x E A B¢
(€) Proved in similar manner.

@ (c) Paul Fodor (CS Stony Brook) /
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Intersection and Union with a Subset
® For any sets A and B, if A € B, then A[1B=A and AUB=B
ANB=A < (HANBCAand (2)ACANB
(1) A 1B € A is true by the inclusion of intersection property
(2) Suppose x € A (arbitrary chosen).
From A € B, then x € B (by definition of subset relation).
From x € A and x € B, thus x € A (1 B (by definition of )
ACANB
AUB=B< (3)AUBCBand (4)BSAUB
(3) and (4) proved in similar manner to (1) and (2)

@ (c) Paul Fodor (CS Stony Brook) /




” The Empty Set A

* A Set with No Elements Is a Subset of Every Set:
If E is a set with no elements and A is any set, then E & A

Proof (by contradiction): Suppose there exists an empty set E with
no elements and a set A such that E £ A.

By definition of &: there is an element of E (xEE) that is not an
element of A (xEA).

Contradiction with E was empty, so x&E. Q.E.D.
* Uniqueness of the Empty Set: There is only one set with no

elements.
Proof: Suppose E, and E, are both sets with no elements.

By the above property: E,€E, and E,SE, = E,=E, Q.E.D.

@ (c) Paul Fodor (CS Stony Brook) /




” The Element Method

® To prove that a set X = @, prove that X has no elements

by contradiction:

® suppose X has an element and derive a contradiction.
* Example 1: For any setA, A NQ = Q.
Proof: Let A be a particular (arbitrarily chosen) set.
ANQ =0 < A NO has no elements

Proof by contradiction: suppose there is x such that
xEANQ.
By definition of intersection, x €A and x € @

@ (c) Paul Fodor (CS Stony Brook)
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” The Element Method h

® Example 2: For all sets A, B, and C,

if A € Band B € C¢, thenA N C = Q.

Proof: Suppose A, B, and C are any sets such that
ACS Band B € C¢

Suppose there is an element x €A (1 C.
By definition of intersection, x €A and x € C.
From x € A and A & B, by definition of subset, x € B.
From x € B and B & C¢, by definition of subset, x € C*.
By definition of complement x & C (contradiction with x € C).

Q.E.D.

(c) Paul Fodor (CS Stony Brook) /




~ Disproofs

* Disproving an alleged set property amounts to finding a

counterexample for which the property is false.

* Example: Disprove that for all sets A,B, and C,

A-BUB-C) =  A-C?
A | /\HI B ;*’ ’)\*-l *\:?
| 1\\ /jllll lll. x\\\ ,/; IIII

The property is false < there are sets A, B, and C for which the

Counterexample 1: A={1,2,45} B={2,3,5,6},C= {4,5,6,71
(A—B)UB—C)={1,41U{2,3}={1,2,3,4} # {1,2}=A—C
Counterexample 2: A=Q B={1},C=0

(c) Paul Fodor (CS Stony Brook)
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Cardinality of a set
® The cardinality of a set A: N(A) or|A| isa

measure of the "number of elements of the set"
° Example: |{2,4,6}| =3
® For any sets A and B,
IAUB| + |[ANB| = |A|+]|B|
* [t A and B are disjoint sets, then
[AUB| = |A[+][B]

(c) Paul Fodor (CS Stony Brook)
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The Size of the Power Set

 For all int. n > 0, X has n elements = P(X) has 2" elements.

Proof (by mathematical induction): Q(n): Any set with n elements has 2" subsets.

Q(0): Any set with O elements has 2° subsets:
The power set of the empty set @ is the set P(Q) = {D}.
P(®) has 1=2° element: the empty set 0.
For all integers k 2 0, if Q(k) is true then Q(k+1) is also true.
Q(k): Any set with k elements has 2* subsets.
We show Q(k+1): Any set with k +1elements has 2! subsets.
Let X be a set with k+1 elements and zEX (since X has at least one element).
X—{z} has k elements, so P(X—{z}) has 2* elements.
Any subset A of X—{z} is a subset of X: A € P(X).
Any subset A of X—{z}, can also be matched with {z}: AU {z} € P(X)

