
Introduction to Computers,

Programs, and Java
CSE 114: Introduction to Object-Oriented Programming

Paul Fodor

Stony Brook University

http://www.cs.stonybrook.edu/~cse114

http://www.cs.stonybrook.edu/~cse114

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Contents
 How computers work (CPU/Processor, memory, hard

disk, input and output)?
 How Data is Stored and Processed? Number Systems.

 How do we store text?

 Memory: What goes in each memory segment?

 Programming Languages

 Source Code

 Compilation vs. Interpretation

 Operating Systems

 Java History and Basics

 A Simple Java Program

 Anatomy of Java Programs

 Programming Errors: syntax, runtime and logical errors/bugs
2

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

What is a Computer?

3

• A computer consists of a CPU, memory,

hard disk, monitor, printer, input and output

devices.

CPU

e.g., Disk, CD,

and Tape

Input

Devices

e.g., Keyboard,

Mouse

e.g., Monitor,

Printer

Communication

Devices

e.g., Modem,

and NIC

Storage

Devices

Memory
Output

Devices

Bus

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Central Processing Unit (CPU)

4

CPU

e.g., Disk, CD,

and Tape

Input

Devices

e.g., Keyboard,

Mouse

e.g., Monitor,

Printer

Communication

Devices

e.g., Modem,

and NIC

Storage

Devices

Memory
Output

Devices

Bus

• Central Processing Unit (CPU, processor):
• retrieves instructions from memory and executes them

• the CPU speed is measured in cycles per second = hertz (Hz)

• 1 MegaHertz (MHz) = 1 million pulses per second

• 1 GigaHertz (GHz) = 1 billion pulses per second

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

(Main) Memory

5

CPU

e.g., Disk, CD,

and Tape

Input

Devices

e.g., Keyboard,

Mouse

e.g., Monitor,

Printer

Communication

Devices

e.g., Modem,

and NIC

Storage

Devices

Memory
Output

Devices

Bus

• Stores data and program instructions

for CPU to execute

• ordered sequence of bytes (i.e., 8 bits

– a binary base unit)

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

How Data is Stored and Processed?

6

 In binary

 What’s binary?

 the base-2 number system

 What do humans use?

 base-10

 Why? 10 fingers.

 Why do computers like binary?

 electronics

 easier to make hardware that

stores and processes binary

numbers than decimal

numbers

 more efficient: space & cost

.

.

.

2000

2001

2002

2003

2004

.

.

.

01001010

01100001

01110110

01100001

00000011

Memory content

Memory address

Encoding for character ‘J’

Encoding for character ‘a’

Encoding for character ‘v’

Encoding for character ‘a’

Encoding for number 3

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
7

Number Systems

Decimal: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Binary: 0, 1

Hexadecimal: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Octal: 0, 1, 2, 3, 4, 5, 6, 7

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
8

• The digits in the decimal number system are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

• A decimal number is represented using a sequence of one or more of

these digits.
• The value that each digit in the sequence represents depends on its position.

• A position in a sequence has a value that is an integral power of 10.

• e.g., the digits 7, 4, 2, and 3 in decimal number 7423 represent 7000, 400,

20, and 3, respectively:

• We say that 10 is the base or radix of the decimal number system.

• The base of the binary number system is 2 since the binary number

system has two digits: 0 and 1.

• The base of the hex number system is 16 since the hex number system

has sixteen digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

•The base of the octal number system is 8 with digits: 0,1,2,3,4,5,6,7.

10
3

7 4 2 3

10
2
 10

1
 10

0

0123 103102104107 +++=

3204007000 +++= 7423=

Number Systems: Decimal

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
9

• Computers use binary numbers internally because storage

devices like memory and disk are made to store 0s and 1s.

• Each 0 and 1 is called a bit (short for binary digit)

• Binary numbers are not intuitive to us, since we use

decimal numbers in our daily life.

• When you write a number like 20 in a program, it is

assumed to be a decimal number.

• Internally, computer software is used to convert

decimal numbers into binary numbers, and vice versa.

