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Abstract—Cross-border data movement has become increas-
ingly more costly, and even been prohibited due to data
sovereignty requirements. Consequently, geo-distributed inter-
active services, which rely on geographically distributed data
sets, is quickly emerging as an important class of workloads
in data centers and resulting in soaring electricity costs. While
numerous geographic load balancing (GLB) techniques exist to
exploit differences in electricity prices for cost savings, they
do not apply to emerging geo-distributed interactive services
due to two major limitations. First, they assume that each
request is processed only in one data center, whereas each geo-
distributed interactive request must be processed at multiple data
centers simultaneously. Second, they primarily focus on meeting
average latency constraints, whereas tail latencies (i.e., high-
percentile latencies) are more suitable to ensure a consistently
good user experience. In this paper, we make an early effort to
optimize GLB decisions for geo-distributed interactive services,
exploiting spatial diversity of electricity prices to minimize the
total electricity cost while meeting a tail latency constraint. Our
solution employs a novel data-driven approach to determine the
tail latency performance for different GLB decisions, by profiling
the network latency and data center latency at a low complexity.
We run trace-based discrete-event simulations to validate our
design, showing that it can reduce the electricity cost by more
than 7% while meeting the tail latency constraint compared to
the performance-aware but cost-oblivious approach.

I. INTRODUCTION

Operating information technology (IT) infrastructure at a
global scale is becoming a norm for large IT companies.
For example, Google and Facebook operate data centers all
around the world, both in their own self-managed data cen-
ters and leased spaces within multi-tenant data centers [1].
Consequently, data centers have quickly emerged as major
energy consumers among all industry sectors, constituting a
large fraction of their operators’ expenses [2]–[7].

In a geo-distributed data center system, locations can be
different in terms of electricity price, available renewables,
and carbon efficiency, among others. These spatial diversities,
combined with the geographic load balancing (GLB) tech-
nique, have been exploited by many prior studies for various
design purposes, such as reducing the energy cost [3], [5],
[8]–[10], maximizing the utilization of renewables [11], and
reducing the carbon footprint [4].

While the existing studies on GLB have made a promising
progress in optimizing data center energy management, they
exhibit two major limitations, and hence do not apply to many
emerging geo-distributed interactive services (e.g., real-time
global user/market analysis [12]).
• Processing one request in a single data center. Up to

this point, most of the prior research on GLB [5], [8], [9],

[13], [14] has considered that one incoming interactive job
(e.g., a web service request) is only scheduled on one of the
available data centers. This implicitly assumes that all the data
required to process the request is available and centralized in a
single data center site, and is also replicated in multiple sites.
This assumption, however, fails with an increasingly higher
frequency. In particular, as more and more data is generated in
geo-distributed locations (e.g., smart homes, IoT applications,
edge computing), making all the globally generated data
available in one or more data centers for centralized processing
has become very challenging, if not impossible. Concretely,
the main technical challenge is the sheer volume of locally-
generated data and the bandwidth required to transfer the
data over a large distance (e.g., across continents). Bandwidth
scarcity for wide area networks spanning several continents
is only expected to become worse in the future as demand
continues to grow rapidly [15]. Recent works have empha-
sized such technical limitations of the existing centralized
approach, and have proposed techniques to instead deploy geo-
distributed workload processing [15]–[17]. An additional, but
increasingly stringent, obstacle that invalidates the centralized
approach is the rising concern for data sovereignty/residence
and privacy that has been influencing many governments to
limit the transfer of data across the physical borders [18], [19].
Consequently, geo-distributed processing is quickly emerging
as the next-generation approach to processing workloads that
rely on distributed data sets [15]–[17].
• Average latency constraint. Interactive service providers

(e.g., interactive data analytics [20], search and recommen-
dations [21]) are increasingly using a tail latency (e.g., p95
latency, i.e., at most 5% of the requests can have a latency
exceeding a certain threshold) constraint as their service level
agreement (SLA), as it is more suitable than average latency
to ensure consistently low latencies [22]. Nonetheless, the ex-
isting GLB literature [5], [8], [9], [13], [14] has predominantly
focused on meeting the average latency (due, in part, to the
analytical convenience of modeling the service as a simple
queueing process).