All subsets A and AU {z} are all the subsets of X = P(X) has 2*2k=2k*! e]lements

(c) Paul Fodor (CS Stony Brook)
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~ Algebraic Proofs of Set Identities

o Algebraic Proofs = Use of laws to prove new 1dentities

Commutative Laws: AUB = BUA and A(B = BMNA
Associative Laws: (AUB)UC=AU(BUC) and (ANB)(1C=AN(BMC)
Distributive Laws: AU(B1C)=(AUB)(1(AUC) and
AN(BUC)=(ANB)U(ANC)

Identity Laws: AUD = A and ANU=A

Complement Laws: AUA® = U and ANA°= 0

Double Complement Law: (A)° = A

Idempotent Laws: AUA = A and ANA = A

Universal Bound Laws: AUU=Uand AN@ =0

De Morgan’s Laws: (A U B)° = A°(1B¢ and (A(1B)¢ = A°U B¢
Absorption Laws: AU (AN B)=Aand AN (AUB)=A

. Complements ofUand @: Uc=@and Oc=U

Set Difference Law: A — B =A [ B¢

(c) Paul Fodor (CS Stony Brook) /
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Algebraic Proofs of Set Identities

* Example: for all sets A,B,and C,(AUB)—C=(A—C)U(B—C).
Algebraic proot:
(AUB)—C=(AUB) N Ce by the set difference law

= C°1 (A UB) by the commutative law for [
= (C< M1 A) U (C° N B) by the distributive law

= (AN C%U (BN C by the commutative law for N
= (A — C) U (B — C) by the set ditference law.

(c) Paul Fodor (CS Stony Brook) /
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Algebraic Proofs of Set Identities

* Example: for all sets A and B;jA — (A (1 B) =A — B.
A— (AN B)=AMN (AN B) by the set difference law

= A N (A° U B°) by De Morgan’s laws

= (A 1A U (A N B by the distributive law
= QU(A N BY) by the complement law

= (AN B U QD by the commutative law for U
= A B by the identity law for U
=A—B by the set ditference law.

(c) Paul Fodor (CS Stony Brook) /




~ Correspondence between logical
equivalences and set identities

Logical Equivalences

Set Properties

For all statement variables p, ¢, and r:

For all sets A, B, and C:

apvg=qvp
b.prg=qgnap

a.

AUB=BUA

b.ANB=BNA

apAa(@Ar)=pal(gAr)
b.pvigvr)=pvigvr)

LAUBUC)=AU(BUC)

b.ANMBNC)=AN(BNC)

aprg@vry=((prq)vI(pAar)
b.pvignarr)=(pvgr(pvr)

LANBUCO)=(ANB)UANC)

b.AUMBNC)=(AUB)N(AUC)

apve=p a AUl =A
b.pat=p bANU=A
a.pv~p=t a AUA =U
b.pa~p=c b.ANA =0
~~p)=p (A=A

apvp=p aAUA=A
b.pap=p bANA=A
apvit=t a AuUU=U
b.parc=c b.ANP=40

a~(pVvq)=~pn~q
b.~(p A q) =~pVv ~q

.(AUB) = A°NB*°

b. (AN B) = AU B*

apvipag =p
b.pa(pvg)=p

LAUANB) =A

b.AN(AUB)=A

a~t=c

b.~c =t

U =p0
W =U

(c) Paul Fodor (CS Stony Brook)

™




4 ™
Boolean Algebra

*V (or) corresponds to U (union)

* A (and) corresponds to [ (intersection)

® ~ (negation) corresponds to ¢ (complementation)
®t (a tautology) corresponds to U (a universal set)

® ¢ (a contradiction) corresponds to @ (the empty set)

* Logic and sets are special cases of the same general

structure Boolean algebra.

