Introduction to Computers,

Programs, and Java

CSE 114: Introduction to Object-Oriented Programming
Paul Fodor

Stony Brook University

http: / / WWW. cs.stonybrook.edu/ ~csel 14

http://www.cs.stonybrook.edu/~cse114

" Contents

* How computers work (CPU/Processor, memory, hard
disk, input and output)?
® How Data is Stored and Processed? Number Systems.
® How do we store text?
® Memory: What goes in each memory segment?
® Programming Languages
® Source Code
® Compilation vs. Interpretation
® Operating Systems
* Java History and Basics
* A Simple Java Program

® Anatomy of Java Programs

e’ Programming Errors: syntax, runtime and logical errors/bugs

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

'What is a Computer?

* A computer consists of a CPU, memory,
hard disk, monitor, printer, input and output

Bus
Storage Communication Input Output
Devices Memory CPU Devices Devices Devices
e.g., Disk, CD, e.g., Modem, e.g., Keyboard, e.g., Monitor,
and Tape and NIC Mouse Printer

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook) /

/Central Processing Unit (CPU)\

- Central Processing Unit (CPU, processor):
e retrieves instructions from memory and executes them
* the CPU speed is measured in cycles per second = hertz (Hz)
« 1 MegaHertz (MHz) = 1 million pulses per second
* 1 GigaHertz (GHz) = 1 billion pulses per second

Bus
Storage Communication Input Output
Devices Memory CPU Devices Devices Devices
e.g., Disk, CD, e.g., Modem, e.g., Keyboard, e.g., Monitor,
and Tape and NIC Mouse Printer

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook) /

" (Main) Memory
» Stores data and program instructions
for CPU to execute
» ordered sequence of bytes (i.e., 8 bits
— a binary base unit)

Bus

Storage Communication Input Output
Devices ST CPU Devices Devices Devices
e.g., Disk, CD, e.g., Modem, e.g., Keyboard, e.g., Monitor,
and Tape and NIC Mouse Printer

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

e

e |n binary

® the base-2 number system
® What do humans use?

® base-10

® Why? 10 fingers.

o Why do computers like binary?

® clectronics
easier to make hardware that
stores and processes binary
numbers than decimal

numbers

’ .
® What’s binary? Memory address

2000
2001
2002
2003
2004

How Data is Stored and Processed?

Memory content

v

01001010

01100001

01110110

01100001

00000011

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

° more efficient: space & cost
&

Encoding for character ‘J’

Encoding for character ‘a’
Encoding for character ‘v’
Encoding for character ‘a’
Encoding for number 3

" Number Systems

Decimal: 0,1,2,3,4,5,6,7,8,9
Binary: 0, 1
Hexadecimal: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, F

Octal: 0,1,2,3,4,5,6,7

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

"Number Systems: Decimal

* The digits in the decimal number systemare 0, 1, 2, 3,4, 5,6, 7, 8, and 9.

A decimal number is represented using a sequence of one or more of
these digits.

» The value that each digit in the sequence represents depends on its position.
« A position in a sequence has a value that is an integral power of 10.

* e.g., the digits 7, 4, 2, and 3 in decimal number 7423 represent 7000, 400,
20, and 3, respectively:

214l 2] 3 | =7x10°+4x10° +2x10" +3x10°

10° 10° 10" 10° =7000+400+20+3 = 7423

« We say that 10 is the base or radix of the decimal number system.

* The base of the binary number system is 2 since the binary number
system has two digits: 0 and 1.

 The base of the hex number system is 16 since the hex number system
has sixteen digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.
*The base of the octal number system is 8 with digits: 0,1,2,3,4,5,6,7.

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

" Binary :

« Computers use binary numbers internally because storage
devices like memory and disk are made to store Os and 1s.
« Each 0 and 1 is called a bit (short for binary digit)
* Binary numbers are not intuitive to us, since we use
decimal numbers in our daily life.
* When you write a number like 20 in a program, it is
assumed to be a decimal number.
* Internally, computer software iIs used to convert
decimal numbers into binary numbers, and vice versa.
A number or a text (see character encodings later)
Inside a computer Is stored as a sequence of Os and 1s.

