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Motivation
 Suppose that you need to print a string (e.g., 

"Welcome to Java!") a user-entered times N:
Scanner input = new Scanner(System.in);

System.out.print("Enter N: ");

int N = input.nextInt();

 System.out.println("Welcome to Java!");

 ...

 System.out.println("Welcome to Java!");

N?
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Motivation
Without iteration (or recursion) this would be 

impractical

We do not know N, when we are about to write the 

program

So, we need a cascade of if statements to check all 

cases for the value of N.
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Without iteration or recursion
Scanner input = new Scanner(System.in);

System.out.print("Enter N: ");

int N = input.nextInt();

if(N == 1) 

System.out.println("Welcome to Java!");

else if(N == 2){

System.out.println("Welcome to Java!");

System.out.println("Welcome to Java!");

}else if(N == 3){

System.out.println("Welcome to Java!");

System.out.println("Welcome to Java!");

System.out.println("Welcome to Java!");

}…  

5

Inefficient coding (repetition)!
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Loops Solution
While loop:
  Scanner input = new Scanner(System.in);

  System.out.print("Enter N: ");

  int N = input.nextInt();

int count = 0;

while (count < N) {

  System.out.println("Welcome to Java");

  count++;

}
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Motivation Example 2
How would we write code to print N! (factorial), 

where N is a number entered by the user?

7
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Without iteration or recursion
Scanner input = new Scanner(System.in);

System.out.print("Enter N: ");

int N = input.nextInt();

int factorial = 1;

if ((N == 1) || (N == 0)) factorial = 1;

else if (N == 2) factorial = 2 * 1;

else if (N == 3) factorial = 3 * 2 * 1;

else if (N == 4) factorial = 4 * 3 * 2 * 1;

else if (N == 5) factorial = 5 * 4 * 3 * 2 * 1;

…

System.out.println(factorial);

    Inefficient coding (repetition)!
8
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With iteration/loops
Scanner input = new Scanner(System.in);

System.out.print("Enter N: ");

int N = input.nextInt();

int factorial = 1;

int i = 1;

while(i <= N)

     factorial *= i++;

System.out.println(factorial);

    

9
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What is Iteration?
Repeating a set of instructions a specified number 

of times or until a specific result is achieved
 How do we repeat steps?

 Imagine 3 instructions A, B, & C:

Instruction A

Instruction B

Instruction C can be conditional jump to A (meaning go back to A)

 Iteration might result in:

Execute A

Execute B

Execute C

Execute A

Execute B

...10
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Java and iteration
We have 3 types of iterative statements

a while loop

a do … while loop

a for loop

All 3 can be used to do similar things

Which one should you use?

a matter of individual preference/convenience

Note: When we will learn arrays, we will see a 

4th kind of loop: for-each loop
11
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while Loop Flow Chart
while (loop-continuation-condition) {

  // loop-body;

  Statement(s);

}

int count = 0;

while (count < 100) {

  System.out.println("Welcome to Java!");

  count++;

}

 

Loop 

Continuation  

Condition? 

true 

Statement(s) 

(loop body) 

false  

(count < 100)? 

true 

System.out.println("Welcome to Java!"); 

count++; 

false 

(A) (B) 

count = 0; 



(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
13

Trace while Loop

int count = 0;

while (count < 2) {

  System.out.println("Welcome to Java!");

  count++;

}

Initialize count
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int count = 0;

while (count < 2) {

  System.out.println("Welcome to Java!");

  count++;

}

14

Trace while Loop

(count < 2) is true
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int count = 0;

while (count < 2) {

  System.out.println("Welcome to Java!");

  count++;

}

  Welcome to Java!

15

Trace while Loop

Print Welcome to Java
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int count = 0;

while (count < 2) {

  System.out.println("Welcome to Java!");

  count++;

}

  Welcome to Java!

16

Trace while Loop

Increase count by 1

count is 1 now
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int count = 0;

while (count < 2) {

  System.out.println("Welcome to Java!");

  count++;

}

  Welcome to Java!

17

Trace while Loop

(count < 2) is still true since count 

is 1
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int count = 0;

while (count < 2) {

  System.out.println("Welcome to Java!");

  count++;

}

  Welcome to Java!

  Welcome to Java!

18

Trace while Loop

Print Welcome to Java
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int count = 0;

while (count < 2) {

  System.out.println("Welcome to Java!");

  count++;

}

  Welcome to Java!

  Welcome to Java!

19

Trace while Loop

Increase count by 1

count is 2 now
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int count = 0;

while (count < 2) {

  System.out.println("Welcome to Java!");

  count++;

}

  Welcome to Java!

