Course Description

• “Introduction to the logical and mathematical foundations of computer science. Topics include functions, relations, and sets; recursion and functional programming; elementary logic; and mathematical induction and other proof techniques.”

• This IS NOT a course in computer programming, BUT on fundamental concepts of computing.

• We will stress mathematical problem solving skills and the use of formal concepts as tools for computer science.

• Prerequisites: AMS 151 or MAT 125 or MAT 131.
General Information

- Meeting Information:
 - Lecture section 2: Tuesdays and Thursdays 4:00PM - 5:20PM, Engineering 143.
 - Recitation section 8: Tuesdays 5:30PM - 6:23PM, Frey Hall 112.
 - Recitation section 9: Thursdays 5:30PM - 6:23PM, Melville N4000.
 - Recitation section 10: Tuesdays 7:00PM - 7:53PM, Chemistry 126.
 - Recitation section 11: Thursdays 7:00PM - 7:53PM, Physics P117.
 - Recitation section 12: Mondays 10:00AM - 10:53AM, Melville N3063.

- During recitations, the TAs will reinforce lecture material and guide problem solving sessions

- Blackboard will be used for assignments, grades and course material
General Information

- **Course Web page:** http://www.cs.stonybrook.edu/~cse215
- **Blackboard** will be used for assignments, grades and course material.
- **Staff mailing list:** cse215ta@cs.stonybrook.edu
 - Use this for all communication with the teaching staff
 - Send email to individual instructors only to schedule appointments
Instructor Information

- Dr. Paul Fodor
 New Computer Science Building room 214
- Office hours: Tuesdays 11:30AM-1:00PM and Thursdays 2:30PM-4:00PM
 I am also available by appointment
- Email: paul (dot) fodor (at) stonybrook (dot) edu
 Please include “CSE 215” in the email subject and your name in your email correspondence
Textbook

- Discrete Mathematics: Introduction to Mathematical Reasoning
 Author: Susanna S. Epp
 Publisher: Brooks Cole; 1st edition (2011)
 ISBN-10: 0495826170
What is Computer Science?

- Why do we study mathematics and problem solving in a major course in Computer Science?
 - Computer Science is NOT computer programming - although programming is part of it.
 - Computer Science is a **mathematical science** we study the capabilities and limitations of computers and how people can use them effectively.
 - Computer programming requires that the exact sequence of steps to perform a task must be specified completely and precisely
 - difficult and requires careful reasoning about **abstract entities**
 - **Mathematics has developed over thousands of years as a method of abstract reasoning.**
Why Isn't CS “Just Programming”?

- Programs of only a few hundred lines are easy for one person to build with little training.

- BUT:
 - Real-world software systems are **large**
 - Developing and understanding such complicated objects requires mental and mathematical discipline.
 - Real-world software systems must be **reliable**
 - They control economies, airplanes, nuclear weapons and your car
 - **Systematic** discipline is necessary to avoid errors
 - Mathematics provides the disciplined and systematic language to reason about such systems.
Important Dates

- Midterm exam 1: Thursday, 3/03/2016, 4:00PM - 5:20PM, Engineering 143.
- Midterm exam 2: Thursday, 4/14/2016, 4:00PM - 5:20PM, Engineering 143.
- Final exam: Monday, May 16, 2016, 2:15PM - 4:15PM, in Engineering 143.
 - http://www.stonybrook.edu/registrar/finals.shtml
- The exams will be like what we solve in the class!
Coursework

• Grading Schema
 • Homework and class quizzes = 25%
 • Class quizzes
 • Homework assignments
 • Midterm exams (2) = 40% (20% each)
 • Final exam = 35%
Regrading of Homework/Exams

- Please meet with a TA or the instructor and arrange for regrading.
- You have one week from the day grades are posted or mailed or announced.
- Late requests will not be entertained.
Academic Integrity

- You can discuss general assignment concepts with other students: explaining how to use systems or tools and helping others with high-level design issues

- You **MAY NOT share** assignments, source code or other answers by copying, retyping, looking at, or supplying a file
 - Assignments are subject to manual and automated similarity checking (We do check! and our tools for doing this are much better than cheaters think)

- If you cheat, you will be brought up on academic dishonesty charges - we follow the university policy:
 - http://www.stonybrook.edu/uaa/academicjudiciary
Disability

- If you have a physical, psychological, medical or learning disability, contact the DSS office at Room 128 ECC. Phone 632-6748/TDD
- If you are planning to take an exam at DSS office, you need to tell me ahead of time for every exam.
- All documentation of disability is confidential.
Catastrophic events

- Major illness, death in family, …
- Formulate a plan (with your CEAS academic advisor) to get back on track
- Advice
 - Once you start running late, it’s really hard to catch up
What do you need to get started?

- Blackboard account
 - http://blackboard.stonybrook.edu
- Get the textbook.
Mathematically Speaking:

Variables

- Is there a number with the following property: doubling it and adding 3 gives the same result as squaring it?
 - In this sentence you can introduce a variable to replace the potentially ambiguous word “it”: Is there a number x with the property that $2x + 3 = x^2$?
 - A variable is a temporary name until we can find the possible value(s)
- No matter what number might be chosen, if it is greater than 2, then its square is greater than 4.
 - A variable is a temporary name to the (arbitrary) number you might choose enables you to maintain the generality of the statement: No matter what number n might be chosen, if n is greater than 2, then n^2 is greater than 4.
Some Important Kinds of Mathematical Statements

- Universal conditional statement: For all animals a, if a is a dog, then a is a mammal.
- Universal existential statement: Every real number has an additive inverse.
- Existential universal statement: There is a positive integer that is less than or equal to every positive integer.
Sets

- Introduced in 1879 by Georg Cantor (1845–1918).
- A set is, intuitively, a collection of elements.

Set-Roster Notation:
- Let \(A = \{1, 2, 3\} \), \(B = \{3, 1, 2\} \), and \(C = \{1, 1, 2, 3, 3, 3\} \).
 - What are the elements of \(A \), \(B \), and \(C \)?
 - How are \(A \), \(B \), and \(C \) related?

Set-Builder Notation:
\[
\{ x \in \mathbb{R} \mid -2 < x < 5 \}
\]

- Subset: is a basic relation between sets: \(\{2\} \subseteq \{1, 2, 3\} \)
Cartesian product

- Example: $\mathbb{R} \times \mathbb{R}$ is the set of all ordered pairs (x, y) where both x and y are real numbers.

- Cartesian plane:
Relations

- The notation $x R y$ as a shorthand for the sentence “x is related to y”, for example: $1 < 2$
- From relations to sets: $x R y$ means that $(x, y) \in R$
- Arrow Diagrams of Relations:
Functions

- Definition

A **function** F from a set A to a set B is a relation with domain A and co-domain B that satisfies the following two properties:

1. For every element x in A, there is an element y in B such that $(x, y) \in F$.
2. For all elements x in A and y and z in B,

 \[
 \text{if } (x, y) \in F \text{ and } (x, z) \in F, \text{ then } y = z.
 \]

Example: The **successor function** g from \mathbb{Z} to \mathbb{Z} is defined by the formula $g(n) = n + 1$
Please

• Please be on time
• Please show respect for your classmates
• Please turn off (or use vibrate for) your cellphones

…

• On-topic questions are welcome
Welcome and Enjoy!