In this paper, we make an early effort to overcome the
limitations in the current GLB literature to accommodate
the emerging geo-distributed interactive services. Specifically,
we consider an interactive service (e.g., worldwide market
analysis, interactive global data analytics [16], [17], [23],
among others) which relies on geo-distributed data sets.

We illustrate in Fig. 1 an overview of typical geo-distributed
interactive services. The global data is spread across multiple
regions (each consisting of several data centers), and data
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Fig. 1. Geo-distributed interactive service. Each request r is sent to multiple
regions. One data center, among possibly multiple available, processes the
workload at each region (green colored). The response time is determined by
the slowest response.

within each region is replicated across multiple data centers
in that region for fault tolerance and high availability. Thus, a
user request/job needs to be sent to all regions simultaneously;
however, only one data center in each region needs to be
selected for processing the request. In practice, a region can
correspond to a large country/continent (e.g., U.S., China,
Europe), within which moving data across different data center
locations is easier (due to a relatively shorter distance than
inter-region data movement) and meets the data residency
requirement.

While geo-distributed interactive services are quickly grow-
ing, minimizing their electricity cost subject to a tail latency
constraint is challenging. Specifically, as illustrated in Fig. 1,
user requests originate from different traffic sources, and each
request needs to be processed in multiple data centers. Thus,
unlike in the prior GLB research [5], [8], [9], [13], [14],
in our problem, one request will affect the energy cost of
multiple data centers. More importantly, the response time for
each request is determined by the slowest response among all
the data centers to which this request is sent. Consequently,
request processing involves a very complex interdependency
across multiple data centers, and the existing modeling tech-
niques, such as a simple M/M/1 queueing process [9], [10],
that capture the average latency, are not applicable in our
problem setting. Thus, meeting the tail latency is significantly
more challenging than the widely-considered average latency
constraint in the existing GLB research. In fact, minimiz-
ing/meeting the tail latency within one data center without
involving the large network latencies is already known to be a
challenging problem [22], let alone in a geo-distributed setting
that our study focuses on.

To address these challenges, we propose a novel geo-
distributed interactive service management framework, called
McTail (Minimizing electricity costs with a Tail latency con-
straint). McTail includes a GLB optimizer that optimally splits
the user traffic from each source to different geo-distributed
data centers to minimize the total electricity cost. To determine
the tail latency, McTail employs a data-driven approach that
profiles the probability distribution of requests’ response times
at runtime. To avoid the curse of dimensionality due to the

fact that each request needs to be processed in multiple data
centers, McTail uses a scalable approach to determine the tail
latency: it first profiles the latency statistics for each network
path between each traffic source and each data center, as
well as the latency statistics within each data center; then
it exploits the latency independence property (as detailed in
Section III-C) and calculates the end-to-end tail latency in a
computationally efficient manner. Finally, we conduct trace-
based simulations on an event-based simulator to validate
McTail, demonstrating that McTail can reduce the energy cost
by more than 7% while meeting the tail latency constraint,
compared to the state-of-the-art performance-aware, but cost-
oblivious, solution.

To summarize, this paper represents an early effort to
optimize GLB decisions that minimize the electricity cost for
geo-distributed interactive services subject to a tail latency
constraint. Concretely, we consider a novel setting of geo-
distributed interactive services that are in line with the emerg-
ing inter-continental bandwidth constraints and data residency
requirements. We also propose an efficient algorithm, McTail,
that can determine the tail latency and meet the latency
constraint, while exploiting price diversity in different data
centers for cost savings. Finally, we employ an event-based
simulation to validate McTail.

II. BASIC PROBLEM FORMULATION

We consider an interactive service provider that operates N
data centers around the world, represented by set N . There
are M different geographical regions, and we represent the
subset of data centers located in region m by Nm, where
m = {1, 2, · · · ,M}. Note that

∑m
i=1 |Nm| = N , where |Nm|

denotes the number of data centers in region m. Like in the
prior GLB literature [9], [10], [13], we consider a time-slotted
model where each time slot corresponds to a decision epoch
(e.g., 15 minutes). As the processing time for each interactive
request typically takes no more than a few seconds (much less
than a time slot), we omit the time indices for our time-slotted
model and update the GLB decision every time slot. Other
services (e.g., batch workloads) are assumed to be processed
by separate systems orthogonal to our study.