  Welcome to Java!

20

Trace while Loop

(count < 2) is false since count is 2 

now
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Trace while Loop

The loop exits. Execute the next 

statement after the loop.int count = 0;

while (count < 2) {

  System.out.println("Welcome to Java!");

  count++;

}

  Welcome to Java!

  Welcome to Java!
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Caution: don't use equality for reals
 Don’t use floating-point values for equality checking in a loop control - 
because floating-point values are approximations for some values

System.out.print(1 - 0.1 - 0.1 - 0.1);  
    prints 0.7000000000000001

 Loop example: the following code for computing 1 + 0.9 + 0.8 + ... + 0.1:
double item = 1, sum = 0;

while (item != 0) { // No guarantee item will be 0 or 0.0

  sum += item;      // change the condition: item > 0

  item -= 0.1;

}

System.out.printf("%.1f",sum);

It is actually an infinite loop! 
Variable item starts with 1 and is reduced by 0.1 every time the loop body is executed
 The loop should terminate when item becomes 0

However, there is no guarantee that item will be exactly 0, because the floating-point arithmetic is 
approximated

So, it continues running forever
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do-while Loop
do {

  // Loop body;

  Statement(s);

} while (loop-continuation-condition);

 

Loop 

Continuation  

Condition? 

true 

Statement(s) 

(loop body) 

false 
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Why use do … while?
 For when you have a loop body that must execute at least once.

 Example: a program menu

24

Scanner in = new Scanner(System.in);

String selection;

int counter = 0;

do{

 System.out.println("Choose a Menu Option:");

 System.out.println("P) Print Counter");

 System.out.println("Q) Quit");

 System.out.print("ENTER: ");

 selection = in.nextLine();

 if (selection.toUpperCase().equals("P"))

  System.out.println("Counter: " + counter++);

}while(!selection.toUpperCase().equals("Q"));

System.out.println("Goodbye!");
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 An Example Session
Choose a Menu Option:

P) Print Counter

Q) Quit

ENTER: P

Counter: 0

Choose a Menu Option:

P) Print Counter

Q) Quit

ENTER: A

Choose a Menu Option:

P) Print Counter

Q) Quit

ENTER: P

Counter: 1

Choose a Menu Option:

P) Print Counter

Q) Quit

ENTER: Q

Goodbye!
25



(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
26

for Loops
for (initial-action; 

  loop-continuation-condition; 

  action-after-each-iteration) {

   // loop body;

   Statement(s);

}

int i;

for (i = 0; i < N; i++)

  System.out.println(

     "Welcome to Java!"); 

 

Loop 

Continuation  

Condition? 

true 

Statement(s) 

(loop body) 

false 

(A) 

Action-After-Each-Iteration 

Initial-Action 

 

(i < 100)? 

true 

   System.out.println( 

      "Welcome to Java"); 

false 

(B) 

i++ 

i = 0 
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for loops and counting

for loops are popular for counting loops

through the indices of a string

through the indices of an array (later)

through iterations of an algorithm

Good for algorithms that require a known 

number of iterations

counter-controlled loops

27
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int i;

for (i = 0; i < 2; i++) {  

  System.out.println(

     "Welcome to Java!"); 

}

28

Trace for Loop

Declare i



(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int i;

for (i = 0; i < 2; i++) {  

  System.out.println(

     "Welcome to Java!"); 

}

29

Trace for Loop

Execute initializer

i is now 0
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int i;

for (i = 0; i < 2; i++) {  

  System.out.println(

     "Welcome to Java!"); 

}

30

Trace for Loop

(i < 2) is true 

since i is 0
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Trace for Loop

Print Welcome to Java

int i;

for (i = 0; i < 2; i++) {  

  System.out.println(

     "Welcome to Java!"); 

}

 Welcome to Java!
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int i;

for (i = 0; i < 2; i++) {  

  System.out.println(

     "Welcome to Java!"); 

}

 Welcome to Java!

32

Trace for Loop

Execute adjustment statement 

i now is 1
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Trace for Loop

(i < 2) is still true  

since i is 1int i;

for (i = 0; i < 2; i++) {  

  System.out.println(

     "Welcome to Java!"); 

}

 Welcome to Java!
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Trace for Loop

Print Welcome to Java

int i;

for (i = 0; i < 2; i++) {  

  System.out.println(

     "Welcome to Java!"); 

}

 Welcome to Java!

 Welcome to Java!
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int i;

for (i = 0; i < 2; i++) {  

  System.out.println(

     "Welcome to Java!"); 

}

 Welcome to Java!

 Welcome to Java!

