
1

Loops
CSE 114: Introduction to Object-Oriented Programming

Paul Fodor

Stony Brook University

http://www.cs.stonybrook.edu/~cse114

http://www.cs.stonybrook.edu/~cse114

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Contents
 Motivation for loops

 What is Iteration?

 Java and iteration

while loops

do … while loops

 for loops

 Caution: don't use equality for reals

 Common algorithms with loops

 Nested Loops

 Local Variables and Blocks

 Keywords break and continue
2

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
3

Motivation
 Suppose that you need to print a string (e.g.,

"Welcome to Java!") a user-entered times N:
Scanner input = new Scanner(System.in);

System.out.print("Enter N: ");

int N = input.nextInt();

 System.out.println("Welcome to Java!");

 ...

 System.out.println("Welcome to Java!");

N?

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
4

Motivation
Without iteration (or recursion) this would be

impractical

We do not know N, when we are about to write the

program

So, we need a cascade of if statements to check all

cases for the value of N.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Without iteration or recursion
Scanner input = new Scanner(System.in);

System.out.print("Enter N: ");

int N = input.nextInt();

if(N == 1)

System.out.println("Welcome to Java!");

else if(N == 2){

System.out.println("Welcome to Java!");

System.out.println("Welcome to Java!");

}else if(N == 3){

System.out.println("Welcome to Java!");

System.out.println("Welcome to Java!");

System.out.println("Welcome to Java!");

}…

5

Inefficient coding (repetition)!

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
6

Loops Solution
While loop:
 Scanner input = new Scanner(System.in);

 System.out.print("Enter N: ");

 int N = input.nextInt();

int count = 0;

while (count < N) {

 System.out.println("Welcome to Java");

 count++;

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Motivation Example 2
How would we write code to print N! (factorial),

where N is a number entered by the user?

7

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Without iteration or recursion
Scanner input = new Scanner(System.in);

System.out.print("Enter N: ");

int N = input.nextInt();

int factorial = 1;

if ((N == 1) || (N == 0)) factorial = 1;

else if (N == 2) factorial = 2 * 1;

else if (N == 3) factorial = 3 * 2 * 1;

else if (N == 4) factorial = 4 * 3 * 2 * 1;

else if (N == 5) factorial = 5 * 4 * 3 * 2 * 1;

…

System.out.println(factorial);

 Inefficient coding (repetition)!
8

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

With iteration/loops
Scanner input = new Scanner(System.in);

System.out.print("Enter N: ");

int N = input.nextInt();

int factorial = 1;

int i = 1;

while(i <= N)

 factorial *= i++;

System.out.println(factorial);

9

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

What is Iteration?
Repeating a set of instructions a specified number

of times or until a specific result is achieved
 How do we repeat steps?

 Imagine 3 instructions A, B, & C:

Instruction A

Instruction B

Instruction C can be conditional jump to A (meaning go back to A)

 Iteration might result in:

Execute A

Execute B

Execute C

Execute A

Execute B

...10

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Java and iteration
We have 3 types of iterative statements

a while loop

a do … while loop

a for loop

All 3 can be used to do similar things

Which one should you use?

a matter of individual preference/convenience

Note: When we will learn arrays, we will see a

4th kind of loop: for-each loop
11

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
12

while Loop Flow Chart
while (loop-continuation-condition) {

 // loop-body;

 Statement(s);

}

int count = 0;

while (count < 100) {

 System.out.println("Welcome to Java!");

 count++;

}

Loop

Continuation

Condition?

true

Statement(s)

(loop body)

false

(count < 100)?

true

System.out.println("Welcome to Java!");

count++;

false

(A) (B)

count = 0;

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
13

Trace while Loop

int count = 0;

while (count < 2) {

 System.out.println("Welcome to Java!");

 count++;

}

Initialize count

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int count = 0;

while (count < 2) {

 System.out.println("Welcome to Java!");

 count++;

}

14

Trace while Loop

(count < 2) is true

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int count = 0;

while (count < 2) {

 System.out.println("Welcome to Java!");

 count++;

}

 Welcome to Java!