•A number or a text (see character encodings later)

inside a computer is stored as a sequence of 0s and 1s.

Binary

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
10

Binary Numbers => Decimals

Given a binary number ()2

 the equivalent decimal value is

(10)2 in binary is = 2 in decimal

(1010)2 in binary is = 10 in decimal

01221 ... bbbbbb nnn −−

01221 222...222 01221 ++++++ −−
−− bbbbbb nnn

nnn

021 1 +

0212021 23 +++

(10101011)2

in binary

= 171 in

 decimal

121202120212021 234567 +++++++

Examples:

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
11

Common Binary Powers
20 = 1

21 = 2

22 = 4

23 = 8

24 = 16

25 = 32

26 = 64

27 = 128

28 = 256

29 = 512

210 = 1024

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
12

Decimal => Binary
• To convert a decimal number d to a binary number is to find the

binary digits ()2 such that

• These numbers can be found by successively dividing d by 2 until the

quotient is 0. The remainders are

For example, the decimal number 123 is (1111011)2 in binary. The conversion

is conducted as follows:

01221 ,,,...,,, bbbbbb nnn −−

01221 222...222 01221 ++++++= −−
−− bbbbbbd nnn

nnn

𝑏0, 𝑏1, 𝑏2, . . . , 𝑏𝑛 − 2, 𝑏𝑛 − 1,
𝑏𝑛

123 2

 61

122

 1

 b0

 61 2

 30

 60

 1

 b1

 30 2

 15

 30

 0

 b2

 15 2

 7

 14

 1

 b3

Remainder

Quotient

 7 2

 3

 6

 1

 b4

 3 2

 1

 2

 1

 b5

 1 2

 0

 0

 1

 b6

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
13

• Binary numbers tend to be very long and cumbersome:

• For example: (11 1010 1011 1110)2

• Hexadecimal and octal numbers are often used to abbreviate binary

numbers:

• For example: (11_1010_1011_1110)2 = (3ABE)H

 and (11_101_010_111_110)2 = (35276)8

• The hexadecimal number system has 16 digits:

 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

• The letters A, B, C, D, E, and F correspond to the decimal

 numbers 10,11,12,13,14, and 15.

• Each hex digit corresponds to 4 bits (grouped from the end)

• The octal number system has 8 digits:

• 0, 1, 2, 3, 4, 5, 6, and 7

• Each octal digit corresponds to 3 bits (grouped from the end)

Hexadecimal and Octal

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

 1 1 1 0 0 0 1 1 0 1

D 8 3
14

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 10 A

1011 11 B

1100 12 C

1101 13 D

1110 14 E

1111 15 F

Binary Decimal Hex
To convert a hexadecimal number to a

binary number, simply convert each digit in

the hexadecimal number into a four-digit

binary number. For example,

 (38D)H = (11_1000_1101)2

To convert a binary number to a

hexadecimal, convert every four binary

digits from right to left in the binary

number into a hexadecimal number. For

example, ()2

 ()H

Hexadecimals <=> Binary

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

 1 1 1 0 0 0 1 1 0 1

5 1 6 1

15

000 0 0

001 1 1

010 2 2

011 3 3

100 4 4

101 5 5

110 6 6

111 7 7

Binary Decimal Octal
To convert an octal number to a binary

number, simply convert each digit in the

octal number into a three-digit binary

number. For example,

 (1615)8 = (1_110_001_101)2

To convert a binary number to an octal

number, convert every three binary

digits from right to left in the binary

number into an octal digit. For example,
 ()2

 ()8

Octal <=> Binary

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
16

Hexadecimals => Decimals

• Given a hexadecimal number ()H

The equivalent decimal value is

• Octal number system is similar, but base is 8.