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook) /

. : R
Binary Numbers => Decimals

Given a binary number (b.b. - 1D, - 2...b:b:b0),
the equivalent decimal value is

Dax 2"+ b i x2" b x 2"+ +bex 2%+ bix 2 +hox 2°

Examples:

(10), inbinary is1x2'+0 = 2 in decimal
(1010), inbinaryis 1x2°+0x2*+1x2+0 = 10 indecimal

(10101011), 1x2"+0x2°+1x2°+0x2*+1x2°+0x2* +1x2+1 = 171 1IN
In binary decimal

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook) /

4 .
Common Binary Powers

20=1

21 =2

22=4

23=8
24=16

2° =32
2° = 64

27 =128

28 = 256

29 =512
210 = 1024

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

'Decimal => Binary

« To convert a decimal number d to a binary number is to find the
binary digits (b.,b.-1,b._2,...,b., b, bo), such that

d=bx2"+b_:x2" +by_2x2"% +.. +b:x2° + b x 2" + hex 2°

 These numbers can be found by successively dividing d by 2 until the
quotientis 0. The remaindersare p . b. b,,...,bn ., bn , b,
For example, the decimal number 123 is (1111011), in binary. The conversion
Is conducted as follows:

e i e e e e

123
0 122
1 1 <€—— Remainder
b

1 bo

H
~
w
o
o

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

'"Hexadecimal and Octal

 Binary numbers tend to be very long and cumbersome:
* For example: (11 1010 1011 1110),
» Hexadecimal and octal numbers are often used to abbreviate binary
numbers:
 For example: (11_1010 1011 1110),= (3ABE),
and (11_101 010_111 110),= (35276)4
 The hexadecimal number system has 16 digits:
0,1,2,3,4,56,7,89,A,B,C,D,E,and F.
* The letters A, B, C, D, E, and F correspond to the decimal
numbers 10,11,12,13,14, and 15.
» Each hex digit corresponds to 4 bits (grouped from the end)
« The octal number system has 8 digits:
« 0,1,2,3,4,5,6,and 7
« Each octal digit corresponds to 3 bits (grouped from the end)

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

\!aiill

H
Cwowo~No ok~ wWNDEF O

el el ol
OOk~ wmNPE-

" Hexadecimals <=> Binary

Binary Decimal Hex

MTMOOW>»ocow~Noos~wWNR O

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

™

To convert a hexadecimal number to a
binary number, simply convert each digit in
the hexadecimal number into a four-digit
binary number. For example,

(38D), =(11_1000_1101),

To convert a binary number to a
hexadecimal, convert every four binary
digits from right to left in the binary
number into a hexadecimal number. For

example, (1110001101),
I | | | | |

(3 8 D)y

Octal <=> Binary

Binary Decimal Octal :
To convert an octal number to a binary

o6 0 O number, simply convert each digit in the
001 1 1 octal number into a three-digit binary
010 2 2 number. For example,

011 3 3 (1615), = (1_110_001_101),

100 4 4

10155 To convert a binary number to an octal
ﬂ(l) S S number, convert every three binary

digits from right to left in the binary

number into an octal digit. For example,
1110001101)2

i”l U

1 5)

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

: . .
Hexadecimals => Decimals

 Given a hexadecimal number (h.h, -:h. -....h-h:ho)
The equivalent decimal value is

hox16"+hn-1x16" ™ +hn - 2x16" % +...+ h.x16° + . x16" + hox16°

(7F) , inhexis 7x16"+15 = 127 indecimal

™

(FFFF) , inhex 15x16°+15x16° +15x16+15 = 65535 in decimal

 Octal number system is similar, but base is 8.

(12), inoctalis 1 X8 +2 = 10 in decimal

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

" Decimals => Hexadecimals

To convert a decimal number d to a hexadecimal number is to find
the hexadecimal digits (h,, h._:, h.»,...,h., h, ho)y such that

d=h.x16"+h, 1x16"* +h. >x16"? +...+ h,x16° + h:x16" + ho x16°
These numbers can be found by ; i .
successively dividing d by 16 until the ;=27 uetten

quotient is 0. The remainders are 0 112
ho, hl, hz,..., h. - 2, h. -1, h. ! 11 <€ Remainder
For example, the decimal number 123 is * *

(7B),, in hexadecimal. The conversion is
conducted as follows:

» Preferred alternative: decimal->binary->hex
 Octal number system is similar, but base is 8, so we divide by 8
Instead of 16.

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook) /

" Windows Calculator

The Windows Calculator is a useful tool for performing number
conversions. To run it, choose Programs, Accessories, and
Calculator from the Start button, and switch to Programmer View:

i1
Edit View Help
| 1111011
C Hex (Dec C Ot “Bn || Quod C Dwod © Wod € Byt
‘|- Inv. [Hyp I I Backspace CE | C
sal FEl (|) MC 71 8| a| 7 | Mod| and
Ave dms | Exp In MR 4 T b - Or G|
Sum $in %y log MS 1 2 3 - Lsh | Mot
cos | x73 nl M+ 0 +/- - + = Int
Dat tan N 1/% pi A B L D E F

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

" So Hardware stores Os & 1s

e How do we store text?

