
1

Objects and Classes
CSE 114: Introduction to Object-Oriented Programming

Paul Fodor

Stony Brook University

http://www.cs.stonybrook.edu/~cse114

http://www.cs.stonybrook.edu/~cse114

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Contents
 Motivating Problems: Complex objects and GUIs

 Classes, objects, object state and behavior

 Object-oriented Design

 Constructors

 Accessing fields and methods

 Static vs. Non-static
 Static Variables and Methods

 Default values for Class Fields

 Primitive Data Types vs. Object Types,Effect on equality and Copying
 Garbage Collection

 Example classes in the Java API: the Date and the Random classes

 Visibility Modifiers and Accessor/Mutator Methods

 Arrays of Objects

2

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Motivating Problems
 Complex objects (like in relational DBs):

 several tuples of the same relation schema

 Example: Person(firstName, lastName, Address, dateOfBirth)

 Develop a Graphical User Interface (GUI)

 need of multiple object instances of classes

 2 buttons

 input fields

 2 check boxes

 2 radio/choice boxes

 lists
3

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Object-Oriented Programming Concepts

An object represents an entity in the real world

that can be distinctly identified from a class of

objects with common properties.

An object has a unique state and behavior:

the state of an object consists of a set of data

fields (properties) with their current values

 the behavior of an object is defined by a set of instance

methods

4

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Classes
 In Java classes are templates that define objects of the

same type

A Java class uses:

non-static/instance variables to define data fields

non-static/instance methods to define behaviors

A class provides a special type of methods called

constructors which are invoked to construct objects

from the class

5

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
6

 class Circle {

/** The radius of this circle */

private double radius = 1.0;

/** Construct a circle object */

public Circle() {

}

/** Construct a circle object */

public Circle(double newRadius) {

 radius = newRadius;

}

/** Return the area of this circle */
public double getArea() {

 return radius * radius * 3.14159;

}

 }

Data field

Method

Constructors

Classes

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
7

 public class TestCircle {

public static void main(String[] args) {

 Circle c1 = new Circle();

 Circle c2 = new Circle(5.0);

 System.out.println(c1.getArea());

 System.out.println(c2.getArea());

}

 }

Classes

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
8

Object-oriented Design

Circle

radius: double

Circle()

Circle(newRadius: double)

getArea(): double

circle1: Circle

radius = 1.0

Class name

 Data fields

 Constructors and

methods

circle2: Circle

radius = 25

circle3: Circle

radius = 125

UML Class

Diagram

UML notation

for objects

• The Unified Modeling Language (UML) is a general-purpose
modeling language in the field of software engineering that is
intended to provide a standard way to visualize the design of a
object-oriented system.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Constructors
 Constructors must have the same name as the class itself.

 Constructors do not have a return type—not even void.

 Constructors are invoked using the new operator when an

object is created – they initialize objects to reference

variables:
 ClassName o = new ClassName();

 Example:

 Circle myCircle = new Circle(5.0);

 A class may be declared without constructors: a no-arg default

constructor with an empty body is implicitly declared in

the class

9

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Accessing fields and methods
Referencing the object’s data:

 objectRefVar.data

 Example: myCircle.radius

 Invoking the object’s method:

objectRefVar.methodName(arguments)

 Example: myCircle.getArea()

10

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
11

Circle myCircle = new Circle(5.0);

SCircle yourCircle = new Circle();

yourCircle.radius = 100;

Declare myCircle

null valuemyCircle

Using classes

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
12

Using classes

Circle myCircle = new Circle(5.0);

Circle yourCircle = new Circle();

yourCircle.radius = 100;

: Circle

radius: 5.0

null valuemyCircle

Create a circle

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
13

Using classes

Circle myCircle = new Circle(5.0);

Circle yourCircle = new Circle();

yourCircle.radius = 100;

: Circle

radius: 5.0

reference valuemyCircle

Assign object reference

to myCircle

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
14

Using classes

Circle myCircle = new Circle(5.0);

Circle yourCircle = new Circle();

yourCircle.radius = 100;

: Circle

radius: 5.0

reference valuemyCircle

null valueyourCircle

Declare yourCircle

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
15

Using classes

Circle myCircle = new Circle(5.0);

Circle yourCircle = new Circle();

yourCircle.radius = 100;

