CSE 594 : Modern Cryptography

Lecture 20: Non interactive Zero Knowledge

Instructor: Omkant Pandey Scribe: Venkata Kedarnath Pakala, Sayan Bandyopadhyay

1 Setting

In previous lecture, we discussed about interactive zero knowledge proof. But what if Prover (Alice) is restricted to send only a single message to verifier (Bob). Proof becomes 'Non interactive'. But 1-message zero-knowledge proofs is only possible for languages in bounded probabilistic polynomial (**BPP**) because a simulator that can simulate the single message can use this as witness for x. This is useless as we want to prove statements for languages in **NP**

Fortunately, Alice and Bob have access to common random string generated honestly by someone they both trust. This common random string can be used for proving statements noninteractively.

2 Definition 1 (NIZK)

A non interactive proof system for language L with witness relation R is a tuple of algorithms (K,P,V) such that:

- Setup : $\sigma \leftarrow \mathbf{K}(1^n)$ outputs a common random string
- Prove : $\pi \leftarrow \mathbf{P}(\sigma, x, w)$ takes as input a common random string σ and a statement $\mathbf{x} \in \mathbf{L}$ and a witness w and outputs a proof π
- Verify : $\mathbf{V}(\sigma, x, \pi)$ outputs 1 if it accepts the proof and 0 otherwise.

A non interactive proof system must satisfy the properties of completeness and soundness as shown below :

Completeness : $\forall x \in L, \forall w \in R(x)$: $Pr[\sigma \leftarrow K(1^n); \pi \leftarrow P(\sigma, x, w) : V(\sigma, x, \pi) = 1] = 1$

Non-Adaptive Soundness : There exists a negligible function v(.) s.t. $\forall x \notin L$ $Pr[\sigma \leftarrow K(1^n); \exists \pi s.t. V(\sigma, x, \pi) = 1] \leq v(n)$

Adaptive Soundness : There exists a negligible function v(.) s.t. $Pr[\sigma \leftarrow K(1^n); \exists (x,\pi)s.t. \forall x \notin L \land V(\sigma, x, \pi) = 1] \leq v(n)$

The reader should note that in non adaptive soundness adversary chooses x before seeing the common random string while in adaptive soundness adversary can choose x based on common random string, implies Adaptive soundness is stronger notion of soundness.

Similar to soundness we have two types of non interactive zero knowledge (NIZK). We can transform a non-adaptive NIZK to one with adaptive soundness in a way similar to hardness amplification.

3 Definition 2(Non adaptive NIZK)

A non interactive proof system (K,P,V) for a language L with witness relation R is non adaptive zero-knowledge if there exists a PPT simulator **S** s.t. for every $x \in L$, $w \in R(x)$, the output distribution of the following two experiments are computationally indistinguishable :

$REAL(1^n, x, w)$	$IDEAL(1^n, x)$
$\sigma \leftarrow K(1^n)$	$(\sigma,\pi) \leftarrow \boldsymbol{S}(1^n,x)$
$\pi \leftarrow P(\sigma, x, w)$	
$Output(\sigma,\pi)$	$Output(\sigma,\pi)$

Here the simulator is allowed to generate both the common random string and the simulated proof for a given input statement x. If simulator S is not allowed to generate σ , the definition would have been trivial as verifier could have convinced himself by running the simulator instead of interacting with P. Allowing S still keeps the definition zero knowledge as verifier sees both σ and π but P and S are treated unequally.

4 Definition 3(Adaptive NIZK)

A non interactive proof system $(\mathbf{K}, \mathbf{P}, \mathbf{V})$ for a language \mathbf{L} with a witness relation \mathbf{R} is adaptive zero knowledge if there exists a PPT simulator $\mathbf{S}=(S_0, S_1)$ s.t. for every $\mathbf{x} \in \mathbf{L}$, $\mathbf{w} \in \mathbf{R}(\mathbf{x})$, the output distribution of the following two experiments are computationally distinguishable :

$REAL(1^n, x, w)$	$IDEAL(1^n, x)$
$\sigma \leftarrow K(1^n)$	$(\sigma,\tau) \leftarrow S_0(1^n)$
$\pi \leftarrow P(\sigma, x, w)$	$\pi \leftarrow S_1(\sigma, \tau, x)$
$Output(\sigma,\pi)$	$Output(\sigma,\pi)$

Here τ is the "trapdoor" for simulated common random string σ that is used by simulator S_1 to generate an accepting proof for x without knowing the witness.