01221 161616...161616 01221 ++++++ −−
−− hhhhhh nnn

nnn

(7F)H in hex is 15167 1 + = 127 in decimal

(FFFF)H in hex = 65535 in decimal15161516151615 23 +++

01221 ... hhhhhh nnn −−

(12)8 in octal is 1 × 81 + 2 = 10 in decimal

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
17

To convert a decimal number d to a hexadecimal number is to find

the hexadecimal digits ()H such that

• Preferred alternative: decimal->binary->hex

• Octal number system is similar, but base is 8, so we divide by 8

instead of 16.

01221 161616...161616 01221 ++++++= −−
−− hhhhhhd nnn

nnn

These numbers can be found by

successively dividing d by 16 until the

quotient is 0. The remainders are

For example, the decimal number 123 is

(7B)H in hexadecimal. The conversion is

conducted as follows:

01221 ,,,...,,, hhhhhh nnn −−

nnn hhhhhh ,,,...,,, 12210 −−

123 16

 7

112

 11

 h0

 7 16

 0

 0

 7

 h1

Remainder

Quotient

Decimals => Hexadecimals

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
18

Windows Calculator
The Windows Calculator is a useful tool for performing number

conversions. To run it, choose Programs, Accessories, and

Calculator from the Start button, and switch to Programmer View:

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

So Hardware stores 0s & 1s

19

How do we store text?

Numerically (i.e., using numeric codes)
Each character is stored in memory as a number

Standard character encoding sets: ASCII, Unicode
ASCII uses 1 byte per character (128 chars)

For example: ‘A’ is 65

Unicode: ~65K different characters

Multiple encodings (UTF-8, UTF-16, UTF-32,…)

oshort encodings use the first bit for continuation

(variable length encodings) and may be more

efficient for communication (shorter encoding)

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
20

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Memory: What goes in each memory segment?

21

 Stack Segment

 variables declared inside methods (called local)

 removed from memory when the method returns

 Heap Segment

 for dynamic data (whenever you use the operator

new)

 i.e., the data for constructed objects

 persistent as long as an existing a variable references

this region of memory (because garbage collection)

 Global Segment

 data that can be reserved at compile time

 the program

 global data (like static data)

 constants (e.g., interned String)

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Programming Languages

22

Machine Language Assembly Language High-Level Language

• A machine language is a set of instructions executed
directly by a computer's central processing unit (CPU).

• At the beginning there was only machine
language: a sequence of bits that directly controls a
processor, causing it to add, compare, move data
from one place to another

• Example: GCD program in x86 machine
language (represented in hexadecimal here):

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Programming Languages

23

Machine Language Assembly Language High-Level Language

• Assembly languages were invented to allow operations
to be expressed with mnemonic abbreviations

• For example, to add two numbers, you might write
an instruction in assembly code like this:

 ADDF3 R1, R2, R3

• A program called assembler is used to convert
assembly language programs into machine language

 …
 ADDF3 R1, R2, R3

 …

Assembly Source File

Assembler

 …
 1101101010011010

 …

Machine Code File

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Programming Languages

24

Machine Language Assembly Language High-Level Language

• Example: the GCD program in x86 assembly:

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
25

Machine Language Assembly Language High-Level Language

Assembly was easier to use than binary machine language,

BUT: not very user friendly, very low-level operations,

machine language dependent, programming is very time

consuming.

High Level programming Languages: languages

with strong abstraction from the details of the

computer: methods, classes, etc.

– platform independent
– can use previously-developed libraries

– more user friendly, easy to use

Programming Languages

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Popular High-Level Languages

26

FORTRAN (FORmula TRANslation)

LISP

COBOL (COmmon Business Oriented Language)

BASIC (Beginner All-purpose Symbolic Instructional Code)

Pascal (named for Blaise Pascal)

Ada (named for Ada Lovelace)

C (whose developer designed B first)

Visual Basic (Basic-like visual language developed by Microsoft)

C++ (an object-oriented language, based on C)

Java

C# (a Java-like language developed by Microsoft)

python

…

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Source Code

27

You write programs in text, they are called source code
Source code, or simply code or source, is a program, with or

without comments, written by a human in plain text (i.e.,

human readable alphanumeric characters).

