
CSE 594 : Modern Cryptography 30 March 2017

Lecture 1: Public Key Encryption:II

Instructor: Omkant Pandey Scribe: Gangabarani Balakrishnan, Subathra Vijayakumar

1 (Weak) Indistinguishable security for PKE

Definition :
A Public Key Encryption (PKE) is said to be secure if for all non-uniform PPT D there exists

a negligible function µ such that for all n ∈ N , for all pair of messages m0 and m1 in M such that
|m0| = |m1|, D distinguishes the following distributions with at most ν(n) advantage.

{(pk, sk)← Gen(1n) : (pk, Enc(pk,m0))}
{(pk, sk)← Gen(1n) : (pk, Enc(pk,m1))}

The definition of Weak Indistingushable security for PKE states that the above two distributions
should be computationally insdistinguishable for any pair of messages m0 and m1 and any non
uniform PPT D, the only difference is the message m0 and m1.

2 DDH Problem

Definition : {x← Z∗p , y ← Z∗p : (gx, gy, gxy)} ≈c {x← Z∗p , y ← Z∗p , z ← Z∗p : (gx, gy, gz)}

DDH problem states that the above two tuples are completely indistinguishable. Zp = {0, 1, ..., p−
1} where p is a very large prime and Z∗p contains all non-zero elements in above set such that
gcd(x, p) = 1. gxy which is dependant of x and y looks totally indistinguisable from a completely
random number gz.

Since |Z∗p | is p − 1 which is not prime makes the problem easier in some cases and taking dis-
crete logs also becomes easy. The way around was to work with safe primes. We work with prime
order sub-group of Z∗p by picking a safe prime p = 2q + 1 where q is also prime and g = x2 for a
random x ∈ Z∗p . In general you can work with any prime order subgroup of Z∗p .

Let Gq is the group generated by g = {g0, g1, ..., gq−1} and size of the group is q. So now in-
stead of picking up elements directly from Z∗p , if you pick up x and y from Gq and then compute
the values for the tuple the problem becomes hard.

Definition :

Let G be a group of prime order q and g ∈ G be a generator

{x← Zq, y ← Zq : (gx, gy, gxy)} ≈c {x← Zq, y ← Zq, z ← Zq : (gx, gy, gz)}

gx means applying the group operations x times.

1-1

There are many work around for this other than using prime order subgroups. For example, we
can pick up group of prime number points in elliptic curve and then use those values to compute
the tuple.

3 ElGamal Public-Key Encryption

ElGamalScheme : Pick G like before such that the DDH assumption holds. G is a prime order
group because its order q is a prime number. The description of G and q are known to everyone.

M is the message space and we encrypt elements only in the group. So message space is M = G.

Gen(1n) :
Pick up g ← G and x ← Zq and compute h = gx ∈ G. If you compute h and give h and g to
someone they cannot compute x (by discrete log assumption). Since G is a prime order group x is
unique. Outputs public key pk and secret key sk where
pk = (g, h) and sk = x

Enc(pk,m) :
Choose a random r from Zq and output (gr,m.hr)
Here c1 is gr and c2 is m.hr where h = gx so c2 is m.gxr

Dec(sk, c) :
c = (c1, c2) and m = c2/c

x
1

m = c2 ∗ Inv(cx1)
Take the secret key x and apply group operations x times on c1. Now apply group operation on c2
and Inverse of cx1 . Inv(cx1) can be computed using Fermat’s Little theorem or Extended Eucledian
theorem.

Correctness :
m = m.hr/grx and we know that h = gx. So substituting h we get
m.gxr/grx Here gxr gets cancelled leaving us with m. Hence the correctness.

4 Security of ElGamal Scheme

We are now going to prove that ElGamal scheme is secure assuming that the DDH assumption holds.