@ (c) Paul Fodor (CS Stony Brook) /




4 ™
Boolean Algebra

* A Boolean algebra is a set B together with two operations + and -,
such that for all a and b in B both a + b and a ‘b are in B and the
following properties hold:

1. Commutative Laws: For all a and b in B, a+b=b+a and a-b=b-a
2. Associative Laws: For all a,b, and ¢ in B,
(at+b)+c=a+(b+c) and (a-b)-c=a*(b-c)
3. Distributive Laws: For all a, b, and c in B, a+(b-c)=(a+b)-(a+c¢)
and a‘(b+tc)=(ab)+(a-c)
4. Identity Laws: There exist distinct elements 0 and 1 in B such that

forallain B, at0=aand a-1=a

5. Complement Laws: For each a in B, there exists an element in B,

a, complement or negation of a, such that ata=1 and a-a=0

(c) Paul Fodor (CS Stony Brook) /




Properties of a Boolean Algebra

Uniqueness of the Complement Law: For all a and x in B, it
a+x=1 and a-x=0 then x=a
Uniqueness of 0 and 1: If there exists x in B such that atx=a

for all a in B, then x=0, and if there exists y in B such that
a‘y=a for all a in B, then y=1.

Double Complement Law: Foralla € B, (a) = a

Idempotent Law: For all a € B, ata=a and a-a=a.

Universal Bound Law: For all a € B, a+1=1 and a-0 = 0.

De Morgan’s Laws: For all aand b € B, a+b=a‘b and a‘b=a+b

Absorption Laws: For all a and b € B,(at+b)-a=a and (a-b)+a=a

Complements of 0 and 1: 0=1and1=0.

(c) Paul Fodor (CS Stony Brook)
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Properties of a Boolean Algebra

® Uniqueness of the Complement Law: For all a and x in B, if
atx=1 and a-x=0 then x=a

Proof: Suppose a and x are particular (arbitrarily chosen) in B that satisty the
hypothesis: a+x=1 and a-x=0.

x =x-1 because 1 is an identity for -
=x *(at2) by the complement law for +
=x-atx-a by the distributive law for - over +
—a'x*tx-a by the commutative law for -
=0+x-a by hypothesis
—aatx-a by the complement law for

= (a-a) + (a-x) by the commutative law for -

a-(atx) by the distributive law for - over +
—a-l by hypothesis
—a because 1 is an identity for -

(c) Paul Fodor (CS Stony Brook)




4 ™
Russell’'s Paradox

® Most sets are not elements of themselves.

® Imagine a set A being an element of itself AEA.
® Let S be the set of all sets that are not elements of themselves:
S={A | Aisasetand A € A}
* Is S an element of itself? Yes&No contradiction.
® If SES, then S does not satisty the defining property for S: SES.

o If SES, then satisfies the defining property for S, which implies
that: SES.

@ (c) Paul Fodor (CS Stony Brook) /




4 ™
The Barber Puzzle

® [n a town there is a male barber who shaves all those

men, and only those men, who do not shave themselves.

® Question: Does the barber shave himselt?

® [f the barber shaves himself, he is a member of the class of
men who shave themselves. The barber does not shave
himself because he doesn’t shave men who shave

themselves.

® [{ the barber does not shave himself, he is a member of the
class of men who do not shave themselves. The barber
shaves every man in this class, so the barber must shave
himself. Both Yes&No derive contradiction!

@ (c) Paul Fodor (CS Stony Brook) /




Russell’s Paradox

® One possible solution: except powersets, whenever a set is
defined using a predicate as a defining property, the set is a

subset of a known set.

® Then S (form Russell’s Paradox) is not a set in the universe of

sets.

(c) Paul Fodor (CS Stony Brook)




The Halting Problem

® There is no computer algorithm that will accept any algorithm X and data set D
as input and then will output “halts” or “loops forever” to indicate whether or

not X terminates in a finite number of steps when X is run with data set D.

Proof sketch (by contradiction): Suppose there is an algorithm CheckHalt such
that for any input algorithm X and a data set D, it prints “halts” or “loops

forever”.
A new algorithm Test(X)
loops forever if CheckHalt(X, X) prints “halts” or
stops if CheckHalt(X, X) prints “loops forever”.
Test(Test) = ?

* IfTest(Test) terminates after a finite number of steps, then the value of
CheckHalt(Test, Test) is “halts” and so Test(Test) loops forever. Contradiction!

* IfTest(Test) does not terminate after a finite number of steps, then
CheckHalt(Test, Test) prints “loops forever” and so Test(Test) terminates.
Contradiction!

So, CheckHalt doesn’t exist.
(c) Paul Fodor (CS Stony Brook)