®Numerically (i.e., using numeric codes)

Each character is stored in memory as a number

™

*Standard character encoding sets: ASCII, Unicode

ASCII uses 1 byte per character (128 chars)
* For example: ‘A’ is 65
Unicode: ~65K different characters

* Multiple encodings (UTF-8, UTF-16, UTF-32,...)

o short encodings use the first bit for continuation

(variable length encodings) and may be more

@ efficient for communication (shorter encoding)
A,

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

/

4 N

ASCII Table
http://enteos2.area.trieste.it/russo/Introlnfo2001-2002/CorsoRetiGomezel/ASCII-EBIC files/ascii table.jpg
Dec HxOct Char Dec Hx Oct Html Chr [Dec Hx Oct Html Chr| Dec Hx Oct Hitml Chr
0 0 000 NUL f{rmll) 32 20 040 Space| 64 40 100 «#64; [| 96 60 140 `
1l 1 001 50H (start of heading) 33 21 041 «#33; ! 65 41 101 &«#65; A | 97 51 141 «#97; a
2 2 002 5T [start of text) 34 22 042 " 7 GG 42 102 &«#66; B 98 62 142 b b
3 3 003 ETX (end of text) 35 23 043 # # 67 43 103 &«#67; C | 99 63 143 c ©
4 4 004 E0OT (end of transmission) 36 24 044 $ § 65 44 104 &«#68; D |100 64 144 d d
5 5 005 ENOQ (encgquiry) 37 Z5 045 &£#37: % 69 45 105 &«#69; E |101 65 145 «#1l01; e
6 6 006 ACE [(acknowledge) 35 26 046 & & 70 46 106 «#70; F |102 66 146 f €
7 7 007 BEL (bell) 39 27 047 ' ' 71 47 107 &«#71; G |103 67 147 &«#103; O
8 & 010 ES (backspace) 40 28 050 &«#40; | 72 48 110 «#72; H |104 68 150 «#104; h
9 9 0ll TAE (horizontal tab) 41 Z9 051 &#dl;) 73 49 111 &«#73; I |105 69 151 i 1
10 & 0l2 LF (NL line feed, new line)| 42 ZA 052 Z; * 74 44 112 «#74; J |106 6A 152 &#l06: 3
11 B 013 VT (wvertical tab) 43 2B 053 #4357 + 75 4B 113 «#75: K |107 6B 153 k: k
12 C 0l4d FF (NP form feed, new page)| 44 2C 054 &«#44; , 76 4AC 114 &«#76: L |108 6C 154 l 1
13 D 0l5 CR (carriage return) 45 zD 055 - - 77 4D 115 M M (109 gD 155 m
14 E 0Qlg & ishift out) 46 2ZE 056 . . 78 4E 116 N N |110 6E 156 l0; n
15 F 0l7 SI (shift in) 47 ZF 057 «#47; / 79 4F 117 O 0 (111 AF 157 l1ll; O
16 10 020 DLE (data link escape) 43 30 060 &«#45; 0 80 50 120 2 P |112 70 le0 p p
17 11 021 DC1 (dewvice control 1) 49 31 0561 %#49; 1 gl 51 121 «#81l; 0 (113 71 161 q d
18 12 022 DCZ (device control 2) 50 32 062 2 2 82 52 122 &«#82; R |114 72 162 r: ¢
19 13 023 DC3 (device control 3} 51 33 063 &«#51; 3 83 53 123 S 5 |115 73 163 «#ll5; &
20 14 0z4 DC4 (device control 4) E2 34 064 4 4 84 54 124 «#64; T (116 74 164 &#lle; €
21 15 025 NAE (negative acknowledge) B3 35 065 5 5 85 55 125 U T (117 75 165 u u
22 16 0z& SYN (synchronous idle) B4 36 066 6 6 86 56 126 V V |118 746 166 &«#118; ¥
23 17 027 ETE (end of trans. block) 55 37 067 7 7 87 57 127 &«#87;: W |119 77 167 &«#119; w
24 15 030 CAN [cancel) EG 38 070 8 45 58 130 &«#8&; X |120 78 170 x X
25 19 031 EM (end of medium) 57 39 071 &«#57:; 9 89 59 131 &«#89; ¥ |121 79 171 &«#l2l; ¥
26 1& 032 3UB (substitute) 58 3k 072 =#55; : 90 54 13Z Z Z (122 74 172 &#l2Z; 2
27 1B 033 ESC (escape) 59 3B 073 ; ; 9] SB 133 [: [|123 7B 173 { {
23 1C 034 F3 (file separator) 60 3C 074 < < 92 5C 134 «#$92; \ |124 7C 174 &«#lz24;
29 1D 035 G5 (group sSeparator) 6l 3D 075 l; = 93 5D 135 «#93;] |125 7D 175 } }
30 1E 036 R3 (record separator) 62 3E 076 &#o0Z; > 04 SE 136 ^ *~ |126 7E 176 «#lLo; ~
1 1F 037 US [(unit separator) 63 3F 077 ? ? Q5 5F 137 &«#95; |127 7F 177 &«#127; DEL

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook) /

a _ N
Memory: What goes in each memory segment?