Energy model. As widely used and validated by the existing
GLB literature [3], [9], [24], the total energy consumption
at data center j (including all IT equipment such as servers
and switches) is expressed using a linear function of its total
workload as

ej(aj) = estaticj + edynamic
j · aj

µj
, (1)

where estaticj and edynamic
j are the static and dynamic energy

consumption, respectively, aj is the total workload of data
center j (measured in the same unit as the processing capacity,
e.g., request/second), and µj is the processing capacity of data
center j. Note that the network/routing devices located along
the network routes (and outside the considered data centers)
are typically operated by third-party Internet service providers
and hence their energy consumption is not included in our
model.



Tail latency model. We consider a tail end-to-end (between
the traffic source and the data center) latency performance con-
straint at each front-end gateway or concentrated traffic source
as illustrated in Fig. 1. Specifically, the high-percentile end-to-
end latency (e.g., 95-percentile or p95) of requests originating
from each source must be no greater than a threshold Di.
In other words, if x% is the percentile requirement, then at
least x% of the requests must have an end-to-end latency not
exceeding Di.

Considering S different traffic sources, the tail latency per-
formance of source i can be expressed as pi(~a,~r), a function
of data center workload ~a = {a1, a2, · · · , aN}, and network
route/path ~r = {ri,1, ri,2, · · · , ri,N}, where ri,j denotes the
network route from source i to data center j. Note that pi
represents the probability Pr(di ≤ Di) that the end-to-end
response time di for requests from traffic source i does not
exceed the target response time Di.

Problem formulation. Mathematically, the operator has the
following GLB optimization problem:

GLB-1: minimize
~a

N∑
j=1

[qj · ej(aj)] (2)

s.t. pi(~a,~r) ≥ PSLA
i ,∀i = 1, · · · , S (3)

aj ≤ µj ,∀j ∈ N (4)
where qj is the electricity price at data center j and PSLA

i

is the SLA target (e.g., 95% for p95 latency constraint) for
source i. Note that qj may be varying over different time
slots, as decided by local utilities. The objective function
(2) is the total electricity cost across all data centers, (3)
expresses the performance constraint set by the SLA, and
(4) ensures that the total workload sent to a data center does
not exceed its capacity. If network bandwidth limitations are
considered, additional constraints can be included to limit
the amount of traffic sent to each data center. Note that
the performance constraint in (3) is equivalent to the tail
latency constraint “p95 latency ≤ Di”. In this paper, we use
pi(~a,~r) = Pr(di ≤ Di) ≥ PSLA

i (where di is the end-to-end
latency for requests from source i), which will allow us to
conveniently present the design of McTail.

III. THE DESIGN OF McTail

We now present the design of McTail, which minimizes
energy costs for geo-distributed services with a tail latency
constraint. First, we will refine the GLB formulation to
account for: (i) geo-distributed processing, and (ii) tail la-
tency constraint (Section III-A). We then outline our solution
(Section III-B) and discuss the latency profiling technique
(Section III-C).

A. Problem reformulation

While we lay down the basic problem formulation in
Section II, we have yet to specify our GLB decisions for geo-
distributed processing and tail latency modeling, both of which
are crucial for our problem setting.

GLB with geo-distributed processing. A key novelty in
our study is that each user request is simultaneously sent to

one data center in each of the M geographical regions for
processing. That is, each request is sent to a group of M data
centers (called data center group).

Recall that each region m has a set Nm of data centers.
Thus, we have G =

∏M
m=1 |Nm| possible data center groups

for a request, where each group consists of one data cen-
ter from each region. Note that this assumes regional data
replication across data centers in that region (subject to data
residency requirement). If data is not replicated, the model can
be adapted by considering each un-replicated data center as a
separate region with only one data center.

At the traffic source i, we have a load distribution decision
vector ~λi = {λi,1, λi,2, · · · , λi,G}T , where λi,g ≥ 0 denotes
the amount of requests sent to group g from source i, and
Λi =

∑G
g=1 λi,g is the total workload from source i. Hence,

the total workload sent to data center j can be expressed as:

aj =

S∑
i=1

∑
g∈Gj

λi,g, (5)

where Gj represents the set of data center groups that have
data center j as an element.