Brief history (of source code):
 The earliest programs for stored-program computers were entered in

binary through the front panel switches of the computer.

 Punched cards replaced binary switches.

 IBM started distributing high-level programming languages source

code printed or stored in persistent memory.

Legal aspects:
 In 1974, the US Commission on New Technological Uses of Copyrighted Works (CONTU)

decided that "computer programs, to the extent that they embody an author's original

creation, are proper subject matter of copyright".

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Source Code

28

How does a program run?

 Compilers and interpreters.

What’s a compiler?

 A software program that translates the high-level source

program into an equivalent target program (typically in machine

language), and then goes away. E.g., C, C++.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Pure Interpretation

Interpreter stays around for the execution of

the program

 Interpreter is the locus of control during execution

Example: python.

29

Interpretation

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Why Java?

30

Java is somewhat different from previous languages

 Java started a principle, “write once, run anywhere”

 What does that mean?

 Platform (and operator system) independence for

 compiled Java code

How?

 The Java Virtual Machine (JVM)

 Java programs are compiled into Java bytecode

 Bytecode is then executed by the JVM on any OS

 and any platform

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Most modern language implementations

(starting with Java) include a mixture of both

compilation and interpretation

Compilation followed by interpretation:

31

Compilation and Interpretation

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Java, JVM, Web, and Beyond

32

 Java Virtual Machine

A program that runs Java programs and manages

memory for Java programs.
 Why?

 Each platform is different (Mac, PC, Linux, Android,etc.)

 The Java Development Kit (JDK) is a distribution of Java

Technology, i.e., the Java Application Programming Interface

(API), the Java compiler and the Java Virtual Machine, to

compile and execute Java programs.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Java Development Kit (JDK)

33

 JDK 1.02 (1995)
 JDK 1.1 (1996), J2SE 1.2 (1998), J2SE 1.3 (2000), J2SE

1.4 (2002)
 J2SE 5.0 (2004) (Major Refactoring: Generics)
 Java SE 6 (2006), Java SE 7 (2011)
 Java SE 8 (2014) (Major Refactoring: Language-level

support for lambda expressions)
 Long Term Support (LTS)

 Java SE 9 (2017), Java SE 10, 11 (LTS) (2018)
 Java SE 12, 13 (2019), Java SE 14, 15 (2020)
 …
 Java SE 21 (LTS, 2023)
 Java SE 22, 23 (2024)

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Operating Systems

34

The operating system (OS)

is a program that manages

and controls a computer’s

activities

 Windows

 Unix

 Linux

 Mac OsX

 Android

User

Application Programs

Operating System

Hardware

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

A Simple Java Program

35

// Welcome.java

// This program prints Welcome to Java!

public class Welcome {

 public static void main(String[] args) {

 System.out.println("Welcome to Java!");

 }

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Creating, Compiling, and Running

Programs

36

Source Code

Create/Modify Source Code

Compile Source Code

i.e., javac Welcome.java

Bytecode

Run Byteode

i.e., java Welcome

Result

If compilation errors

If runtime errors or incorrect result

public class Welcome {

 public static void main(String[] args) {

 System.out.println("Welcome to Java!");
 }
}

…

Method Welcome()

 0 aload_0

 …

Method void main(java.lang.String[])

 0 getstatic #2 …

 3 ldc #3 <String "Welcome to

Java!">

 5 invokevirtual #4 …

 8 return

Saved on the disk

stored on the disk

Source code (developed by the programmer)

Byte code (generated by the compiler for JVM

to read and interpret, not for you to understand)

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
37

pfodor@sparky ~$ emacs Welcome.java

 public class Welcome {

 public static void main(String[] args) {

 System.out.println("Welcome to Java!");

 }

 }

pfodor@sparky ~$ javac Welcome.java

pfodor@sparky ~$ java Welcome

Welcome to Java!

Running Programs from command line

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
38

Running

Programs

in Eclipse

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Settings: Compiling and Running

Java from the Command Window

39

 Set the path to JDK bin directory, so that the

console knows where javac and java are:

set PATH=$PATH;c:\Java\jdk1.8.0\bin

 Set Classpath to include the current directory, so

that javac and java know where used libraries are:

set CLASSPATH=...