{(pk, sk)← Gen(1n) : (pk, Enc(pk,m0))}
{(pk, sk)← Gen(1n) : (pk, Enc(pk,m1))}

Let D be the PPT algorithm which can tell apart encryption of m0 from m1. We have to show
that for all m0 and m1 ∈ G these two distributions are indistinguishable. This could be done
using Hybrid approach. So we start from the first one and slowly go to the second one. Hybrid
experiments in the middle kind of give you security. You will see that when you reach the second
hybrid the prediction advantage is already satisfied. When we are doing hybrid approach at each
step we are calculating what is the difference between the two distribution.

1-2

Hybrid− 0: {(pk, sk)← Gen(1n) : (pk, Enc(pk,m0))}
So we start with this distribution, g and h are the public key and c1 is gr and c2 is m0.g

xr. So the
tuple is {g, h, gr,m0.h

r} which is equivalent to {g, h, gr,m0.g
xr} because h = gx.

Hybrid− 1: Replace gxr with a random element z
{g, h, gr,m0.g

z}

How to prove that these hybrids are indistinguishable?
If we have an adversary D that can distinguish Hybrid− 0 and Hybrid− 1 then we can use it to
break the DDH assumption.

Let D′ be an adversary that can break the DDH assumption.D′ gets the input (g, gx, gy, gα)
where α is either xy or z. So D′ just multiplies the last element with the message m0 and sends
(g, gx, gy, gα.m0) to D. D′ outputs whatever D outputs. So if α is xy D is in Hybrid − 0 else in
Hybrid− 1. If D tells Hybrid− 0 and Hybrid− 1 apart then D′ tells DDH apart. (i.e) If D wins
between Hybrid−0 and Hybrid−1 D′ is winning DDH with same probability and same advantage.

Prediction advantage definition is already satisfied. This is because in the tuple {g, h, gr,m0.g
z},

z is not anywhere in the tuple except the last element and hence it is completely random which
implies that the tuple is also completely random.So there is no information about m0 and no one
can decrypt it even in exponential time. So the probabilty of you guessing if its m0 or m1 is exactly
half 1/2. Distance between Hybrid− 0 and Hybrid− 1 is negligible.

Similarly we can show that Hybrid − 2 and Hybrid − 3 constructed using m1 similar to m0 are
indistinguishable. So the total distance is two times negligible.

5 RSA Encryption

The correct way of encrypting in RSA function is to first encrypt a random element then apply
hardcore predicate with the given message we are trying to encrypt.
For an arbitrary one way permutation or one way function, we can’t predict which bit is hardcore.
In RSA, every bit is a hardcore bit.

The public key pk = (N, e)
where e is between 1 and φ(n) prime number. The value ed is congruent to 1 mod φ(n).

The Message Space M = Z∗n

Enc(pk, m) for pk = (N, e) outputs fN,e(m) = memodN

Dec(sk, c) for sk = (N, d) outputs cdmodN

The problem with the above scheme is that there is no randomness involved. In SSL version 3
which is only IND-CPA secure, we did not consider any scenario where the adversary asks chal-

1-3

lenger specially constructed cipher texts to decrypt. The PKCS - I standard in SSL V3 uses RSA.
They came up with their own method where they took the message and padded it with some ran-
dom text. Then they encrypted it using the system.
Though it was random it had some provision for error messages, it will take a message, pad it and
convert it into a proper length message and convert it into integer.
While decrypting it will first convert the integer into proper PKCS format check if it is correct
format and extract the message from blocks. In case there is format error, The server will tell
client there is some error/ packet corruption occurred.
Though this seems an innocuous attack, The scheme does not consider these types of attacks, to
protect against such an attack you should have CCA secure encryption. This information enables
you to decrypt the entire message. This attack is called bleichenbacher attack. It only requires
about 8000 cipher text queries to decrypt the entire message. An ability to learn even a single bit
information about encryption is dangerous.
The approach to encryption considered in the previous class was inefficient in that, It allowed only
one bit to be encrypted. The more efficient method is RSA−OAEP+.