The GLB decision now is to determine the load distribution,
~λi, for all sources. Considering all the traffic sources, we
can define the load distribution matrix λ = {~λ1, ~λ2, · · · , ~λS},
which is the main decision variable in our problem. Thus, our
problem of deciding the workload distribution to each group of
data centers generalizes the existing GLB literature that only
decides workload distribution to each single data center [3],
[9], [24].

Tail latency constraint. A key challenge in our problem is
how to determine the tail latency for each traffic source. To
meet the tail latency constraint in (3), we need to examine
each path between a source and a data center. Since we have
S sources and N data centers, there are a total of R = S×N
routes, each representing a network path from a source location
to a data center location. We represent the route from source
i to data center j by ri,j . The end-to-end response time of a
request along a certain route includes the network latency and
the latency incurred within the data center (which we call data
center latency).

In this paper, we focus on data center-level GLB decisions,
while treating the scheduling decisions within each data cen-
ter as orthogonal decisions (interested readers can refer to
[22] and references therein for more details of scheduling
techniques within data centers). As such, the decision under
consideration that affects a data center latency is GLB, (or,
equivalently, the total amount of workload sent to a data
center). Hence, we represent by proutei,j (aj , ri,j) the probability
that response time is less than Di for route ri,j , given workload
aj at data center j.

It is non-trivial to meet the tail latency constraint since each
request needs to be processed in a group of data centers.
Nonetheless, we make an observation that the end-to-end
response time of requests sent along one route is practically
independent of that along another route. The reason is that
each interactive request is small (taking no more than a few



seconds to complete), and data centers in different regions have
different data sets. These facts, combined with other random
factors (e.g., performance interference from other workloads,
system slowdown and warm-up at random times [21]), lead to
the consequence that latencies incurred in different data centers
can be viewed as uncorrelated and independent. In fact, even
for the same interactive service request processed at different
servers (but still with homogeneous settings) within the same
data center, the processing times can vary widely, by as much
as 10× [21], [25]. Additionally, considering that the network
latencies for different “source-data center” routes depend on
many other factors (e.g., traffic from other irrelevant services),
the response times for a request along different routes for geo-
distributed processing can be viewed as independent. Note,
however, that this observation may not hold for large jobs
(e.g., Hadoop-based batch data processing), whose completion
times primarily depend on the input data size [26] and hence
have correlated response times in different data centers. This
is left as our future work, while we focus on small interactive
services in this paper.

Based on the above latency independence property, we can
combine the response time probabilities along different routes
to express pgroupi,g (~a,~r) for requests from each source i to each
data center group g as:

pgroupi,g (~a,~r) =
∏
j∈J

proutei,j (aj , ri,j), (6)

where J is the set of data centers that are in the data center
group g. For example, if the data center group consists of two
data centers meeting the latency threshold with probabilities of
0.99 and 0.98, respectively, then the probability that a request
sent to both data centers will meet the latency threshold is
simply 0.99× 0.98 ≈ 0.97.

Further, since requests from source i are distributed among
multiple data center groups, the overall probability Pr(di ≤
Di) for requests from source i should be averaged across all
the involved data center groups and hence be expressed as

pi(λ) = pi(~a,~r) =
1

Λi

G∑
g=1

λi,g · pgroupi,g (~a,~r) (7)

where we use pi(λ) = pi(~a,~r) to emphasize that the latency
threshold satisfaction probability is a function of our GLB
decision.

Reformulated problem. We now reformulate the problem
GLB-1 to explicitly account for geo-distributed processing and
tail latency constraints as

GLB-2: minimize
λ

N∑
j=1

[qj · ej(aj)] (8)

s.t. pi(λ) ≥ PSLA
i ,∀i = 1, · · · , S, (9)

G∑
g=1

λi,g = Λi,∀i = 1, · · · , S, (10)

aj ≤ µj ,∀j ∈ N , (11)

where the constraint (10) ensures that all requests from a traffic
source are processed.