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Trace a Program Execution

40

//This program prints Welcome to Java!

public class Welcome {

 public static void main(String[] args) {

 System.out.println("Welcome to Java!");

 }

}

Enter main method

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
41

//This program prints Welcome to Java!

public class Welcome {

 public static void main(String[] args) {

 System.out.println("Welcome to Java!");

 }

}

Execute statement

Trace a Program Execution

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
42

//This program prints Welcome to Java!

public class Welcome {

 public static void main(String[] args) {

 System.out.println("Welcome to Java!");

 }

}

print a message to the

console

Trace a Program Execution

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Anatomy of Java Programs

43

Comments

Reserved words

Modifiers

Statements

Blocks

Classes

Methods

The main method

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Comments

44

 Three types of comments in Java:

Line comment: A line comment is preceded by two

slashes (//) in a line.

Paragraph comment: A paragraph comment is enclosed

between /* and */ in one or multiple lines.

 javadoc comment: javadoc comments begin with /** and

end with */.

 They are used for documenting classes, data, and methods.

 They can be extracted into an HTML file using JDK's javadoc

command.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Comments

45

public static int baseX2decimal(int base, String s){

 int dec = 0;

 for(int i=0;i<s.length();i++) {

 char c = s.charAt(i);

 // extract the decimal digit from the character 0..9 or A..Z for 10,11,...

 int e = ('0'<=c && c<='9')

 ? c-'0'

 : ('a'<=c && c<='z')

 ? c-'a'+10

 : c-'A'+10;

 dec = dec*base + e;

 }

 return dec;

}

• The code that explains itself let it be (no need to comment).

- Good programmers can always figure out what something is done from the

code. But it is much more difficult to figure out why or how it was done.

- Just use good meaningful names for your identifiers (variables, methods).

No other

comments are

needed.

Just comment

parts that are

hard to

understand.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Reserved Words (Keywords)

46

Reserved words or keywords are words

that have a specific meaning to the

compiler

 Cannot be used for other purposes

in the program

 Example: class
 the word after class is the name for the class

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Java Keywords
abstract,assert,boolean,break,byte,

case,catch,char,class,const,continue

,default,do,double,else,enum,extends

,false,final,finally,float,for,goto,

if,implements,import,instanceof,int,

interface,long,native,new,null,

package,private,protected,public,

return,short,static,strictfp,super,

switch,synchronized,this,throw,

throws,transient,true,try,void,

volatile,while

http://docs.oracle.com/javase/tutorial

/java/nutsandbolts/_keywords.html
47

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Modifiers

48

 Java uses certain reserved words called modifiers that

specify the properties of the data, methods, and

classes and how they can be used

 Examples: public, static, private,

final, abstract, protected

 A public datum, method, or class can be accessed by

other programs

 A private datum or method cannot be accessed by

other programs

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Statements

49

 A statement represents an action or a sequence of actions

 Every statement in Java ends with a semicolon (;)

 Examples:

 System.out.print("Welcome to Java!");

is a statement to display the greeting "Welcome to Java!"

without moving to the new line.

 System.out.println("Welcome to Java!");

is a statement to display the greeting "Welcome to Java!"

followed by a new line.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Statements

50

 Printing is overloaded for all types in Java:

 System.out.println(1);

 System.out.println(1.2);

 System.out.println(true);

 Java is weakly typed:

 System.out.print("result is " + 123);

is a statement to displays "result is 123"

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
51

A pair of braces in a program forms a block

that groups components of a program.

public class Test {
 public static void main(String[] args) {
 System.out.println("Welcome to Java!");
 }
}

Class block

Method block

Blocks

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Block Styles

52

We use end-of-line style for braces:

public class Test

{

 public static void main(String[] args)

 {

 System.out.println("Block Styles");

 }

}

public class Test {

 public static void main(String[] args) {

 System.out.println("Block Styles");