15

Trace while Loop

Print Welcome to Java

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int count = 0;

while (count < 2) {

 System.out.println("Welcome to Java!");

 count++;

}

 Welcome to Java!

16

Trace while Loop

Increase count by 1

count is 1 now

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int count = 0;

while (count < 2) {

 System.out.println("Welcome to Java!");

 count++;

}

 Welcome to Java!

17

Trace while Loop

(count < 2) is still true since count

is 1

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int count = 0;

while (count < 2) {

 System.out.println("Welcome to Java!");

 count++;

}

 Welcome to Java!

 Welcome to Java!

18

Trace while Loop

Print Welcome to Java

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int count = 0;

while (count < 2) {

 System.out.println("Welcome to Java!");

 count++;

}

 Welcome to Java!

 Welcome to Java!

19

Trace while Loop

Increase count by 1

count is 2 now

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int count = 0;

while (count < 2) {

 System.out.println("Welcome to Java!");

 count++;

}

 Welcome to Java!

 Welcome to Java!

20

Trace while Loop

(count < 2) is false since count is 2

now

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
21

Trace while Loop

The loop exits. Execute the next

statement after the loop.int count = 0;

while (count < 2) {

 System.out.println("Welcome to Java!");

 count++;

}

 Welcome to Java!

 Welcome to Java!

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
22

Caution: don't use equality for reals
 Don’t use floating-point values for equality checking in a loop control -
because floating-point values are approximations for some values

System.out.print(1 - 0.1 - 0.1 - 0.1);
 prints 0.7000000000000001

 Loop example: the following code for computing 1 + 0.9 + 0.8 + ... + 0.1:
double item = 1, sum = 0;

while (item != 0) { // No guarantee item will be 0 or 0.0

 sum += item; // change the condition: item > 0

 item -= 0.1;

}

System.out.printf("%.1f",sum);

It is actually an infinite loop!
Variable item starts with 1 and is reduced by 0.1 every time the loop body is executed
 The loop should terminate when item becomes 0

However, there is no guarantee that item will be exactly 0, because the floating-point arithmetic is
approximated

So, it continues running forever

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
23

do-while Loop
do {

 // Loop body;

 Statement(s);

} while (loop-continuation-condition);

Loop

Continuation

Condition?

true

Statement(s)

(loop body)

false

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Why use do … while?
 For when you have a loop body that must execute at least once.

 Example: a program menu

24

Scanner in = new Scanner(System.in);

String selection;

int counter = 0;

do{

 System.out.println("Choose a Menu Option:");

 System.out.println("P) Print Counter");

 System.out.println("Q) Quit");

 System.out.print("ENTER: ");

 selection = in.nextLine();

 if (selection.toUpperCase().equals("P"))

 System.out.println("Counter: " + counter++);

}while(!selection.toUpperCase().equals("Q"));

System.out.println("Goodbye!");

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

 An Example Session
Choose a Menu Option:

P) Print Counter

Q) Quit

ENTER: P

Counter: 0

Choose a Menu Option:

P) Print Counter

Q) Quit

ENTER: A

Choose a Menu Option:

P) Print Counter

Q) Quit

ENTER: P

Counter: 1

Choose a Menu Option:

P) Print Counter

Q) Quit

ENTER: Q

Goodbye!
25

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
26

for Loops
for (initial-action;

 loop-continuation-condition;

 action-after-each-iteration) {

 // loop body;

 Statement(s);

}

int i;

for (i = 0; i < N; i++)

 System.out.println(

 "Welcome to Java!");

Loop

Continuation

Condition?

true

Statement(s)

(loop body)

false

(A)

Action-After-Each-Iteration

Initial-Action

(i < 100)?