35

Trace for Loop

Execute adjustment statement 

i now is 2
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Trace for Loop

(i < 2) is false  

since i is 2int i;

for (i = 0; i < 2; i++) {  

  System.out.println(

     "Welcome to Java!"); 

}

 Welcome to Java!

 Welcome to Java!
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int i;

for (i = 0; i < 2; i++) {  

  System.out.println(

     "Welcome to Java!"); 

}

 Welcome to Java!

 Welcome to Java!

37

Trace for Loop

Exit the loop. Execute the next 

statement after the loop
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for loops
The initial-action in a for loop can be a list of zero or more 

comma-separated expressions.

The action-after-each-iteration in a for loop can be a list of 

zero or more comma-separated statements. 

for (int i = 0, j = 0; (i + j < 10); i++, j++){

  // Do something

}

The loop body can be the no-op statement:

for (int i = 0; i < 100; System.out.println(i++)) ;
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Caution ; 

Adding a semicolon at the end of the for 

clause before the loop body is a common 

mistake:

for (int i=0; i<10; i++) ;

{

  System.out.println("i is " + i);

}      // i does not exist anymore

       // it is a syntax error
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Adding a semicolon at the end of the while 

clause before the loop body is a common 

mistake:

40

int i=0; 

while (i < 10);

{

  System.out.println("i is " + i);

  i++;

}

   this will cause an infinite loop

Logic Error

Same Caution ; for while
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Infinite loops
If the loop-continuation-condition in a for loop is omitted, 

it is implicitly true. 

 for ( ; ; ) { 
  // Do something 

} 

  
(a)  

Equivalent while (true) { 

  // Do something 

}  

 

  
(b)  
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Which Loop to Use?
while, do-while, and for loops are expressively equivalent

 for (initial-action;  
     loop-continuation-condition;  

     action-after-each-iteration) { 

  // Loop body; 

} 

 

 
(a)  

Equivalent 

(b)  

initial-action;  

while (loop-continuation-condition) {  

  // Loop body; 

  action-after-each-iteration; 

} 

 

  

 while (loop-continuation-condition) { 
  // Loop body 

} 

 

  
(a)  

Equivalent 

(b)  

for ( ; loop-continuation-condition; ) { 

  // Loop body 

} 
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Caution: Loop variables

int sum = 0;

for (int j=1; j<=4; j++){

sum = sum + j;

j++;

}

43

Be careful not to 

double the update of 

your counting 

variable
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Sums
int sum = 0;

for (int i=1; i<=4; i++)

 sum = sum + i;

sum  i

0   1

1   2

3   3

6   4

10  5

44
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Product
int product = 1;

for (int i=1; i<=4; i++)

 product = product * i;

45
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Nested Loops
for (int i = 1; i <= 10; i++){

 for (int j = 1; j <= 10; j++){

  int product = i*j;

  System.out.print(product + " ");

 }

 System.out.println();

}

46

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

...

10 20 30 40 50 60 70 80 90 100
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Local Variables and Blocks
 A variable declared inside a block is known only inside 

that block

 it is local to the block, therefore it is called a local variable

 when the block finishes executing, local variables disappear

 references to it outside the block cause a compiler error

That includes Init field of for loops:

  for(int i=0; i < 10; i++){

     ...

   }

   System.out.print(i); 

 // Compile Error: i is garbage collected 
47
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Java Good programming Practice

Do not declare variables inside loops it takes time 

during execution to create and destroy variables, 

so it is better to do it just once for loops)

48

for(int i=1; i<=10; i++) {
  double x = 10;
  //...
}

double x;
for(int i=1; i<=10; i++) {
  x = 10;
  //...
}
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Keywords break and continue
You can also use break in a loop to immediately 

terminate the loop:
public static void main(String[] args) { 

  int sum = 0;

  int number = 0;

  while (number < 20) {

    number++;

   sum += number;

    if (sum >= 100) // increments until the sum is 

  break;    // greater than 100

 }

 System.out.println("The number is " + number);

 System.out.println("The sum is " + sum);

}   The number is 14

   The sum is 105
49
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Keywords break and continue
You can also use continue in a loop to end the 

current iteration and program control goes to the 

end of the loop body (and continues the loop):
public static void main(String[] args) { 

  int sum = 0;

  int number = 0;

  while (number < 20) { // adds integers from 1 to 20 

    number++;            // except 10 and 11 to sum

   if (number ==10 || number == 11)

  continue;

    sum += number; 

  }

  System.out.println("The number is " + number);

  System.out.println("The sum is " + sum);

}    The number is 20 

   The sum is 189
50
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