Traffic 
Gateway

Data Center Profiler, 𝑭𝑫(𝒙)

McTail

Network 
Profiler, 𝑭𝑵(𝒙)

Electricity Price, 𝒒𝒊

Traffic 
Gateway

Traffic 
Gateway

Data 
Center

Service 
Time 
Distribution

Network 
Latency 
Distribution

Data 
Center

Utilization

Utilization

Network 
Profiler, 𝑭𝑵(𝒙)

Network 
Profiler, 𝑭𝑵(𝒙)

Data Center Profiler, 𝑭𝑫(𝒙)

Load 
Distribution, 𝝀

Workload Prediction, 𝚲𝐢

Fig. 2. Overview of McTail. Network latency and data center latency are
profiled separately and sent to McTail periodically.

B. Overview of McTail

We show the overview of McTail in Fig. 2. The input to
McTail includes the profiled network latency and data center
latency distributions, the estimated workload arrival at each
source during the current time slot, and the electricity price in
each data center location. Then, McTail solves the problem
GLB-2 using a numerical optimization method [27] and
outputs the optimized GLB decisions that split the incoming
workloads at each source to different data center groups for
geo-distributed processing. Note that if the inputs to McTail,
e.g., profiled latencies, are inaccurate, the resulting GLB
decisions may not be optimal. Nonetheless, our evaluation
under realistic settings show that McTail is fairly robust against
inaccurate inputs (see Fig. 9 for details).

A key component of McTail is the latency profiler that
determines the tail latency performance, as discussed below.

C. Latency performance profiling

Up to this point, we have decomposed pi(λ), the probability
that the latency is less than the threshold Di for each source,
into (7). In order to solve GLB-2, we still need to determine
proutei,j (aj , ri,j), i.e., the probability that response time for
requests along the route from source i to data center j is less
than threshold Di.

Unfortunately, unlike the average latency that can be ob-
tained based on simple queueing-theoretic analysis [9], [10],
there is no simple closed-form expression for tail latency,
especially when the service time of each request is not
exponentially distributed. Thus, we resort to a data-driven
approach by profiling the response time statistics for each
route.

One approach is to directly profile the end-to-end response
time statistics given W levels of workload for each route,
where W represents the decision resolution and a larger W
means the latency model is finer grained (in our evaluation,
W = 10 is already a good setting). Using this approach,
we need S × N × W profiled distributions in total, which
may require considerable historical data for accurate profiling.
Further, the response time distributions need to be updated
whenever the latency, either network latency or data center
latency, changes significantly.
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Fig. 3. Data center latency and end-to-end Chile-Shanghai response time
distributions under 30% data center utilization.

In this paper, we reduce the amount of profiled data by
further decomposing the end-to-end response time for each
route into two parts: network latency and data center latency
(i.e., latency within a data center, including queueing time
and service time). The network latency is route-dependent
but workload-independent, whereas data center latency is
route-independent but workload-dependent. The reason for
workload-independent network latency is that it is primarily
affected by the long-distance backbone network capacity, and
the traffic of our considered interactive service is negligible
compared to the total traffic sharing the same link.

Consequently, we denote the profiled network latency for
route ri,j as FN

i,j , and the data center latency distribution as
FD
j (x), for data center j given its total workload of x. Then,

the end-to-end latency distribution for ri,j becomes

FR
i,j(x) = FN

i,j ∗ FD
j (x), (12)

where “∗” denotes the convolution operator. Then, from (12),
we can easily calculate proutei,j (aj , ri,j), which is the basis for
determining the tail latency performance pi(λ) via (6) and (7).

To obtain the tail latency performance pi(λ) using our
decomposition approach, we only need to profile S × N
network latency distributions and N ×W data center latency
distributions. This results in significantly less profiling com-
plexity than directly profiling each end-to-end route latency
distribution (which needs S ×N ×W profiled distributions).

Profiling overhead. Profiling the network and data center
latency distributions in McTail does not represent a sig-
nificant overhead in the existing system. In fact, existing
geo-distributed data center management systems are often
performance-driven and hence already closely monitor the
runtime performance of different components at an even finer
granularity (e.g., inside the server and network) [?], collecting
enough information for our purposes.