true

 System.out.println(

 "Welcome to Java");

false

(B)

i++

i = 0

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

for loops and counting

for loops are popular for counting loops

through the indices of a string

through the indices of an array (later)

through iterations of an algorithm

Good for algorithms that require a known

number of iterations

counter-controlled loops

27

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int i;

for (i = 0; i < 2; i++) {

 System.out.println(

 "Welcome to Java!");

}

28

Trace for Loop

Declare i

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int i;

for (i = 0; i < 2; i++) {

 System.out.println(

 "Welcome to Java!");

}

29

Trace for Loop

Execute initializer

i is now 0

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int i;

for (i = 0; i < 2; i++) {

 System.out.println(

 "Welcome to Java!");

}

30

Trace for Loop

(i < 2) is true

since i is 0

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
31

Trace for Loop

Print Welcome to Java

int i;

for (i = 0; i < 2; i++) {

 System.out.println(

 "Welcome to Java!");

}

 Welcome to Java!

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int i;

for (i = 0; i < 2; i++) {

 System.out.println(

 "Welcome to Java!");

}

 Welcome to Java!

32

Trace for Loop

Execute adjustment statement

i now is 1

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
33

Trace for Loop

(i < 2) is still true

since i is 1int i;

for (i = 0; i < 2; i++) {

 System.out.println(

 "Welcome to Java!");

}

 Welcome to Java!

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
34

Trace for Loop

Print Welcome to Java

int i;

for (i = 0; i < 2; i++) {

 System.out.println(

 "Welcome to Java!");

}

 Welcome to Java!

 Welcome to Java!

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int i;

for (i = 0; i < 2; i++) {

 System.out.println(

 "Welcome to Java!");

}

 Welcome to Java!

 Welcome to Java!

35

Trace for Loop

Execute adjustment statement

i now is 2

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
36

Trace for Loop

(i < 2) is false

since i is 2int i;

for (i = 0; i < 2; i++) {

 System.out.println(

 "Welcome to Java!");

}

 Welcome to Java!

 Welcome to Java!

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int i;

for (i = 0; i < 2; i++) {

 System.out.println(

 "Welcome to Java!");

}

 Welcome to Java!

 Welcome to Java!

37

Trace for Loop

Exit the loop. Execute the next

statement after the loop

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
38

for loops
The initial-action in a for loop can be a list of zero or more

comma-separated expressions.

The action-after-each-iteration in a for loop can be a list of

zero or more comma-separated statements.

for (int i = 0, j = 0; (i + j < 10); i++, j++){

 // Do something

}

The loop body can be the no-op statement:

for (int i = 0; i < 100; System.out.println(i++)) ;

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
39

Caution ;

Adding a semicolon at the end of the for

clause before the loop body is a common

mistake:

for (int i=0; i<10; i++) ;

{

 System.out.println("i is " + i);

} // i does not exist anymore

 // it is a syntax error

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Adding a semicolon at the end of the while

clause before the loop body is a common

mistake:

40

int i=0;

while (i < 10);

{

 System.out.println("i is " + i);

 i++;

}

 this will cause an infinite loop

Logic Error

Same Caution ; for while

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
41

Infinite loops
If the loop-continuation-condition in a for loop is omitted,

it is implicitly true.

 for (; ;) {
 // Do something

}

(a)

Equivalent while (true) {

 // Do something

}

(b)

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
42

Which Loop to Use?
while, do-while, and for loops are expressively equivalent

 for (initial-action;
 loop-continuation-condition;

 action-after-each-iteration) {

 // Loop body;

}

(a)

Equivalent

(b)

initial-action;

while (loop-continuation-condition) {

 // Loop body;

 action-after-each-iteration;

}

 while (loop-continuation-condition) {
 // Loop body

}

(a)

Equivalent

(b)

for (; loop-continuation-condition;) {

 // Loop body

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Caution: Loop variables

int sum = 0;

for (int j=1; j<=4; j++){

sum = sum + j;

j++;

}

43

Be careful not to

double the update of

your counting

variable

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Sums
int sum = 0;

for (int i=1; i<=4; i++)

 sum = sum + i;

sum i

0 1

1 2

3 3

6 4

10 5

44

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Product
int product = 1;

for (int i=1; i<=4; i++)

 product = product * i;

45

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Nested Loops
for (int i = 1; i <= 10; i++){

 for (int j = 1; j <= 10; j++){

 int product = i*j;

 System.out.print(product + " ");

 }

 System.out.println();

}

46

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

...

