
1

Loops
CSE 114: Introduction to Object-Oriented Programming

Paul Fodor

Stony Brook University

http://www.cs.stonybrook.edu/~cse114

http://www.cs.stonybrook.edu/~cse114

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Contents
 Motivation for loops

 What is Iteration?

 Java and iteration

while loops

do … while loops

 for loops

 Caution: don't use equality for reals

 Common algorithms with loops

 Nested Loops

 Local Variables and Blocks

 Keywords break and continue
2

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
3

Motivation
 Suppose that you need to print a string (e.g.,

"Welcome to Java!") a user-entered times N:
Scanner input = new Scanner(System.in);

System.out.print("Enter N: ");

int N = input.nextInt();

 System.out.println("Welcome to Java!");

 ...

 System.out.println("Welcome to Java!");

N?

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
4

Motivation
Without iteration (or recursion) this would be

impractical

We do not know N, when we are about to write the

program

So, we need a cascade of if statements to check all

cases for the value of N.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Without iteration or recursion
Scanner input = new Scanner(System.in);

System.out.print("Enter N: ");

int N = input.nextInt();

if(N == 1)

System.out.println("Welcome to Java!");

else if(N == 2){

System.out.println("Welcome to Java!");

System.out.println("Welcome to Java!");

}else if(N == 3){

System.out.println("Welcome to Java!");

System.out.println("Welcome to Java!");

System.out.println("Welcome to Java!");

}…

5

Inefficient coding (repetition)!

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
6

Loops Solution
While loop:
 Scanner input = new Scanner(System.in);

 System.out.print("Enter N: ");

 int N = input.nextInt();

int count = 0;

while (count < N) {

 System.out.println("Welcome to Java");

 count++;

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Motivation Example 2
How would we write code to print N! (factorial),

where N is a number entered by the user?

7

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Without iteration or recursion
Scanner input = new Scanner(System.in);

System.out.print("Enter N: ");

int N = input.nextInt();

int factorial = 1;

if ((N == 1) || (N == 0)) factorial = 1;

else if (N == 2) factorial = 2 * 1;

else if (N == 3) factorial = 3 * 2 * 1;

else if (N == 4) factorial = 4 * 3 * 2 * 1;

else if (N == 5) factorial = 5 * 4 * 3 * 2 * 1;

…

System.out.println(factorial);

 Inefficient coding (repetition)!
8

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

With iteration/loops
Scanner input = new Scanner(System.in);

System.out.print("Enter N: ");

int N = input.nextInt();

int factorial = 1;

int i = 1;

while(i <= N)

 factorial *= i++;

System.out.println(factorial);

9

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

What is Iteration?
Repeating a set of instructions a specified number

of times or until a specific result is achieved
 How do we repeat steps?

 Imagine 3 instructions A, B, & C:

Instruction A

Instruction B

Instruction C can be conditional jump to A (meaning go back to A)

 Iteration might result in:

Execute A

Execute B

Execute C

Execute A

Execute B

...10

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Java and iteration
We have 3 types of iterative statements

a while loop

a do … while loop

a for loop

All 3 can be used to do similar things

Which one should you use?

a matter of individual preference/convenience

Note: When we will learn arrays, we will see a

4th kind of loop: for-each loop
11

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
12

while Loop Flow Chart
while (loop-continuation-condition) {

 // loop-body;

 Statement(s);

}

int count = 0;

while (count < 100) {

 System.out.println("Welcome to Java!");

 count++;

}

Loop

Continuation

Condition?

true

Statement(s)

(loop body)

false

(count < 100)?

true

System.out.println("Welcome to Java!");

count++;

false

(A) (B)

count = 0;

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
13

Trace while Loop

int count = 0;

while (count < 2) {

 System.out.println("Welcome to Java!");

 count++;

}

Initialize count

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int count = 0;

while (count < 2) {

 System.out.println("Welcome to Java!");

 count++;

}

14

Trace while Loop

(count < 2) is true

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int count = 0;

while (count < 2) {

 System.out.println("Welcome to Java!");

 count++;

}

 Welcome to Java!