* Stack Segment Stack Segment

® variables declared inside methods (called local)

removed from memory when the method returns

* Heap Segment

® for dynamic data (whenever you use the operator
new)
i.e., the data for constructed objects

* persistent as long as an existing a variable references

this region of memory (because garbage collection)

e Global Segment

® data that can be reserved at compile time

the program

global data (like static data) Global Se gment
constants (e.g., interned String)
K (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook) /

" Programming Languages

Machine Language Assembly Language High—Level Language

™

- A machine language Is a set of instructions executed
directly by a computer's central processing unit (CPU).

- At the beginning there was only machine

processor, causing It to add, compare, move data
from one place to another

- Example: GCD program in x86 machine
language (represented in hexadecimal here):

55 89 eb 53 83 ec 04 83 e4 fO e8 31 00 00 00 89 <c3 e8 2a 00
00 00 39 c3 74 10 8d b6 00 00 00 OO0 39 c3 7e 13 29 c3 39 c3
75 £f6 89 1c 24 e8 6e 00 00 00 8b bd fc c9 c3 29 d8 eb eb 90

language: a sequence of bits that directly controls a

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

" Programming Languages

Machine Language Assembly Language High—Level Language

™

- Assembly languages were invented to allow operations
to be expressed with mnemonic abbreviations

- For example, to add two numbers, you might write
an instruction in assembly code like this:

ADDF3 R1, R2, R3

- Aprogram called assembler is used to convert
assembly language programs into machine language

ADDF3 R1, R2, R3 ——>»| Assembler | —

1101101010011010

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

" Programming Languages

Machine Language Assembly Language High-Level Language
- Example: the GCD program in x86 assembly:

pushl %ebp

movl %esp, hebp
pushl Yebx

subl $4, Yesp
andl $-16, Yesp
call getint

movl Yeax, Y%ebx
call getint
cmpl Yeax, Y%ebx
je C
A: cmpl %eax, %ebx
jle D
subl Y%eax, %ebx
B: cmpl heax, Jebx
jne A

C: movl hebx, (Yfesp)
call putint

movl -4 (%ebp), %ebx
leave
ret
D: subl %ebx, %eax
jmp B

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook) /

" Programming Languages

Machine Language Assembly Language High—Level Language

Assembly was easier to use than binary machine language,
BUT: not very user friendly, very low-level operations,
machine language dependent, programming Is very time
consuming.

High Level programming Languages: languages
with strong abstraction from the details of the
computer: methods, classes, etc.

— platform independent
— can use previously-developed libraries
— more user friendly, easy to use

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook) /

/Popular High-Level Language§

*FORTRAN (FORmula TRANslation)

eLISP

*COBOL (COmmon Business Oriented Language)

*BASIC (Beginner All-purpose Symbolic Instructional Code)
®Pascal (named for Blaise Pascal)

®Ada (named for Ada Lovelace)

*C (whose developer designed B first)

*Visual Basic (Basic-like visual language developed by Microsotft)
*C++ (an object-oriented language, based on C)

®Java

*C# (a Java-like language developed by Microsoft)

*python

[
@ e (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook) /

"Source Code

*You write programs in text, they are called source code
®Source code, or simply code or source, is a program, with or
without comments, written by a human in plain text (i.e.,
human readable alphanumeric characters).

®Brief history (of source code):

binary through the front panel switches of the computer.

Punched cards replaced binary switches.
IBM started distributing high—level programming languages source

code printed or stored in persistent memory.

OLegal aspects:

decided that "computer programs, to the extent that they embody an author's original

creation, are proper subject matter of copyright".

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

The earliest programs for stored—program computers were entered in

In 1974, the US Commission on New Technological Uses of Copyrighted Works (CONTU)

™

/

"Source Code

How does a program run?
° Compilers and interpreters.

What’s a compiler?

e A software program that translates the high-level source

program into an equivalent target program (typically in machine
language), and then goes away. E.g., C, C++.