: Circle

radius: 5.0

reference valuemyCircle

null valueyourCircle

: Circle

radius: 1.0

Create a new

Circle object

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
16

Using classes

Circle myCircle = new Circle(5.0);

Circle yourCircle = new Circle();

yourCircle.radius = 100;

: Circle

radius: 5.0

reference valuemyCircle

reference valueyourCircle

: Circle

radius: 1.0

Assign object reference

to yourCircle

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
17

Using classes

Circle myCircle = new Circle(5.0);

Circle yourCircle = new Circle();

yourCircle.radius = 100;

: Circle

radius: 5.0

reference valuemyCircle

reference valueyourCircle

: Circle

radius: 100.0

Change radius in

yourCircle

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Static vs. Non-static
 Static variables and constants:

 global variables for the entire class: for all objects

instances of this class

 static int count = 0;

 static final double PI = 3.141592;

Non-static/instance variables are date fields of objects:

 System.out.println(myCircle.radius);

 System.out.println(yourCircle.radius);

18

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
19

Static Variables and

Methods

Circle

-radius: double

-numberOfObjects: int

+getNumberOfObjects(): int

+getArea(): double

1 radius

circle1

radius = 1

numberOfObjects = 2

instantiate

instantiate

Memory

2

5 radius

numberOfObjects

UML Notation:

 +: public variables or methods

 underline: static variables or methods

circle2

radius = 5

numberOfObjects = 2

After two Circle

objects were created,

numberOfObjects

is 2.

• Static variables are shared by all the instances of

the class:

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Static vs. Non-static methods
 Static methods:

 Shared by all the instances of the class - not tied to a

specific object:

 double d = Math.pow(3, 2);

Non-static/instance methods must be invoked from an object

instance of the class:

 double d1 = myCircle.getArea();

 double d2 = yourCircle.getArea();

20

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
21

No Default values for local variables

public class Test {

 public static void main(String[] args) {

 int x; // x has no default value

 String y; // y has no default value

 System.out.println("x is " + x);

 System.out.println("y is " + y);

 }

}

Compilation errors: the variables are not initialized

Java assigns no default value to a
local variable inside a method.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
22

Default values for Class Fields
 Data fields have default values
 Example:

public class Student {

 String name; // name has default value null

 int age; // age has default value 0

 boolean isScienceMajor; // isScienceMajor has default value false

 char gender; // c has default value '\u0000'

}

public class Test {

 public static void main(String[] args) {

 Student student = new Student();

 System.out.println("name? " + student.name); // null

 System.out.println("age? " + student.age); // 0

 System.out.println("isScienceMajor? " + student.isScienceMajor);

 // false

 System.out.println("gender? " + student.gender); //

 }

}

Note: If a data field of a reference type does not reference any object,the data field holds a special literal value: null.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
23

Differences between Variables of

Primitive Data Types and Object Types

1 Primitive type int i = 1 i

Object type Circle c c reference

Created using new Circle()

c: Circle

radius = 1

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
24

Copying Variables of Primitive

Data Types and Object Types

i

Primitive type assignment i = j

Before:

 1

 j

2

i

After:

 2

 j

2

c1

Object type assignment c1 = c2

Before:

 c2

c1

After:

c2

c1: Circle

radius = 5

c2: Circle

radius = 9

c1: Circle

radius = 5

c2: Circle

radius = 9

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Garbage Collection

 The object previously referenced by c1 is no

longer referenced, it is called garbage

Garbage is automatically collected by the JVM,

a process called garbage collection

In older languages, like C and C++, one had to

explicitly deallocate/delete unused data/objects

25

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
26

Example classes in Java API: the Date class

Java provides a system-independent encapsulation of date and time
in the java.util.Date class.

The toString method returns the date and time as a string

java.util.Date

+Date()

+Date(elapseTime: long)

+toString(): String

+getTime(): long

+setTime(elapseTime: long): void

Constructs a Date object for the current time.

Constructs a Date object for a given time in
milliseconds elapsed since January 1, 1970, GMT.

Returns a string representing the date and time.

Returns the number of milliseconds since January 1,
1970, GMT.

Sets a new elapse time in the object.

