
CSE 215, Foundations of Computer Science
Stony Brook University

http://www.cs.stonybrook.edu/~cse215

The Logic of Compound Statements
Application: Digital Logic Circuits

(c) Paul Fodor (CS Stony Brook)

Application: Digital Logic Circuits

 Analogy between the operations of switching devices and the
operations of logical connectives

2

Binary digits (bits): we will use the symbols 1 and 0 instead of “on” (“closed” or True) and “off” (“open” or False)

(c) Paul Fodor (CS Stony Brook)

Black Boxes and Gates
 Combinations of signal bits (1’s and 0’s) can be transformed

into other combinations of signal bits (1’s and 0’s) by means
of various circuits

 An efficient method for designing
complicated circuits is to build them
by connecting less complicated black
box circuits: NOT-,AND-, and
OR-gates.

3

(c) Paul Fodor (CS Stony Brook)
4

(c) Paul Fodor (CS Stony Brook)

Combinational Circuits
 Rules for a Combinational Circuit:
 Never combine two input wires.
 A single input wire can be split partway and used as input for

two separate gates.
 An output wire can be used as input.
 No output of a gate can eventually feed back into that gate.

 Examples:

5

(c) Paul Fodor (CS Stony Brook)

Determining Output for a Given Input

 Inputs: P = 0 and Q = 1

6

(c) Paul Fodor (CS Stony Brook)

Constructing the Input/Output Table for a Circuit

 List the four possible combinations of input signals, and find
the output for each by tracing through the circuit.

7

(c) Paul Fodor (CS Stony Brook)

The Boolean Expression Corresponding to a Circuit

 Trace through the circuit from left to right:

 What is the result?

8

(c) Paul Fodor (CS Stony Brook)

The Boolean Expression Corresponding to a Circuit

 Trace through the circuit from left to right:

 The result is: exclusive OR

9

(c) Paul Fodor (CS Stony Brook)

Recognizer
 A recognizer is a circuit that outputs a 1 for exactly one

particular combination of input signals and outputs 0’s for all
other combinations.

 Example:

10

(c) Paul Fodor (CS Stony Brook)

The Circuit Corresponding to a Boolean Expression

1. Write the input variables in a column on the left side of the diagram
2. Go from the right side of the diagram to the left, working from the

outermost part of the expression to the innermost part

 Example: (∼P ∧ Q) ∨ ∼Q

11

(c) Paul Fodor (CS Stony Brook)

Find a Circuit That Corresponds to an
Input/Output Table
1. Construct a Boolean expression with the same truth table

 identify each row for which the output is 1 and construct an and expression that
produces a 1 for the exact combination of input values for that row

P ∧ Q ∧ R

P∧ ∼Q ∧ R

P∧ ∼Q ∧ ∼R

Result: (P ∧ Q ∧ R) ∨ (P∧ ∼Q ∧ R) ∨ (P∧ ∼Q∧ ∼R)
disjunctive normal form

12

(c) Paul Fodor (CS Stony Brook)

Find a Circuit That Corresponds to an
Input/Output Table
2. Construct the circuit for: (P ∧ Q ∧ R) ∨ (P∧ ∼Q ∧ R) ∨ (P∧ ∼Q∧ ∼R)

13

(c) Paul Fodor (CS Stony Brook)

Equivalent Combinational Circuits

 Two digital logic circuits are equivalent if, and only if, their input/output tables are identical.

14

(c) Paul Fodor (CS Stony Brook)

Simplifying Combinational Circuits

1. Find the Boolean expressions for each circuit.

2. Show that these expressions are logically equivalent.

((P ∧ ∼Q) ∨ (P ∧ Q)) ∧ Q

≡ (P ∧ (∼Q ∨ Q)) ∧ Q by the distributive law

≡ (P ∧ (Q ∨ ∼Q)) ∧ Q by the commutative law for ∨
≡ (P ∧T) ∧ Q by the negation law

≡ P ∧ Q by the identity law.

15

(c) Paul Fodor (CS Stony Brook)

 A NAND-gate is a single gate that acts like an AND-gate
followed by a NOT-gate
 it has the logical symbol: | (called Sheffer stroke)

P | Q ≡ ∼(P ∧ Q)

 A NOR-gate is a single gate that acts like an OR-gate followed
by a NOT-gate
 it has the logical symbol: ↓ (called Peirce arrow)

P ↓ Q ≡ ∼(P ∨ Q)

NAND and NOR Gates

16

(c) Paul Fodor (CS Stony Brook)

Rewriting Expressions Using the Sheffer Stroke

 Any Boolean expression is equivalent to one written entirely
with Sheffer strokes or entirely with Peirce arrows

P ≡ (P P) by the idempotent law for
≡ P | P by definition of |.

P Q ≡ ((P Q)) by the double negative law
≡ (P Q) by De Morgan’s laws
≡ ((P | P) (Q | Q)) by the above P≡P|P
≡ (P | P) | (Q | Q) by definition of |

17

