
CSE 594 : Modern Cryptography 04/04/2017

Lecture 17: More Constructions

Instructor: Omkant Pandey Scribe: Aravind Warrier, Bharathkrishna Guruvayoor

Murali

1 Discrete Log Based Collection of OWFs

Consider the following Discrete Log based collections of one way functions, DL: {fi: Di → Ri}
defined as follows:

• I: {(q, g) q ∈ Πn g ∈ GENGg }

• Di: {x ‖ x ∈ Q}

• Ri: Gq

• fg,q(d):

gd ∈ Gq. gd means applying the group operator, d times. When you do this you are circling
over all the elements in the group. So you can identify the elements with just d.

Each of the functions above are easy to compute. From the discrete logarithm assumption,
these functions fq,g are hard to invert at the same time. The only issue with this is sampling the
index (q, g) where g is the generator. In general, it is not known however, in special cases such as
Gq being a subgroup of Z∗p for a safe prime p, it is easy. So we have to assume that Gq comes with
an algorithm to sample from I.

Collision Resistant Hash Functions

The Discrete Log problem is defined as ”Given g, a generator and p, a prime number and y = gx

mod p, find x”. Here we are slightly modifying it. Instead of working with Z∗p we are working
with prime order sub group of Z∗p. In general, we can work with any prime order sub group. The
hash functions are indexed by the index i and are identified by (p, g, y). y is sampled randomly.
Because in CRHF, you don’t have to keep any secret. Taking discrete log of y w.r.t g should be
hard. This function is for compressing only 1 bit. If we can compress one bit, we can compress
polynomially many bits. Collision resistant hash functions is a set of such hash functions defined
as H = {hi}i, where i is the index defined as above.

The input for one-bit compression will be x concatenated by a bit b, where x ∈ Zq

hi(x||b) = gx · yb (1)

If we can find devise and Adversary A that can find collision for random i, then we can use the same
Adversary to compute the Discrete Logarithm efficiently. So if the Discrete Logarithm problem is
hard. This shouldn’t be possible.

Proof.
We know that:

x || b 6= x’ || b’
but, hi(x || b) = hi(x’ || b’)

17-1

hi(x||b) = hp,g,y(x, b) = hi(x
′||b′) (2)

(3)

if b = b’, then since hash will be a permutation, the discrete logarithm should also be unique.
if b = b’, then x = x’. So for the input to be distinct, then b 6= b’.
With out loss of generality, lets assume b = 0 and b’ = 1 .

gx · yb = gx
′ · yb′ (4)

⇒ gx mod p = gx
′ · y mod p (5)

⇒ y = gx−x
′
mod p (6)

⇒ x - x’ is the DL of y (7)

We already know x and x’. The adversary already gave it.

Extending to compress many bits

The proof above shows how to compress 1-bit extension, because we were working with Z∗p. But
if you work with any prime order sub group, then it works for two elements as well. We can two
group elements and do the exact same computation. This is an efficient construction. Lets assume
that Gq is a q-order sub group of Z∗p . This time the input won’t be x concatenated with a bit b,
instead, the input contains two elements: (x1, x2), where x1, x2 ∈ Zq. The hash function hi is
defined as:

hi(x1||x2) = hp,g,y(x1||x2) = gx1 · yx2 mod p (8)

If there exists and adversary A, which finds a collision x1 || x2 6= x′1 || x′2, such that h(x1 || x2)
= h(x′1 || x′2)

gx1 · yx2 mod p = gx
′
1 · yx′2 mod p (9)

⇒ yx2−x
′
2 = gx1−x

′
1modp (10)

Since g generates an order q subgroup, the DL of y w.r.t. g is:

(x1 − x′1)× (x2 − x′2)−1mod p (11)

Since g is a generator and it is an order q sub group, from Euler’s theorem, we can take the
inverses in the exponent w.r.t mod q.

If you are working with a q order sub group of G, then

gx = gx mod |G| (12)

Ferma’s was a special case when working with Z∗p : gp−1 = 1 mod p. (13)

Euler’s was a special case:gφ(n) = 1 mod(n) (14)

⇒ ∀x gx mod n = gx mod (φ(n)) mod N (15)

17-2

Here, our group if Gq, which is defined by safe prime p and its corresponding prime q.