Even compared to the existing GLB literature [3], [4], [9],
[10] that focuses on cost minimization subject to average
latency constraints, we need a comparable amount of infor-
mation for implementing McTail. The difference is that the
existing GLB approaches often approximate the data center
average latency using simple queueing-theoretic modeling and
profiling of the service rate in each data center [3], [4], [9],
[10], whereas we adopt a data-driven approach to capture tail
latency, which is more appropriate to ensure a consistently
satisfactory performance for real-world applications.

In practice, the data center latency distribution does not
vary frequently as long as the workload composition does not
change significantly, while the network latency distribution
may vary more frequently (due to uncontrollable external
factors [28]) but is already being closely monitored by service
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Fig. 4. Service demand distribution.

providers. Thus, similar to existing GLB research [3], [4],
[9], [10], McTail can be applied by periodically updating the
latency distributions without introducing too much overhead.
Further, even in the highly unlikely case of profiling failures
(e.g., frequent changes in latency distributions), McTail can
fall back to the default/baseline performance-aware GLB as
a fail-over mechanism. Thus, McTail will not increase the
energy cost compared to the default solution in any case.

Example of performance profiling. We now show an
example of performance profiling for the path between Chile
and Shanghai for Microsoft Bing workload. We resort to a
discrete-event simulator, Mathworks’s SimEvents [29], that
models request-level processing in geo-distributed systems.
Details for the service time and network latency distributions
are discussed in Section IV. Fig. 3(a) shows the data center
latency distribution (queueing delay plus service time), while
Fig. 3(b) shows the end-to-end Chile-Shanghai latency distri-
bution obtained by performing a convolution on the data center
latency and network latency distributions according to (12).

IV. PERFORMANCE EVALUATION

We now present our evaluation results for McTail, which
minimizes the total electricity cost while meeting the tail
latency constraint. We first describe the default settings we use
to simulate a geo-distributed interactive service (Section IV-A),
and then present our simulation results illustrating the perfor-
mance of McTail (Section IV-B). We then discuss the impact
of several factors, such as SLA and prediction errors, on
McTail’s performance (Sections IV-C and IV-D). Throughout
the evaluation, we use Mathworks SimEvents for our large-
scale simulations as discussed in Section III-C.

A. Settings

Simulator. SimEvents takes as inputs the service time and
network latency distributions, which it then uses to simulate
queueing and request processing. It is a popular discrete-
event simulator and can well capture the real-world service
process [30]. By default, we consider Microsoft Bing search
workload [30]. The left figure in Fig. 4 shows the detailed
service demand distribution used in our simulation. Bing
workload originally has a service time between 5 and 120
milliseconds [30], which is much lower than inter-continental
network latency. Thus, to make it more comparable to the
network latency, we scale the Bing service demand to 0.1 to
0.8 seconds, while keeping the same relative distribution. The
spike at the end of the Bing distribution in Fig. 4 indicates a
timeout response. We also use bounded Pareto distribution for
sensitivity analysis.
Traffic source and data center locations. We simulate
five front-end gateways/traffic sources and nine data centers
located across the world in three different regions: North
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Fig. 5. Traffic source and data center locations used in our simulation setting.

America, Europe, and Asia (China). There are three data
centers in each region. Although McTail does not require
homogeneous data center settings, we use the same capacity
at all data centers to simplify the simulation setting. The data
center and request sources are shown in Fig. 5. The locations
are chosen based on a subset of actual data center sites of
Google and Facebook [31], [32]. For network latencies, we use
half-normal distributions [33], where the mean and standard
deviation depends on the distance between the source and the
data center. We approximate the mean by considering round
trip network latency of 1.64 milliseconds per 100 miles [34].
Workload trace. The source workload traces are taken from
different services of Google and Microsoft [35], [36]. The
trace data specifies the average normalized arrival rate over
time and suffices for our purpose. The workloads are scaled
to have a realistic average data center utilization of 30% [37].
Energy costs. We use the electricity price at each data center
location to determine the energy costs. For North America we
use the local utility prices [38]–[40], for Europe we use the
electricity prices reported in [41], and for China/Asia region
we use [42]. The workload traces and electricity prices are
shown in Fig. 6.
SLA and simulation settings. We set 1.5 seconds as the SLA
threshold for p95 response time. The simulation period is 24
hours with load distribution decisions being updated every 15
minutes. We consider data center servers that have 40% static
and 60% dynamic energy consumption.
Baseline.We compare McTail with a performance-aware but
cost-oblivious approach widely used as a benchmark for GLB
research [9]. This approach distributes the workload among
all data center groups according to their capacities to balance
the utilization. Since the data centers under consideration
have the same capacity, the performance-aware will uniformly
distribute workloads among data center groups. Hence, we call
it EQL (EQual Load distribution). The existing GLB research
[3], [4], [9], [10] does not apply to our problem setting and
hence is not included for comparison.