Here τ should be considered as the local state stored by the simulator.

Remarks on NIZK :

- 1. In NIZK, the simulator gets seemingly "extra power" in choosing common random string along with trap door to enable simulation without a witness.
- 2. While in interactive ZK, the simulator's extra power was the ability to reset the verifier.
- 3. It turns out that, simulator must always have extra power over the normal prover else it would be impossible to realize the definition in the languages other than BPP.
- 4. In NIZK, the extra power is justified as we require the indistinguishability of the joint distribution over σ and π

Now, let us show that adaptive soundness is much harder to achieve by constructing it from NIZK with non adaptive soundness with a procedure similar to hardness amplification.

Lemma : Given a NIZK(K,P,V) with non-adaptive soundness, we can construct NIZK(K,P,V) with adaptive soundness.

Proof: Let us consider a σ "bad" for x_0 if (for $x_0 \notin L$) then \exists a false proof π for x_0 using random string σ s.t. $V(\sigma, x, \pi) = 1$ Let $\ell(n)$ be the length of the statements Now, if we repeat the non-adaptive NIZK polynomially many times each time choosing fresh random string σ , the probability of σ being "bad" for x_0 decreases to $2^{-2\ell(n)}$. By using union bound we can determine the probability of σ being "bad" for all statements $(x \in L)$ as follows : $Pr[\exists (x,\pi)s.t.V(\sigma,x,\pi) = 1]$ $= Pr[\sigma \text{ bad for some x }]$ $\leq 2^{\ell(n)} * Pr[\sigma \text{ bad for } x_0]$ $= 2^{\ell(n)} * 2^{-2\ell(n)}$

So, this repeated scheme becomes adaptively sound.

5 NIZK for NP

NIZK for NP is constructed first from non-adaptive zero-knowledge property and then convert non-adaptive NIZK to adaptive NIZK

Steps to construct NIZK for NP from non-adaptive zero-knowledge property are :

- 1. Construct a NIZK proof system for **NP** in the **hidden bit model**. this step is unconditional.
- 2. Using trapdoor permutation, transform any NIZK proof system for language in hidden bit model to a non-adaptive NIZK proof system in the common random string model.

Next transform non-adaptive NIZK to adaptive NIZK for **NP** using one-way functions which are implied by trap door permutations.

Putting all the steps together, we get adaptive NIZKs for **NP** using trapdoor permutations.

6 NIZK in Hidden-Bit Model

6.1 Syntax

A non-interactive proof system for a language L with witness relation R in the hidden-bit model is a tuple of algorithms

- Setup : $\sigma \leftarrow K_{HB}(1^n)$ outputs the hidden random string
- Prove : $(I, \pi) \leftarrow P_{HB}(\sigma, x, w)$ generates the indices $I \subseteq [|r|]$ of r to reveal, along with a proof π
- Verify : $V_{HB}(I, \{r_i\}_{i \in I}, \pi)$ outputs 1 if it accepts the proof and 0 otherwise.

The above proof must satisfy completeness and soundness like above

6.2 Definition

A non-interactive proof system (K_{HB}, P_{HB}, V_{HB}) for a language L with witness relation R in the hidden-bit model is (non-adaptive) zero-knowledge if there exists a PPT simulator S_{HB} s.t. for every $x \in L, w \in R(x)$, the output distributions of the following two experiments are computationally indistinguishable:

$$\begin{array}{c} REAL(1^n, x, w) & IDEAL(1^n, x) \\ \hline \sigma \leftarrow K_{HB}(1^n) & (I, \{r_i\}_{i \in I}, \pi) \leftarrow S_{HB}(1^n, x) \\ Output(I, \{r_i\}_{i \in I}, \pi) & Output(I, \{r_i\}_{i \in I}, \pi) \end{array}$$