15

Trace while Loop

Print Welcome to Java

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int count = 0;

while (count < 2) {

 System.out.println("Welcome to Java!");

 count++;

}

 Welcome to Java!

16

Trace while Loop

Increase count by 1

count is 1 now

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int count = 0;

while (count < 2) {

 System.out.println("Welcome to Java!");

 count++;

}

 Welcome to Java!

17

Trace while Loop

(count < 2) is still true since count

is 1

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int count = 0;

while (count < 2) {

 System.out.println("Welcome to Java!");

 count++;

}

 Welcome to Java!

 Welcome to Java!

18

Trace while Loop

Print Welcome to Java

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int count = 0;

while (count < 2) {

 System.out.println("Welcome to Java!");

 count++;

}

 Welcome to Java!

 Welcome to Java!

19

Trace while Loop

Increase count by 1

count is 2 now

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int count = 0;

while (count < 2) {

 System.out.println("Welcome to Java!");

 count++;

}

 Welcome to Java!

 Welcome to Java!

20

Trace while Loop

(count < 2) is false since count is 2

now

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
21

Trace while Loop

The loop exits. Execute the next

statement after the loop.int count = 0;

while (count < 2) {

 System.out.println("Welcome to Java!");

 count++;

}

 Welcome to Java!

 Welcome to Java!

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
22

Caution: don't use equality for reals
 Don’t use floating-point values for equality checking in a loop control -
because floating-point values are approximations for some values

System.out.print(1 - 0.1 - 0.1 - 0.1);
 prints 0.7000000000000001

 Loop example: the following code for computing 1 + 0.9 + 0.8 + ... + 0.1:
double item = 1, sum = 0;

while (item != 0) { // No guarantee item will be 0 or 0.0

 sum += item; // change the condition: item > 0

 item -= 0.1;

}

System.out.printf("%.1f",sum);

It is actually an infinite loop!
Variable item starts with 1 and is reduced by 0.1 every time the loop body is executed
 The loop should terminate when item becomes 0

However, there is no guarantee that item will be exactly 0, because the floating-point arithmetic is
approximated

So, it continues running forever

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
23

do-while Loop
do {

 // Loop body;

 Statement(s);

} while (loop-continuation-condition);

Loop

Continuation

Condition?

true

Statement(s)

(loop body)

false

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Why use do … while?
 For when you have a loop body that must execute at least once.

 Example: a program menu

24

Scanner in = new Scanner(System.in);

String selection;

int counter = 0;

do{

 System.out.println("Choose a Menu Option:");

 System.out.println("P) Print Counter");

 System.out.println("Q) Quit");

 System.out.print("ENTER: ");

 selection = in.nextLine();

 if (selection.toUpperCase().equals("P"))

 System.out.println("Counter: " + counter++);

}while(!selection.toUpperCase().equals("Q"));

System.out.println("Goodbye!");

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

 An Example Session
Choose a Menu Option:

P) Print Counter

Q) Quit

ENTER: P

Counter: 0

Choose a Menu Option:

P) Print Counter

Q) Quit

ENTER: A

Choose a Menu Option:

P) Print Counter

Q) Quit

ENTER: P

Counter: 1

Choose a Menu Option:

P) Print Counter

Q) Quit

ENTER: Q

Goodbye!
25

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
26

for Loops
for (initial-action;

 loop-continuation-condition;

 action-after-each-iteration) {

 // loop body;

 Statement(s);

}

int i;

for (i = 0; i < N; i++)

 System.out.println(

 "Welcome to Java!");

Loop

Continuation

Condition?

true

Statement(s)

(loop body)

false

(A)

Action-After-Each-Iteration

Initial-Action

(i < 100)?

