Enumerated lypes

CSE 114: Introduction to Object-Oriented Programming
Paul Fodor
Stony Brook University

http: / / WWW. cs.stonybrook.edu/ ~csel 14

http://www.cs.stonybrook.edu/~cse114

" Enumerated Types

® An enumerated type defines a list of enumerated values

® Each value is an identifier
enum MyFavoriteColor {RED, BLUE, GREEN, YELLOW};

A value of an enumerated type is like a constant and so, by

convention, is spelled with all uppercase letters
Also, by convention, an enumerated type is named like a

class with first letter of each word capitalized

® Once a type is defined, you can declare a variable of that type:

MyFavoriteColor color;

The variable color can hold one of the values defined in the enumerated type
MyFavoriteColor or null, but nothing else

* Using enumerated values (e.g.,, Color . BLUE, Day . MONDAY) rather

than literal integer values (e.g., 0, 1, and so on) can make program easier

to read and maintain

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

/

" Enumerated Types

® The enumerated values can be accessed using the syntax

EnumeratedTypeName.valueName

® For example, the following statement assigns enumerated value
BLUE to variable color:

color = MyFavoriteColor.BLUE;

® An enumerated type is treated as a special class, so an
enumerated type variable is therefore a reference variable
® An enumerated type is a subtype of the Object class (inherits all

the methods in the Object class) and the Comparable interface
(has the compareTo method in the Comparable interface)

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook) /

" Enumerated Types

e The following methods are defined for any enumerated object:
public String name() ;

Returns a name of the value for the object

public int ordinal() ;
Returns the ordinal value associated with the enumerated value
The first value in an enumerated type has an ordinal value of 0, the second

has an ordinal value of 1, the third one 3, and so on

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

//fublic class EnumeratedTypeDemo {
static enum Day {SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY,

}

(-,

FRIDAY, SATURDAY};
Day dayl = Day.FRIDAY;
Day day2 = Day.THURSDAY;

System.out.println("dayl's
System.out.println("day2's

System.out.println("dayl's
System.out.println("day2's

name is
name is

ordinal
ordinal

public static void main(String[] args) {

" + dayl.name()) ;
" + day2.name()) ;

is " + dayl.ordinal());
is " + day2.ordinal());

System.out.println("dayl.equals (day2) returns " +

dayl.equals (day2)) ;

System.out.println("dayl.toString() returns " +

dayl. toString()) ;

System.out.println("dayl.compareTo (day2) returns " +

dayl.compareTo (day2)) ;

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

™~

7 enum Day {SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY,

}

-,

FRIDAY,

SATURDAY} ;

public class EnumeratedTypeDemo {
public static void main(String[] args) {

Day dayl = Day.FRIDAY;
Day day2 = Day.THURSDAY;

System.
System.

System.
System.

System.
.equals (day2)) ;

dayl

System.

dayl.
System.
.compareTo (day2)) ;

dayl

out.println("dayl's name is
out.println("day2's name 1is

out.println("dayl's ordinal
out.println("day2's ordinal

" + dayl.name()) ;
" + day2.name()) ;

is " + dayl.ordinal());
is " + day2.ordinal());

out.println("dayl.equals (day2) returns " +

out.println("dayl.toString() returns " +

toString()) ;

out.println("dayl.compareTo (day2) returns " +

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

™~

//dayl's
day2's
dayl's
day2's

name 1s
name 1s
ordinal
ordinal

FRIDAY
THURSDAY
is 5

is 4

dayl.equals (day2) returns false
dayl. toString() returns FRIDAY
dayl.compareTo (day2) returns 1

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

" Enumerated Types

® An enumerated type can be defined inside a class or standalone
® After the first program is compiled, a class named
EnumeratedTypeDemoS$SDay.class is created

When an enumerated type is declared inside a class, the type must be
declared as a static member of the class and cannot be declared
inside a method

static may be omitted

® In the latter case, the type is treated as a standalone class, so
after the program is compiled, a class named Day . class is

created

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook) /

" Using if or switch Statements
with an Enumerated Variable

e Often your program needs to perform a specific

action depending on the value

® For example, if the value is Day . MONDAY, play soccer; if the
value is Day . TUESDAY, take piano lesson, and so on
if (day.equals (Day.MONDAY)) {
// process Monday
} else 1f (day.equals (Day.TUESDAY)) {
// process Tuesday
} else

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

™~

" Using if or switch Statements
with an Enumerated Variable

switch (day) {
case MONDAY:
// process Monday
break;
case TUESDAY:
// process Tuesday
break;

}

® In the switch statement, the case label is an unqualified

enumerated value (e.g., MONDAY, but not Day . MONDAY).

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

™~

" Processing Enumerated Values
Using a Foreach Loop

® Each enumerated type has a static method values ()

that returns all enumerated values for the type in an
array:

Day[] days = Day.values();

for (int i = 0; i1 < days.length; i++)
System.out.println(days[i]) ;

// is equivalent with:

for (Day day: days)
System.out.println (day) ;

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook) /

" Enumerated Types with Data Fields, '
Constructors, and Methods

public enum TrafficLight {
RED ("Please stop"), GREEN ("Please go"),
YELLOW ("Please caution") ;

private String description;
private TrafficLight (String description) ({
this.description = description;

}
public String getDescription() {

return description;

}
};
® The constructor is invoked whenever an enumerated value is accessed

® The enumerated value’s argument is passed to the constructor, which is

then assigned to description

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook) /

" Enumerated Types with Data Fields, '
Constructors, and Methods

public class TestTrafficLight {
public static void main(String[] args) {
TrafficLight light = TrafficLight.RED;
System.out.println(light.getDescription()) ;

}
}

® An enumerated value TrafficLight.RED is assigned to variable
light

® Accessing TrafficLight.RED causes the JVM to invoke the constructor
with argument “please stop”

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook) /