Source program

(Compiler

N

[nput —H: Target program :—:- Output

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook) /

" Interpretation

® Pure Interpretation

*Interpreter stays around for the execution of
the program

Interpreter is the locus of control during execution

Source prograin
Tnput —

Interpreter > —> Output

* Example: python.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

" Why Java? :

Java Is somewhat different from previous languages
Java started a principle, “write once, run anywhere”
What does that mean?

Platform (and operator system) independence for
compiled Java code

How?

The Java Virtual Machine (JVM)
Java programs are compiled into Java bytecode
Bytecode Is then executed by the JVM on any OS
and any platform

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook) /

4 I
Compilation and Interpretation

® Most modern language implementations
(starting with Java) include a mixture of both

compilation and interpretation

® Compilation tollowed by interpretation:

Source program

)

C)
. Translator
Ay

Y
Intermediate program —__

:(Virtual machine }—} Output
[nput—"

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook) /

: Java, JVM, Web, and Beyond\

® Java Virtual Machine

® A program that runs Java programs and manages
memory for Java programs.
Why?
* Each platform is ditterent (Mac, PC, Linux, Android,etc.)
® The Java Development Kit (JDK) is a distribution of Java

Technology, i.e., the Java Application Programming Interface
(API), the Java compiler and the Java Virtual Machine, to

compile and execute Java programs.

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook) /

/Java Development Kit (JDK)

¢ JDK 1.02 (1995)
o JDK 1.1 (1996),]2SE 1.2 (1998),]2SE 1.3 (2000),]2SE

1.4 (2002)

J2SE 5.0 (2004) (Major Refactoring: Generics)
Java SE 6 (2006), Java SE 7 (2011)

Java SE 8 (2014) (Major Refactoring: Language—level

support for lambda expressions)

° Long Term Support (LTS)

® Java SE 9 (2017), Java SE 10, 11 (LTS) (2018)
® JavaSE 12,13 (2019), Java SE 14, 15 (2020)

® Java SE 21 (LTS, 2023)
® Java SE 22, 23 (2024)

(-

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

The operating system (OS)

is a program that manages
and controls a computer’s
activities

Windows

Unix

Linux

Mac OsX
Android
o

" Operating Systems

User

\ 4

Application Programs

v

Operating System

v

Hardware

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

A Simple Java Program

// Welcome.java

// This program prints Welcome to Java!
public class Welcome {
public static void main(String[] args) {
System.out.println("Welcome to Java!'");

}
}

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook) /

Source code (developed by the programmer)
4] Welcome - Notepad

Creating, Compiling, and Running

Programs

<€

Create/Modify Source Code

Saved on the disk

-0 x|
File Edit Format Help
bublic class welcome { |=]
public static wvoid mainstring[] args) {

System.out.printIn("welcome to Jawal!");

Byte code (generated by the compiler for JVM
to read and interpret, not for you to understand)

Compile Source Code

Method Welcome()
0 aload_0

Method void main(java.lang.String[])
0 getstatic #2 ...

3 Idc #3 <String "Welcome to
Javal">

5 invokevirtual #4 ...

[BEVP N PTVIVN

i.e., javac Welcome.java

If compilation errors

stored on the disk

(c) Pearson Education, Inc. & Paul Fodor (CS

Run Byteode
i.e., java Welcome

o

Sty runtime errors or incorrect result

4 R
Running Programs from command line

pfodor@sparky ~S$S emacs Welcome. java

public class Welcome ({
public static void main(String[] args) {
System.out.println ("Welcome to Java!") ;

}
}

pfodor@sparky ~$ javac Welcome. java

pfodor@sparky ~$ java Welcome
Welcome to Java!

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook) /

£ Java - csel14_java_intro/src/paul/Welcome.java - Eclipse SDK

[t e

= ’,a‘ cselld_java_intro
=B src
= 1 paul
@[5 Array_Substring_01.java
#11) CelsiusConverterGUI.java

NS

13 Package Explorer &3 =

T
922

J] Welcome.java 23 N

package paul;

//This program prints Welcome to Java!'
public class Welcomwe {
public static void main(Sctring() args) |
System.out.println("VWelcome to Java'"™);

& 11} Example_01.java \)
[+ J, Sort_01.java
* 3} Swing_01.java
w18
& M evennumberede NVeW ;
[+ ¥\ IRE System Libr. Open F3
® & book Open With P
#- (&% run_conf Open Type Hierar F4
1= c52392_uima_tutork Mmm " AR+Shift+W »
- Copy Cri+C
“,.. Copy Quaified Name
! paste Ctrity
XK Delete Delete
Bulld Path :
Source Ak+Shift+5 »
Refactor AR+Shift+T . , <
Haration [B console 23

W1 1 Java Application Ak+Shift+¥, J

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Running
Programs
In Eclipse

~ Settings: Compiling and Running
Java from the Command Window

® Set the path to JDK bin directory, so that the
console knows where javac and java are:
set PATH=SPATH;c:\Java\jdkl.8.0\bin

® Set Classpath to include the current directory, so

that javac and java know where used libraries are:

set CLASSPATH=. ..