true

 System.out.println(

 "Welcome to Java");

false

(B)

i++

i = 0

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

for loops and counting

for loops are popular for counting loops

through the indices of a string

through the indices of an array (later)

through iterations of an algorithm

Good for algorithms that require a known

number of iterations

counter-controlled loops

27

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int i;

for (i = 0; i < 2; i++) {

 System.out.println(

 "Welcome to Java!");

}

28

Trace for Loop

Declare i

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int i;

for (i = 0; i < 2; i++) {

 System.out.println(

 "Welcome to Java!");

}

29

Trace for Loop

Execute initializer

i is now 0

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int i;

for (i = 0; i < 2; i++) {

 System.out.println(

 "Welcome to Java!");

}

30

Trace for Loop

(i < 2) is true

since i is 0

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
31

Trace for Loop

Print Welcome to Java

int i;

for (i = 0; i < 2; i++) {

 System.out.println(

 "Welcome to Java!");

}

 Welcome to Java!

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int i;

for (i = 0; i < 2; i++) {

 System.out.println(

 "Welcome to Java!");

}

 Welcome to Java!

32

Trace for Loop

Execute adjustment statement

i now is 1

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
33

Trace for Loop

(i < 2) is still true

since i is 1int i;

for (i = 0; i < 2; i++) {

 System.out.println(

 "Welcome to Java!");

}

 Welcome to Java!

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
34

Trace for Loop

Print Welcome to Java

int i;

for (i = 0; i < 2; i++) {

 System.out.println(

 "Welcome to Java!");

}

 Welcome to Java!

 Welcome to Java!

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int i;

for (i = 0; i < 2; i++) {

 System.out.println(

 "Welcome to Java!");

}

 Welcome to Java!

 Welcome to Java!

35

Trace for Loop

Execute adjustment statement

i now is 2

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
36

Trace for Loop

(i < 2) is false

since i is 2int i;

for (i = 0; i < 2; i++) {

 System.out.println(

 "Welcome to Java!");

}

 Welcome to Java!

 Welcome to Java!

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

int i;

for (i = 0; i < 2; i++) {

 System.out.println(

 "Welcome to Java!");

}

 Welcome to Java!

 Welcome to Java!

37

Trace for Loop

Exit the loop. Execute the next

statement after the loop

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
38

for loops
The initial-action in a for loop can be a list of zero or more

comma-separated expressions.

The action-after-each-iteration in a for loop can be a list of

zero or more comma-separated statements.

for (int i = 0, j = 0; (i + j < 10); i++, j++){

 // Do something

}

The loop body can be the no-op statement:

for (int i = 0; i < 100; System.out.println(i++)) ;

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
39

Caution ;

Adding a semicolon at the end of the for

clause before the loop body is a common

mistake:

for (int i=0; i<10; i++) ;

{

 System.out.println("i is " + i);

} // i does not exist anymore

 // it is a syntax error

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Adding a semicolon at the end of the while

clause before the loop body is a common

mistake:

40

int i=0;

while (i < 10);

{

 System.out.println("i is " + i);

 i++;

}

 this will cause an infinite loop

Logic Error

Same Caution ; for while

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
41

Infinite loops
If the loop-continuation-condition in a for loop is omitted,

it is implicitly true.

 for (; ;) {
 // Do something

}

(a)

Equivalent while (true) {

 // Do something

}

(b)

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
42

Which Loop to Use?
while, do-while, and for loops are expressively equivalent

 for (initial-action;
 loop-continuation-condition;

 action-after-each-iteration) {

 // Loop body;

}

(a)

Equivalent

(b)

initial-action;

while (loop-continuation-condition) {

 // Loop body;

 action-after-each-iteration;

}

 while (loop-continuation-condition) {
 // Loop body

}

(a)

Equivalent

(b)

for (; loop-continuation-condition;) {

 // Loop body

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Caution: Loop variables

int sum = 0;

for (int j=1; j<=4; j++){

sum = sum + j;

j++;

}

43

Be careful not to

double the update of

your counting

variable

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Sums
int sum = 0;

for (int i=1; i<=4; i++)

 sum = sum + i;

sum i

0 1

1 2

3 3

6 4

10 5

44

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Product
int product = 1;

for (int i=1; i<=4; i++)

 product = product * i;

45

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Nested Loops
for (int i = 1; i <= 10; i++){

 for (int j = 1; j <= 10; j++){

 int product = i*j;

 System.out.print(product + " ");

 }

 System.out.println();

}

46

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

...