B. Cost and performance

Fig. 7(a) shows the normalized cost of McTail and EQL,
and Fig. 7(b) shows the performance in terms of probability
that the response time meets the SLA latency threshold of
1.5 seconds. We see that McTail has lower energy costs than
EQL throughout the simulation period since it exploits the
difference in electricity prices in different data center locations.

0 6 12 18 24
Hour

0.0

0.5

1.0

N
o
rm

a
li
z
e
d

 W
o
rk

lo
a
d

Oklahoma
Chile
Belgium

0 6 12 18 24
Hour

0.0

0.5

1.0

Singapore
Sydney

(a)

O
re

go
n

N
. C

ar
ol

in
a

Io
w
a

Sw
ed

en

Ir
el

an
d

N
et

he
rl
an

ds

Bei
jin

g

Sh
an

gh
ai

H
on

g 
Kon

g
0.00

0.05

0.10

0.15

E
le

c
tr

ic
it

y
 (

¢
/k

W
h

)

(b)

Fig. 6. Workload traces and electricity prices.

Over the entire 24 hours period, McTail saves more than
7% in electricity costs while ensuring that the probability
of response time being less than 1.5 seconds remains above
95%. Note that, in Fig. 7(b), the latency threshold satisfaction
probability for at least one of the source locations is very
close to 95% at all times. This makes sense intuitively as
otherwise McTail could realize greater cost savings by shifting
additional workload to cheaper data center locations as long
as the latency threshold satisfaction probability remains above
95% for all sources.

Fig. 7(c) shows how McTail takes advantage of cheaper
electricity by sending more workloads to data centers with
low electricity prices. As each request is simultaneously sent
to all the regions for processing, the total amount of workload
at each region is the same. Therefore, we only show the North
America region for illustration. Observe that around time slot
48, McTail shifts workload from N. Carolina to the other two
data centers as the electricity price of N. Carolina goes up.
Later, at around time slot 80, workload is again shifted back
to N. Carolina as its electricity price drops.

C. Impact of SLA

The SLA constraints can impact the performance and cost
savings of McTail considerably. We study the impact of
changing the two SLA parameters, namely, the response time
threshold Di, and the tail percentile PSLA

i .
Fig. 8 shows our results for different SLA parameters.

Keeping the tail percentile at 95, we vary the response time
threshold from 1.5 seconds to 2 seconds, and show the cost
savings in Fig. 8(a). The whiskers represent the maximum
and minimum cost savings in any time slot over the 24 hour
simulation period. The box represents the lower (25%) and
upper quartile (75%) savings. The markers inside the box
represent the mean. We see that when the response time
threshold is increased (i.e., relaxed), McTail yields better cost
savings. This is intuitive as with a relaxed threshold, McTail
can process more work in economical data centers without
violating the SLA.

Fig. 8(b) illustrates the impact of tail percentile setting. We
keep the response time threshold fixed at 1.5 seconds and vary
the tail percentile from 90 to 95. Again, as expected, a lower
percentile provides greater flexibility for McTail, and results
in increased cost savings.

D. Sensitivity analysis

Response time profiling error. We use the response time
distribution of each source to data center path in McTail.
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Fig. 7. Comparison of cost and performance between McTail and EQL. (a) Normalized electricity cost over time. (b) Probability that response time is below
the 1.5 seconds SLA threshold. (c) Load distribution across the three data centers in North America.
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Fig. 8. Impact of change in response time threshold Di and tail percentile
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i . Relaxing the SLA constraints increases the cost savings
under McTail.
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Fig. 9. Impact of delay prediction error and conservative workload prediction.