The + sign indicates
public modifer

java.util.Date date = new java.util.Date();

System.out.println(date.toString());

January 1, 1970, GMT is called

the Unix time (or Unix epoch time)

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
27

The Random class
java.util.Random

java.util.Random

+Random()

+Random(seed: long)

+nextInt(): int

+nextInt(n: int): int

+nextLong(): long

+nextDouble(): double

+nextFloat(): float

+nextBoolean(): boolean

Constructs a Random object with the current time as its seed.

Constructs a Random object with a specified seed.

Returns a random int value.

Returns a random int value between 0 and n (exclusive).

Returns a random long value.

Returns a random double value between 0.0 and 1.0 (exclusive).

Returns a random float value between 0.0F and 1.0F (exclusive).

Returns a random boolean value.

Random random1 = new Random(3);

for (int i = 0; i < 10; i++)

 System.out.print(random1.nextInt(1000) + " ");

734 660 210 581 128 202 549 564 459 961

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Visibility Modifiers and

Accessor/Mutator Methods
public (+ in UML) the class, data, or method is visible to any

class in any package.

By default (no modifier), the class, variable, or method can be

accessed by any class in the same package.

private (- in UML) the data or methods can be accessed only

by the declaring class - To protect data!
getField (called accessors) and setField (called mutators) methods

are used to read and modify private properties.
if the field is boolean, we use isField() for accessor

28

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
29

UML: Data Field Encapsulation

 Circle

-radius: double

-numberOfObjects: int

+Circle()

+Circle(radius: double)

+getRadius(): double

+setRadius(radius: double): void

+getNumberOfObject(): int

+getArea(): double

The radius of this circle (default: 1.0).

The number of circle objects created.

Constructs a default circle object.

Constructs a circle object with the specified radius.

Returns the radius of this circle.

Sets a new radius for this circle.

Returns the number of circle objects created.

Returns the area of this circle.

Data fields are

private!

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
30

• public – unrestricted access

• The default modifier (no modifier) restricts access to within a package

• The private modifier restricts access to within a class

public class C1 {

 public int x;

 int y;

 private int z;

 public void m1() {

 }

 void m2() {

 }

 private void m3() {

 }

}

public class C2 {

 void aMethod() {

 C1 o = new C1();

 can access o.x;

 can access o.y;

 cannot access o.z;

 can invoke o.m1();

 can invoke o.m2();

cannot invoke o.m3();

 }

}

package p1; package p2;

public class C3 {

 void aMethod() {

 p1.C1 o = new p1.C1();

 can access o.x;

 cannot access o.y;

 cannot access o.z;

 can invoke o.m1();

 cannot invoke o.m2();

 cannot invoke o.m3();

 }

}

class C1 {

 ...

}

public class C2 {

 can access C1

}

package p1; package p2;

public class C3 {

 cannot access C1;

 can access C2;

}

Packages and modifiers

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
31

Arrays of Objects
An array of objects is an array of reference variables

(like the multi-dimensional arrays seen before)
Circle[] circleArray = new Circle[10];

circleArray[0] = new Circle();

circleArray[1] = new Circle(5);

…

reference

Circle object 0 circleArray[0]

…

circleArray

circleArray[1]

circleArray[9]

Circle object 9

Circle object 1

	Slide 1: Objects and Classes
	Slide 2: Contents
	Slide 3: Motivating Problems
	Slide 4: Object-Oriented Programming Concepts
	Slide 5: Classes
	Slide 6: Classes
	Slide 7: Classes
	Slide 8: Object-oriented Design
	Slide 9: Constructors
	Slide 10: Accessing fields and methods
	Slide 11: Using classes
	Slide 12: Using classes
	Slide 13: Using classes
	Slide 14: Using classes
	Slide 15: Using classes
	Slide 16: Using classes
	Slide 17: Using classes
	Slide 18: Static vs. Non-static
	Slide 19: Static Variables and Methods
	Slide 20: Static vs. Non-static methods
	Slide 21: No Default values for local variables
	Slide 22: Default values for Class Fields
	Slide 23: Differences between Variables of Primitive Data Types and Object Types
	Slide 24: Copying Variables of Primitive Data Types and Object Types
	Slide 25: Garbage Collection
	Slide 26: Example classes in Java API: the Date class
	Slide 27: The Random class
	Slide 28: Visibility Modifiers and Accessor/Mutator Methods
	Slide 29: UML: Data Field Encapsulation
	Slide 30: Packages and modifiers
	Slide 31: Arrays of Objects