10 20 30 40 50 60 70 80 90 100

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Local Variables and Blocks
 A variable declared inside a block is known only inside

that block

 it is local to the block, therefore it is called a local variable

 when the block finishes executing, local variables disappear

 references to it outside the block cause a compiler error

That includes Init field of for loops:

 for(int i=0; i < 10; i++){

 ...

 }

 System.out.print(i);

 // Compile Error: i is garbage collected
47

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Java Good programming Practice

Do not declare variables inside loops it takes time

during execution to create and destroy variables,

so it is better to do it just once for loops)

48

for(int i=1; i<=10; i++) {
 double x = 10;
 //...
}

double x;
for(int i=1; i<=10; i++) {
 x = 10;
 //...
}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Keywords break and continue
You can also use break in a loop to immediately

terminate the loop:
public static void main(String[] args) {

 int sum = 0;

 int number = 0;

 while (number < 20) {

 number++;

 sum += number;

 if (sum >= 100) // increments until the sum is

 break; // greater than 100

 }

 System.out.println("The number is " + number);

 System.out.println("The sum is " + sum);

} The number is 14

 The sum is 105
49

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Keywords break and continue
You can also use continue in a loop to end the

current iteration and program control goes to the

end of the loop body (and continues the loop):
public static void main(String[] args) {

 int sum = 0;

 int number = 0;

 while (number < 20) { // adds integers from 1 to 20

 number++; // except 10 and 11 to sum

 if (number ==10 || number == 11)

 continue;

 sum += number;

 }

 System.out.println("The number is " + number);

 System.out.println("The sum is " + sum);

} The number is 20

 The sum is 189
50

	Slide 1: Loops
	Slide 2: Contents
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: Without iteration or recursion
	Slide 6: Loops Solution
	Slide 7: Motivation Example 2
	Slide 8: Without iteration or recursion
	Slide 9: With iteration/loops
	Slide 10: What is Iteration?
	Slide 11: Java and iteration
	Slide 12: while Loop Flow Chart
	Slide 13: Trace while Loop
	Slide 14: Trace while Loop
	Slide 15: Trace while Loop
	Slide 16: Trace while Loop
	Slide 17: Trace while Loop
	Slide 18: Trace while Loop
	Slide 19: Trace while Loop
	Slide 20: Trace while Loop
	Slide 21: Trace while Loop
	Slide 22: Caution: don't use equality for reals
	Slide 23: do-while Loop
	Slide 24: Why use do … while?
	Slide 25
	Slide 26: for Loops
	Slide 27: for loops and counting
	Slide 28: Trace for Loop
	Slide 29: Trace for Loop
	Slide 30: Trace for Loop
	Slide 31: Trace for Loop
	Slide 32: Trace for Loop
	Slide 33: Trace for Loop
	Slide 34: Trace for Loop
	Slide 35: Trace for Loop
	Slide 36: Trace for Loop
	Slide 37: Trace for Loop
	Slide 38: for loops
	Slide 39: Caution ;
	Slide 40
	Slide 41: Infinite loops
	Slide 42: Which Loop to Use?
	Slide 43: Caution: Loop variables
	Slide 44: Sums
	Slide 45: Product
	Slide 46: Nested Loops
	Slide 47: Local Variables and Blocks
	Slide 48: Java Good programming Practice
	Slide 49: Keywords break and continue
	Slide 50: Keywords break and continue