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

™

e
Trace a Program Execution

Enter main method]

//This program prints Welcg to Java!

public class Welcome ({

public static void méin(String[] args) | {
System.out.println ("Welcome to Java!") ;

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

e

Trace a Program Execution

EXxecute statement]

//This program prints Welcg to Java!

public class Welcome ({

public static void magan (String[] args) {
System.out.println("Welcome to Java!") ;

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

e

Trace a Program Execution

//This program prints Welcome to Java!
public class Welcome ({

public static void main(String[] args) {
System.out.println("Welcome to Java'!");
}

<+ Command Promp =]

C:\book>java Welcome

Welcome to Java!

/[1
print a message to the

C:\book> - L00n30|e
4 > A

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

: Anatomy of Java Programs

® Comments

® Reserved words
® Moditiers

® Statements

® Blocks

® Classes

® Methods

® The main method

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook

™

" Comments

® Three types of comments in Java:

® [ine comment: A line comment is preceded by two

slashes (//) in a line.

® Paragraph comment: A paragraph comment is enclosed

between /* and */ in one or multiple lines.

® javadoc comment: javadoc comments begin with /*% and
end with */.

They are used for documenting classes, data, and methods.

They can be extracted into an HTML file using JDK's javadoc

command.

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook) /

" Comments :

The code that explains itself let it be (no need to comment).

- Good programmers can always figure out what something is done from the
code. But it is much more difficult to figure out why or how it was done.

- Just use good meaningful names for your identifiers (variables, methods).
public static int baseX2decimal(int base, String s){
Int dec = 0;
for(int i=0;i<s.length();i++) {
char ¢ = s.charAt(i);
I/ extract the decimal digit from the character 0..9 or A..Z for 10,11,...
Int e = ('0'<=c && c<='9")

5 c-'0' No other
. (a'<=c && c<='7') comments are
5 c'a'+10 needed.
:' A+ 10" Just comment

dec = dec*base + €; parts that are
) hard to

understand.

return dec;
@ } (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook) /

e
Reserved Words (Keywords)

® Reserved words or keywords are words

that have a specific meaning to the

compiler

™

e Cannot be used for other purposes

in the program

* Example: class

the word after class is the name for the class

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

/

" Java Keywords

abstract,assert,boolean,break,byte,
case,catch,char,class,const,continue
,default,do,double,else,enum,extends
,false,final,finally,float, for,goto,
if,implements,import,instanceof, int,
interface,long,native,new,null,
package,private,protected,public,
return,short,static,strictfp, super,
switch, synchronized, this, throw,
throws, transient, true, try,void,
volatile,while

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html

‘Modifiers

® Java uses certain reserved words called modifiers that

specify the Properties of the data, methods, and

classes and how they can be used

* Examples: public, static, private,
final, abstract, protected
A public datum, method, or class can be accessed by

other programs

A private datum or method cannot be accessed by

other programs

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

‘Statements

* Every statement in Java ends with a semicolon (;)

o Examplesz

System.out.print ("Welcome to Java!'");

without moving to the new line.

followed by a new line.

K (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

® A statement represents an action or a sequence of actions

is a statement to display the greeting "Welcome to Java!"

System.out.println("Welcome to Java!");

is a statement to display the greeting "Welcome to Java!"

/

‘Statements

® Printing is overloaded for all types in Java:
System.out.println(1);
System.out.println(1l.2) ;
System.out.println(true) ;

® Java is weakly typed:
System.out.print("result is " + 123);

is a statement to displays "resultis 123"

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

‘Blocks

A pair of braces in a program forms a block
that groups components of a program.

public class Test { < !
public static void main(String[] args) ({ e[Class block
System.out.println("Welcome to Java!'!"); pethod block

<€
<

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Block Styles

® We use end-of-line style for braces:

End-of-line

public class Test { <

public static void main(String[] args) {éf
System.out.println("Block Styles");

}
}

;Z Style
/,/’

Next-line
style

public class Test

> {
{

}
}

public static void main(String[] args)

System.out.println("Block Styles");

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

4 :
Programming Errors

® Syntax Errors

®Detected by the compiler
® Runtime Errors

*Causes the program to abort
® Logic Errors

*Produces incorrect result (may or may

not run INto a runtime error)

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook) /

" Syntax Errors

public class ShowSyntaxError ({
public static void main (String[] args)
i = 30; // Detected by the compiler
System.out.println(i + 4);

The program does not compile.