⇒ gx mod p = gx mod qmod p (16)

(17)

Lets look at the equation:

yx2−x
′
2 = gx1−x

′
1mod p (18)

y(x2−x
′
2) mod qmod p = g(x1=x

′
1)mod qmod p (19)

Since, we are working with Zp∗, there exists inverse. ∴ (x2 - x′2) has an inverse in Z∗p and lets call
it (x2 − x′2)−1. Multiplying both sides of Eq 19, by (x2 − x′2)−1

y(x2−x
′
2)·(x2−x′2)−1mod q = g(x1−x

′
1)·(x2−x′2) mod qmod p (20)

⇒ y = g(x1−x
′
1)·(x2−x′2) mod qmod p (21)

What if x2 = x2’, then as we did for the bit case, we can safely conclude that x1 = x′1

2 Key Exchange

There are two parties, and they talk in public where anyone can listen. By taking in public, they
both create public keys using their local randomness. They do not know each others randomness.
They engage in a protocol and create a transcript τ . The key exchange takes place as shown:

• Alice picks a local randomness rA

• Bob picks a local randomness rB

• Alice and Bob engage in a protocol and generate the transcript τ .

• Alices view VA = (rA, τ) and Bob’s view VB = (rB, τ).

• Eavesdroppers view VE = τ

• Alice outputs KA as a function of VA and Bob outputs KB as a function of VB

• Correctness: PrrA,rB [KA = kB] ≈ 1

• Security: (kA, τ) ≡ (kB, τ) ≈ (r, τ)

For correctness, some noticeable probability is enough, the protocol can be amplified and they
can always exchange key with correctness roughly of probability 1.

17-3

3 Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange is considered the first primitive, which made the move from sym-
metric cryptography to asymmetric cryptography. We can create key-exchange from public key
encryption :

Alice generates (public key, secret key) pair using a generation function Gen, and randomness
r. Alice sends the public key PkA to Bob. Bob encrypts a key k using the public key PkA received
from Alice. Let this be c. Hence, Bob’s key KB = k.
Bob sends back c to Alice, who then decrypts it with the Secret key SkA . Let this be equal to KA.
The flow of algorithm is shown below:

Alice Bob

(PkA , SkA)← Gen(r)
pkA−−−−→

c = EncPkA
(k)

c←−−
KA = Dec(c,SkA)

We can see here that the key generated by Alice KA is equal to the key k used by Bob. The
correctness of the public key encryption scheme ensures that KA = kB = k.
The transcript here is τ = (PKA

, c). By security of encryption, this ciphertext is indistinguishable
from the distribution for a random string.
Hence, with this kind of exchange using public key encryption, Alice and Bob ends up having a key
k. So we prove that public key encryption can be used for key exchange.

The Diffie-Hellman key exchange is based on discrete-logarithms. It works as follows:

• Let p be a large safe prime, ie., p = 2q+1 for prime q

• Let g be a generator of order q subgroup of Gq of Z∗p

• Alice picks x← Z∗p and sends X = gx mod p to Bob

• Bob picks y ← Z∗p and sends Y = gy mod p to Alice

Alice and Bob both can compute K = gxy mod p as follows:
Alice Bob

K = Y x mod p K = Xy mod p
= (gy mod p)x mod p = (gx mod p)y mod p
= gxy mod p = gxy mod p

3.1 Why is this secure?

The transcript here is (X,Y,G,p). Diffie and Hellman, who at that time were not clear what secu-
rity really is, treated this as a one-way function. They claimed that this cannot be broken unless

17-4

discrete log is broken. Since we are working with slightly better definitions now, we talk about
indistinguishability. We can realize here that (X,Y,G,p) roughly represents the encryption of Gy

under the key Gx. This is really the Elgamal encryption.Hence, if we directly assume that DDH is
secure, we can directly prove that Diffie-Hellman key exchange is also secure.

4 Two round key exchange implies PKE

We have a 2 round key-exchange protocol after which both parties have a common key. This is
enough to build a public key encryption. We can think of the first round as sending the public key,
and the second round as sending the cipher text. The idea here is to use the key as a computational
one-time pad. Because the key is hidden, it is indistinguishable from random by definition.
Hence, we can use it to mask any message. So it is possible to build public-key encryption from 2
round key exchange protocols.

17-5