7 Conversion from NIZK in HB to NIZK in CRS

7.1 Intuition

How to transform a public random string into a hidden random string? Suppose the prover samples a trapdoor permutation (f, f^{-1}) with hardcore predicate h. Given a common random string $\sigma = \sigma_1, \sigma_2, ..., \sigma_n$ the prover can compute $r = r_1, ..., r_n$ where:

$$r_i = h(f^{-1}(\sigma_i))$$

If f is a permutation and h is a hard-core predicate, then r is guaranteed to be random. Now r can be treated as the hidden random string: V can only see the parts of it that the prover wishes to reveal

7.2 Construction

Let $F = \{f, f^{-1}\}$ be a family of 2^n trapdoor permutations with hardcore predicate h. Let (K_{HB}, P_{HB}, V_{HB}) be a NIZK proof system for L in the hidden-bit model with soundness error 2^{2n}

Construction of (K,P,V):

 $K(1^n)$: Output a random string $\sigma = \sigma 1, ..., \sigma n$ s.t. $\forall i, |\sigma_i| = n$ $P(\sigma, x, w)$: Execute the following steps:

- Sample $(f, f^{-1}) \leftarrow F(1^n)$
- Compute $\alpha_i = f^1(\sigma_i)$ for $i \in [n]$
- Compute $r_i = h(\alpha_i)$ for $i \in [n]$
- Compute $(I, \phi) \leftarrow PHB(r, x, w)$
- Output $\pi = (f, I, \{\alpha_i\}_{i \in I}, \Phi)$
- V(, x,): Parse $\pi = (f, I, \{\alpha_i\}_{i \in I}, \phi, \Phi)$ and:
 - Check $f \in F$ and $f(\alpha_i) = \sigma_i$ for every $i \in I$
 - Compute $r_i = h(\alpha_i)$ for $i \in I$
 - Output $VHB(I, r_{ii \in I}, x, \Phi)$

Notes:

- Completeness $\rightarrow \alpha$ is uniformly distributed since f^1 is a permutation and σ is random. Further, since h is a hard-core predicate, r is also uniformly distributed. Completeness follows from the completeness of (K_{HB}, P_{HB}, V_{HB})
- Soundness \rightarrow : For any $f = f_0$, r is uniformly random, so from (non-adaptive) soundness of (K_{HB}, P_{HB}, V_{HB}) , we have:

$$\Pr_{\sigma}[\text{Pcan cheat using f0}] \le 2^{-2n}$$

Since there are only 2^n possible choices of f (verifier checks that $f \in F$), by union bound, it follows:

 $\Pr_{\sigma}[\text{Pcan cheat}] \le 2^{-2n}$

7.3 Proof of zero knowledge: Simulator

Let SHB be the simulator for (K_{HB}, P_{HB}, V_{HB})

1: procedure SIMULATOR S(1N, X) 2: $(I, \{r_i\}_{i \in I}, \Phi) \leftarrow S_{HB}(1^n, x)$ 3: $(f, f^{-1}) \leftarrow F$ 4: $\alpha_i \leftarrow h^{-1}(r_i), \forall i \in I$ 5: $\sigma_i = f(\alpha_i), \forall i \in I$ 6: $\sigma_i \stackrel{\$}{\leftarrow} \{0, 1\}^n, \forall i \notin I$ 7: Return $(\sigma, f, I, \{\alpha_i\}_{i \in I}, \Phi)$ 8: end procedure

Note: $h^1(r_i)$ denotes sampling from the pre-image of r_i , which can be done efficiently by simply trying random α_i 's until $h(\alpha_i) = r_i$