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

" Runtime Error

public class ShowRuntimeError ({
public static void main(String[] args) {
int i =1/ 0;
// Runtime error: Division with O

The program compiles (because it 1is
syntactically correct), but it crashes
at runtime.

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

" Logic Errors

public class ShowLogicError {

// Determine if a number is between 1 and 100 inclusively
public static void main(String[] args) {

Scanner input = new Scanner (System.in);

int number = input.nextInt();

// Display the result

System.out.println (

"The number is between 1 and 100, inclusively: " +
((1 < number) && (number < 100)));
// Wrong result if the entered number is 1 or 100

System.exit (0) ;

}
The program compiles and may run without
crash, but the results are incorrect!

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

" Logic Errors Debugging

® Logic errors are also called bugs

® The process of finding and correcting errors is called

debugging
® Methods of debugging:

® hand-trace the program (i.e., catch errors by reading
the program),
®insert print statements in order to show the values of

the variables

® for a large, complex program, the most effective

approach for debugging is to use a debugger utility

@ (c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook) /

(-

" Debugger

Debugger is a program that facilitates debugging.
You can use a debugger to:
*Step1: Set breakpoints where the execution
pauses when we are debugging.
*Step 2: Start the debugger and Execute a single
statement at a time from the first encountered
breakpoint.

*Trace into or stepping over a method.

ODisplay variables.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

& Java - _ (SE114_2013_Fallfsrc/Baccarat_GUI_draft.java - Eclipse

Ele Edit Source Refactor Navigate Search Project Sample Menu Run AURA SIK Window Help

|

20 -qQ - F [SN Reposito... %5 Debug | & Java £ Team Syndhr.. |
= Eﬂhum\ ﬂ%l,-v=ﬂ\ =7
N =

Lj can:ﬂ;ﬁ: -;Z
J_:J CSEl EP‘- 11 13_Fal]
-3/ _CSE114_2013 _Spring [CSE114_20 13_:1|:'r"n;|]
E-l=f edu.sunysb.bendh_svn [edu.sunysb. bench]
E-l=f RuleMLPaper [Rul=MLPaper]
F-l=f sbnip [s n:/fewl.cewit. stonybrook. edu/home pfodor frepositories fsvn
= T.r_-aj- sbpl [svn:/fewl. cewit. stonybrook. edu home, pfodor 'sbpl]
#-l=f shevn [s n: ffewd. cewit.stonybroak. edushsvn]
&= 1.:;‘* svyn_repository_vikas [svn:[fewl. cewit.stonybrook. edu/home fpfodor =
Bl WPLE_svn [svn: [fewd. cewit. stonybrook.edu/\WPLE_swn]
[L:ﬂ- wsh edipse [trunk/xsh_edipse]

public void refreshDisplay(String option){

System.out.println("Option: "+option);

if(option.equals("b41") || option.equals("ba2"

11.setText("Round "+rounds+"

531:€EI3 1 if(option.equals("b41")){

bet = 1;

}else if(option.equals("b42")){
bet = 2;

}else if(option.equals("b43"™)){
bet = 3;

lelse if(option.equals("b44™)){
bet = 4;

}else bet = 5;

142.setText("Bet: $"+bet);

b4l.disable();

b42.disable();

b51.erable();

b6.disable();

} else if(option.equals("b52")){

// implement second step of baccarat -
3

ll+l'lﬁc1

% Problems | @ Javadoc [(2, Dedaraton | (5 History [] Console 53 [} SV Propertes| < Bl - 4 ~ = O
Mo consoles to display at this time.,

0| | |

e Writable SmartInsert | 176:5 |

& Debug - __CSE114_2013_Fall/src/Baccarat_GUI_draft.java - Eclipse
File Edit Source Refactor Mavigate Search Project Sample Menu Run AURA SILK Window Help

SVN Reposito... | ¥k Debug & Java &Y Team Synchr...

