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Application: Digital Logic Circuits 

 Analogy between the operations of switching devices and the 
operations of logical connectives
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Binary digits (bits): we will use the symbols 1 and 0 instead of “on” (“closed” or True) and “off” (“open” or False)



(c) Paul Fodor (CS Stony Brook)

Black Boxes and Gates
 Combinations of signal bits (1’s and 0’s) can be transformed 

into other combinations of signal bits (1’s and 0’s) by means 
of various circuits

 An efficient method for designing
complicated circuits is to build them
by connecting less complicated black 
box circuits: NOT-,AND-, and 
OR-gates.

3



(c) Paul Fodor (CS Stony Brook)
4



(c) Paul Fodor (CS Stony Brook)

Combinational Circuits
 Rules for a Combinational Circuit:
 Never combine two input wires.
 A single input wire can be split partway and used as input for 

two separate gates.
 An output wire can be used as input.
 No output of a gate can eventually feed back into that gate.

 Examples:
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Determining Output for a Given Input

 Inputs: P = 0 and Q = 1
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Constructing the Input/Output Table for a Circuit

 List the four possible combinations of input signals, and find 
the output for each by tracing through the circuit.
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The Boolean Expression Corresponding to a Circuit

 Trace through the circuit from left to right:

 What is the result?
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The Boolean Expression Corresponding to a Circuit

 Trace through the circuit from left to right:

 The result is: exclusive OR
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Recognizer
 A recognizer is a circuit that outputs a 1 for exactly one 

particular combination of input signals and outputs 0’s for all 
other combinations.

 Example: 

10



(c) Paul Fodor (CS Stony Brook)

The Circuit Corresponding to a Boolean Expression

1. Write the input variables in a column on the left side of the diagram
2. Go from the right side of the diagram to the left, working from the 

outermost part of the expression to the innermost part

 Example: (∼P ∧ Q) ∨ ∼Q
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Find a Circuit That Corresponds to an 
Input/Output Table
1. Construct a Boolean expression with the same truth table

 identify each row for which the output is 1 and construct an and expression that 
produces a 1 for the exact combination of input values for that row

P ∧ Q ∧ R

P∧ ∼Q ∧ R

P∧ ∼Q ∧ ∼R

Result: (P ∧ Q ∧ R) ∨ (P∧ ∼Q ∧ R) ∨ (P∧ ∼Q∧ ∼R)
disjunctive normal form
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Find a Circuit That Corresponds to an 
Input/Output Table
2. Construct the circuit for: (P ∧ Q ∧ R) ∨ (P∧ ∼Q ∧ R) ∨ (P∧ ∼Q∧ ∼R)
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Equivalent Combinational Circuits

 Two digital logic circuits are equivalent if, and only if, their input/output tables are identical.
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Simplifying Combinational Circuits

1. Find the Boolean expressions for each circuit.

2. Show that these expressions are logically equivalent.

((P ∧ ∼Q) ∨ (P ∧ Q)) ∧ Q

≡ (P ∧ (∼Q ∨ Q)) ∧ Q by the distributive law

≡ (P ∧ (Q ∨ ∼Q)) ∧ Q by the commutative law for ∨
≡ (P ∧T) ∧ Q by the negation law

≡ P ∧ Q by the identity law.
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 A NAND-gate is a single gate that acts like an AND-gate 
followed by a NOT-gate 
 it has the logical symbol: | (called Sheffer stroke)

P | Q ≡ ∼(P ∧ Q)

 A NOR-gate is a single gate that acts like an OR-gate followed 
by a NOT-gate
 it has the logical symbol: ↓ (called Peirce arrow)

P ↓ Q ≡ ∼(P ∨ Q)

NAND and NOR Gates
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Rewriting Expressions Using the Sheffer Stroke

 Any Boolean expression is equivalent to one written entirely 
with Sheffer strokes or entirely with Peirce arrows

P ≡ (P P) by the idempotent law for 
≡ P | P by definition of |.

P Q ≡ ( (P Q))   by the double negative law
≡ ( P Q)   by De Morgan’s laws
≡ ((P | P) (Q | Q)) by the above P≡P|P
≡ (P | P) | (Q | Q) by definition of |
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