7.4 Proof of zero knowledge: Hybrid

1: procedure $H_0(1^n, x, w) := REAL(1^n, x, w)$ 2: $\sigma \leftarrow K(1^n)$ where $\sigma = \sigma_1, ..., \sigma_n$ 3: $(f, f^{-1}) \leftarrow F$ 4: $\alpha_i \leftarrow f^{-1}(\sigma_i), \forall i \in [n]$ 5: $r_i = h(\alpha_i), \forall i \in [n]$ 6: $(I, \Phi) \leftarrow P_{HB}(r, x, w)$ 7: Return $(\sigma, f, I, \{\alpha_i\}_{i \in I}, \Phi)$ 8: end procedure

1: procedure $H_1(1^n, x, w)$ 2: $\alpha_i \stackrel{\$}{\leftarrow} \{0, 1\}^n, \forall i \in [n]$ 3: $(f, f^{-1}) \leftarrow F$ 4: $\sigma_i \leftarrow f(\alpha_i), \forall i \in [n]$ 5: $r_i = h(\alpha_i), \forall i \in [n]$ 6: $(I, \Phi) \leftarrow P_{HB}(r, x, w)$ 7: Return $(\sigma, f, I, \{\alpha_i\}_{i \in I}, \Phi)$ 8: end procedure

 $H_0 \approx H_1$: In H_1 , we sample α_i at random and then compute σ_i (instead of sampling σ_i and then computing α_i as in H_0). This induces an identical distribution since f is a permutation. So the order of the 2 operations can be reversed.

1: procedure $H_2(1^n, x, w)$ 2: $r_i \stackrel{\$}{\leftarrow} \{0, 1\}^n, \forall i \in [n]$ 3: $(f, f^{-1}) \leftarrow F$ 4: $\alpha_i \leftarrow h^{-1}(r_i), \forall i \in [n]$ 5: $r_i = f(\alpha_i), \forall i \in [n]$ 6: $(I, \Phi) \leftarrow P_{HB}(r, x, w)$ 7: Return $(\sigma, f, I, \{\alpha_i\}_{i \in I}, \Phi)$ 8: end procedure

 $H_1 \approx H_2$: In H_2 , we again change the sampling order: first sample $r = r_1, ..., r_n$ at random and then sample α_i from the pre-image of r_i (as described earlier). This distribution is identical to H_1

1: procedure $H_3(1^n, x, w)$ $r_i \stackrel{\$}{\leftarrow} \{0, 1\}, \ \forall i \in [n]$ 2: $(f, f^{-1}) \leftarrow F$ 3: $\alpha_i \leftarrow h^{-1}(r_i), \quad \forall i \in [n]$ 4: $(I, \Phi) \leftarrow P_{HB}(r, x, w)$ 5: $\sigma_i = f(\alpha_i), \quad \forall i \in I$ 6: $\sigma_i \stackrel{\$}{\leftarrow} \{0,1\}^n, \quad \forall i \notin I$ 7: **Return** $(\sigma, f, I, \{\alpha_i\}_{i \in I}, \Phi)$ 8: 9: end procedure

Here in H_3 we are taking one extra computation step. $H_2 \approx_c H_3$: In H_3 , we output random σ_i for $i \in I$. From security of hard-core predicate h, it follows that:

 ${f(h^1(r_i))} \approx_c Un$

Indistinguishability of H_2 and H_3 follows using the above equation

1: procedure $H_4(1^n, x)$ 2: $(I, \{r_i\}_{i \in I}, \Phi) \leftarrow S_{HB}(1^n, x)$ 3: $(f, f^{-1}) \leftarrow F$ 4: $\alpha_i \leftarrow h^{-1}(r_i), \quad \forall i \in I$ 5: $\sigma_i = f(\alpha_i), \quad \forall i \in I$ 6: $\sigma_i \stackrel{\$}{\leftarrow} \{0, 1\}^n, \quad \forall i \notin I$ 7: Return $(\sigma, f, I, \{\alpha_i\}_{i \in I}, \Phi)$ 8: end procedure

 $H_3 \approx_c H_4$: In H_4 , we swap P_{HB} with S_{HB} . Indistinguishability follows from the zero-knowledge property of (K_{HB}, P_{HB}, V_{HB})