However, there could be some error in the response time
distribution profiling due to slow profiling or outliers. One
conservative way to handle this uncertainty is to overpredict
the response time to allow some room for errors, while still
meeting the tail latency constraint. In Fig. 9(a), we study how
overprediction affects McTail in terms of cost savings. Specif-
ically, we underestimate the probability that the response time
is less than our delay threshold along each path, by scaling
down the profiled probability. Then, instead of considering
the default p95 latency constraint, we relax the SLA to the
p90 latency constraint (with the same threshold), since there
may not be a feasible solution if we underestimate the latency
satisfaction probability. We see that the cost savings largely
remain unchanged even at 8% overprediction, demonstrating
the robustness of McTail against latency profiling errors.
Workload prediction. Another important aspect of McTail is
that it updates the load distribution matrix λ periodically (e.g.,
every 15 minutes) based on estimated workload for the next
decision slot. Similar to response time, workload overpredic-
tion can be employed to keep head room for prediction errors.
In Fig. 9(b), we study the impact of workload overprediction
on cost savings. We overpredict the workload during decision
making but use the actual workload when we determine the
electricity costs. We see that although high overprediction
decreases the cost savings, the reduction is very small, less
than 0.5% for even a 10% overprediction. This shows that
McTail is not very sensitive to workload prediction error.
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Fig. 10. Cost and performance with bounded Pareto distribution.

Service time distribution. We now consider a synthetic
service time distribution — bounded Pareto distribution, be-
tween 0.1 to 0.8 seconds as illustrated in the right figure
of Fig. 4, which is shown to be representative of real-world
distributions [43]. Fig. 10 shows the cost and performance
for this distribution. We see that the results are qualitatively
similar to those in Figs. 7(a) and 7(b): McTail reduces the
cost by roughly 8% compared to EQL while meeting the
p95 latency threshold of 1.5 seconds. This demonstrates that
McTail works well under different service time distributions.

V. RELATED WORK

Data center energy management has become increasingly
important as the electricity price continues to grow. For exam-
ple, energy proportionality by dynamic server provisioning [7],
[44] has been a proven technique to cut energy consumption.
Our study is mostly related to energy management in large
geo-distributed data center systems, for which many studies
have exploited spatial diversities to optimize GLB while
meeting latency constraints. Here, we briefly discuss these
works. [3], [8]–[10] schedules workloads to data centers to
lower electricity prices for cost savings, [5], [11] considers the
on-site intermittent renewables and studies GLB techniques
that “follow the renewables”, and [4] considers the carbon
efficiency diversity and routes workloads to greener data
centers. These studies, however, all assume that each request
is processed in only one data center, which does not apply to
geo-distributed interactive services which need processing over
multiple data centers simultaneously due to geo-distributed
data that is costly and/or forbidden to move across different
regions.

Geo-distributed workload processing has been quickly
emerging as an important workload and has received much
attention recently [16], [17], [23], [45]. For example, [45]
exploits adaptive execution and trades accuracy for respon-
siveness, [16] proposes some heuristics to optimize data and
task placement across geo-distributed systems, while [17] stud-



ies coordinated scheduling across data centers such that the
scheduling inside one data center also considers the utilization
and congestion level in other data centers. These solutions
are complementary to our study, as they focus on scheduling
workloads inside data centers while we focus on GLB across
data centers. Further, these studies do not exploit the spatial
diversity of electricity prices to minimize the total electricity
cost while meeting a tail latency constraint.

VI. CONCLUSION

In this paper, we made an early effort to optimize GLB
decisions that minimize the electricity cost for the emerging
geo-distributed interactive services subject to a tail latency
constraint. Compared to the rich literature on GLB, we made
two contributions: first, we formulated the GLB problem
for geo-distributed interactive services which rely on request
processing in multiple data centers due to distributed data
sets; second, we proposed an efficient algorithm, McTail, that
employs a data-driven approach to efficiently determine the
tail latency performance. Finally, we performed an event-based
simulation study to validate McTail.
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