 }

}

End-of-line

style

Next-line

style

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Programming Errors

53

Syntax Errors

Detected by the compiler

Runtime Errors

Causes the program to abort

Logic Errors

Produces incorrect result (may or may

not run into a runtime error)

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Syntax Errors

54

public class ShowSyntaxError {

 public static void main(String[] args) {

 i = 30; // Detected by the compiler

 System.out.println(i + 4);

 }

}

The program does not compile.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Runtime Error

55

public class ShowRuntimeError {

 public static void main(String[] args) {

 int i = 1 / 0;

 // Runtime error: Division with 0

 }

}

The program compiles (because it is

syntactically correct), but it crashes

at runtime.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Logic Errors

56

public class ShowLogicError {

 // Determine if a number is between 1 and 100 inclusively

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 int number = input.nextInt();

 // Display the result

 System.out.println(

 "The number is between 1 and 100, inclusively: " +

 ((1 < number) && (number < 100)));

 // Wrong result if the entered number is 1 or 100

 System.exit(0);

 }

}

The program compiles and may run without a

crash, but the results are incorrect!

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Logic Errors Debugging

57

Logic errors are also called bugs

The process of finding and correcting errors is called

debugging

Methods of debugging:

hand-trace the program (i.e., catch errors by reading

the program),

 insert print statements in order to show the values of

the variables

 for a large, complex program, the most effective

approach for debugging is to use a debugger utility

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Debugger

58

Debugger is a program that facilitates debugging.

You can use a debugger to:

Step1: Set breakpoints where the execution

pauses when we are debugging.

Step 2: Start the debugger and Execute a single

statement at a time from the first encountered

breakpoint.

Trace into or stepping over a method.

Display variables.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
59

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
60

60

	Slide 1: Introduction to Computers, Programs, and Java
	Slide 2: Contents
	Slide 3: What is a Computer?
	Slide 4: Central Processing Unit (CPU)
	Slide 5: (Main) Memory
	Slide 6: How Data is Stored and Processed?
	Slide 7: Number Systems
	Slide 8: Number Systems: Decimal
	Slide 9: Binary
	Slide 10: Binary Numbers => Decimals
	Slide 11: Common Binary Powers
	Slide 12: Decimal => Binary
	Slide 13: Hexadecimal and Octal
	Slide 14
	Slide 15
	Slide 16: Hexadecimals => Decimals
	Slide 17
	Slide 18: Windows Calculator
	Slide 19: So Hardware stores 0s & 1s
	Slide 20
	Slide 21: Memory: What goes in each memory segment?
	Slide 22: Programming Languages
	Slide 23: Programming Languages
	Slide 24: Programming Languages
	Slide 25: Programming Languages
	Slide 26: Popular High-Level Languages
	Slide 27: Source Code
	Slide 28: Source Code
	Slide 29: Interpretation
	Slide 30: Why Java?
	Slide 31: Compilation and Interpretation
	Slide 32: Java, JVM, Web, and Beyond
	Slide 33: Java Development Kit (JDK)
	Slide 34: Operating Systems
	Slide 35: A Simple Java Program
	Slide 36: Creating, Compiling, and Running Programs
	Slide 37
	Slide 38
	Slide 39: Settings: Compiling and Running Java from the Command Window
	Slide 40: Trace a Program Execution
	Slide 41: Trace a Program Execution
	Slide 42: Trace a Program Execution
	Slide 43: Anatomy of Java Programs
	Slide 44: Comments
	Slide 45: Comments
	Slide 46: Reserved Words (Keywords)
	Slide 47: Java Keywords
	Slide 48: Modifiers
	Slide 49: Statements
	Slide 50: Statements
	Slide 51
	Slide 52: Block Styles
	Slide 53: Programming Errors
	Slide 54: Syntax Errors
	Slide 55: Runtime Error
	Slide 56: Logic Errors
	Slide 57: Logic Errors Debugging
	Slide 58: Debugger
	Slide 59
	Slide 60