-~ = Ty -
%5 Debug 22 i [. | il | AN 8 || ed= variables 52 ™. g Brealq::oints} =t [0
El--- Baccarat_GUI_draft [Java Application] | Name | Value
EI@ Baccarat_GUI_draft at localhost: 3008 a b4l JButton (id=72)
----- & Thread [AWT-Shutdown] {Running) & b4Z2 JButton (id=73)
----- & Daemon Thread [AWT-Windows] (Running) & b43 JButton (d=74)
=5 Thread [AWT-EventQueue-0] (Suspended (breakpaint at line 159 in Baccarat_GUI_ & b44 JButton (id=77)
----- = Baccarat_GUI_draft.refreshDisplay(String) line: 159 & b4s JButton (id=60)
----- = Baccarat_GUI_draft$s.actionPerformed (ActionEvent) line: 101 & b5l JButton (jd=78)
----- = IButton{AbstractButton).fireActionPerformed{ActionEvent) line: not available & bé JButton (jd=79)
----- = AbstractButton$Handler. actionPerformed{ActionEvent) line: not available & background ColorUIResource (id=50)
----- = DefaultButtonModel, fireActionPerformed{ActionEvent) line: not avaiable & backgroundEraseDisabled false
----- = DefaultButtonModel, zetPressed(boolean) line: not available 4| C ; B
----- = BasicButtonListener.mouseReleased(MouseEvent) line: not available
----- = JButton{Component),processMouseEvent(MouseEvent) line: not available
----- = JButton{JComponent). processMouseEvent(MougeEvent) line: not available
----- = JButton{Component).processEvent{AWTEvent) line: not available
----- = TRuttoniContainer).nroressFrentl AWTFvent) line: not availahle il
4| » K1
F . = E"‘ "D—_ : a - H L
4¥) Baccarat_GUI_draft.java 22 o= Outline &3 013 W o e w | &
2 System.out.println("Option: "+option);=l ;ﬁ new ActionListener() {...}
. . " " . | £® 7 main{String[]} : void
if(Gptmn.equa}s(b41") | Gpticn.equ ______ > BT
11.setText (Round “+rounds+* || 'S card_to_Imagelcon(int[) : Imagelcon
if(option.equals("b41™)){ L= | I ® 2 sum_hand(int[10, int) : int
_ | - @ * generate_card(int[[, int) : int[]
1al be-F_FE 1J . 1 f'"b ".’ .H. <l el generate_card(] : int[]
o e sle i obtion.eauals 42 L|_I @ 9 card_to_String(int[]) : String
- res | = - =
El console 3 s&,TasksW & E | Ex EE|IEI|IEI | 2 B -
Baccarat_GUI_draft [Java Application] C:YProgram Files\Javaijre T\hin\javaw.exe (Sep 12, 2013 11:17:36 AM)
1

	Slide 1: Introduction to Computers, Programs, and Java
	Slide 2: Contents
	Slide 3: What is a Computer?
	Slide 4: Central Processing Unit (CPU)
	Slide 5: (Main) Memory
	Slide 6: How Data is Stored and Processed?
	Slide 7: Number Systems
	Slide 8: Number Systems: Decimal
	Slide 9: Binary
	Slide 10: Binary Numbers => Decimals
	Slide 11: Common Binary Powers
	Slide 12: Decimal => Binary
	Slide 13: Hexadecimal and Octal
	Slide 14
	Slide 15
	Slide 16: Hexadecimals => Decimals
	Slide 17
	Slide 18: Windows Calculator
	Slide 19: So Hardware stores 0s & 1s
	Slide 20
	Slide 21: Memory: What goes in each memory segment?
	Slide 22: Programming Languages
	Slide 23: Programming Languages
	Slide 24: Programming Languages
	Slide 25: Programming Languages
	Slide 26: Popular High-Level Languages
	Slide 27: Source Code
	Slide 28: Source Code
	Slide 29: Interpretation
	Slide 30: Why Java?
	Slide 31: Compilation and Interpretation
	Slide 32: Java, JVM, Web, and Beyond
	Slide 33: Java Development Kit (JDK)
	Slide 34: Operating Systems
	Slide 35: A Simple Java Program
	Slide 36: Creating, Compiling, and Running Programs
	Slide 37
	Slide 38
	Slide 39: Settings: Compiling and Running Java from the Command Window
	Slide 40: Trace a Program Execution
	Slide 41: Trace a Program Execution
	Slide 42: Trace a Program Execution
	Slide 43: Anatomy of Java Programs
	Slide 44: Comments
	Slide 45: Comments
	Slide 46: Reserved Words (Keywords)
	Slide 47: Java Keywords
	Slide 48: Modifiers
	Slide 49: Statements
	Slide 50: Statements
	Slide 51
	Slide 52: Block Styles
	Slide 53: Programming Errors
	Slide 54: Syntax Errors
	Slide 55: Runtime Error
	Slide 56: Logic Errors
	Slide 57: Logic Errors Debugging
	Slide 58: Debugger
	Slide 59
	Slide 60