10 20 30 40 50 60 70 80 90 100

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Local Variables and Blocks
 A variable declared inside a block is known only inside

that block

 it is local to the block, therefore it is called a local variable

 when the block finishes executing, local variables disappear

 references to it outside the block cause a compiler error

That includes Init field of for loops:

 for(int i=0; i < 10; i++){

 ...

 }

 System.out.print(i);

 // Compile Error: i is garbage collected
47

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Java Good programming Practice

Do not declare variables inside loops it takes time

during execution to create and destroy variables,

so it is better to do it just once for loops)

48

for(int i=1; i<=10; i++) {
 double x = 10;
 //...
}

double x;
for(int i=1; i<=10; i++) {
 x = 10;
 //...
}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Keywords break and continue
You can also use break in a loop to immediately

terminate the loop:
public static void main(String[] args) {

 int sum = 0;

 int number = 0;

 while (number < 20) {

 number++;

 sum += number;

 if (sum >= 100) // increments until the sum is

 break; // greater than 100

 }

 System.out.println("The number is " + number);

 System.out.println("The sum is " + sum);

} The number is 14

 The sum is 105
49

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Keywords break and continue
You can also use continue in a loop to end the

current iteration and program control goes to the

end of the loop body (and continues the loop):
public static void main(String[] args) {

 int sum = 0;

 int number = 0;

 while (number < 20) { // adds integers from 1 to 20

 number++; // except 10 and 11 to sum

 if (number ==10 || number == 11)

 continue;

 sum += number;

 }

 System.out.println("The number is " + number);

 System.out.println("The sum is " + sum);

} The number is 20

 The sum is 189
50

	Slide 1: Loops
	Slide 2: Contents
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: Without iteration or recursion
	Slide 6: Loops Solution
	Slide 7: Motivation Example 2
	Slide 8: Without iteration or recursion
	Slide 9: With iteration/loops
	Slide 10: What is Iteration?
	Slide 11: Java and iteration
	Slide 12: while Loop Flow Chart
	Slide 13: Trace while Loop
	Slide 14: Trace while Loop
	Slide 15: Trace while Loop
	Slide 16: Trace while Loop
	Slide 17: Trace while Loop
	Slide 18: Trace while Loop
	Slide 19: Trace while Loop
	Slide 20: Trace while Loop
	Slide 21: Trace while Loop
	Slide 22: Caution: don't use equality for reals
	Slide 23: do-while Loop
	Slide 24: Why use do … while?
	Slide 25
	Slide 26: for Loops
	Slide 27: for loops and counting
	Slide 28: Trace for Loop
	Slide 29: Trace for Loop
	Slide 30: Trace for Loop
	Slide 31: Trace for Loop
	Slide 32: Trace for Loop
	Slide 33: Trace for Loop
	Slide 34: Trace for Loop
	Slide 35: Trace for Loop
	Slide 36: Trace for Loop
	Slide 37: Trace for Loop
	Slide 38: for loops
	Slide 39: Caution ;
	Slide 40
	Slide 41: Infinite loops
	Slide 42: Which Loop to Use?
	Slide 43: Caution: Loop variables
	Slide 44: Sums
	Slide 45: Product
	Slide 46: Nested Loops
	Slide 47: Local Variables and Blocks
	Slide 48: Java Good programming Practice
	Slide 49: Keywords break and continue
	Slide 50: Keywords break and continue