6 RSA Signature

The RSA can also be seen as a digital signature which inverts the role of the encryption key and
decryption key. The encryption key is used as the verification key and decryption key is the secret
signing key. The Key generation remains the same, message space remains the same. The Verifi-
cation key vk = (N, e)
where e is between 1 and φ(n) prime number. The value ed is congruent to 1 mod φ(n).

The Message Space M = Z∗n

Sign(sk, m) for sk = (N, d) outputs σ = md mod N

Verify(vk, m, σ) for vk = (N, e) outputs 1 iff σe= m mod N

The verification just checks whether m = σemodN . The Signature is deterministic but that is
not a problem in the signatures. The question here is whether the signatures can be forged?
The answer is it can be, If we use this naive mechanism. We just need to choose some random
α = Z∗n. We already know the verification key is β = αe. The signature becomes α and the message
becomes β.

β = αe

βd = αed modN

βd = α modN

Hence if we use this scheme we face the issue of existential forgeries, which are forgeries that simply
exist and are easy to pick. But we may not be able to pick the message. This scheme provides
trapdoor permutation functionality but it doesn’t provide encryption scheme or signature scheme.

1-4

There are other ways to use RSA signature scheme, the RSA signature scheme is not the most
efficient because of the long key sizes.

7 Attacks on the RSA Function

Here are some of the attacks on the RSA Function. Sometime ago Before We fully understood the
RSA, People thought that using a smaller exponent such as e = 3 will make the verification step
faster, in case of encryption the encryption function faster. This is often a big problem.
Example: Lets say you have a message m, which is to be broadcast to 3 people, all of them
have different RSA public keys, they choose their own factors and their secret keys are completely
different. But they choose a common exponent e = 3 to make verification and encryption faster.
In this scenario, If we are going to use naive RSA scheme, We are broadcasting the following cipher
texts.

C1 = m3 modN1

C2 = m3 modN2

C3 = m3 modN3

All the adversary needs to do is multiply the values together C1, C2, C3. Suppose that the N1, N2,
N3 are co-primes they don’t have any common factors, which is highly likely otherwise m will be
easy to calculate. Then by Chinese remainder theorem the product will be of the form.

C ′ = m3 modN1N2N3

The value of N1N2N3 becomes much larger than m3. Hence the m3 becomes 3
√
C ′. Modulus

has no role to play. This attack can be applied in scenarios where we have as many messages as
value of e. This attack cannot be used where the value of e is very high. However low exponents
carefully used along with padding is still secure. There are also other ways of improving the speed
of verification/encryption by using special forms of exponent e = 216+1. Instead of multiplication,
we are just shifting bits.
Another way to improve the efficiency is to keep the public exponent large but by keeping the secret
key small. The key will be small enough that process is more efficient but big enough that it can’t
be guessed. The value of d > N0.292 otherwise it can be easily guessed.

8 LWE-based Public Key Encryption

S = (S1, S2, S3,, Sn)εZnq
where q ≥ 2 and Sx be solutions to system of linear equations like below

a11S1 + a12S2 + a13S3 ++ a1nSn = b1 + e1

......

am1S1 + a12S2 + a13S3 ++ amnSn = bm + em

1-5

Where m is a polynomial. These equations are easy to solve using Gaussian elimination in case
there are no errors. In case there are errors that are small enough that there is a unique solution
to the set of system equation, but large enough that if we do Gaussian elimination these errors are
going to add up and create too much noise. The errors are picked over Gaussian distribution with
a standard deviation of αq. where α << 1.
When we start with this problem we pick a modulus q, we pick a security parameter n, we pick an
/alpha << 1 such that αq >

√
n.

8.1 LWE Instance

choose a random (column) vector s
$←− Znq

choose a random matrix of coefficients A
$←− ZMXN

q

choose a Gaussian error vector e
X←− Znq

where X is a Gaussian distribution over Z with parameter αq.

Let b = A.s + e

s is the system of equations. The LWE instance is: (A, b)

8.2 Decisional LWE Assumption

It is hard to distinguish an LWE pair from a random instance.

(A, b) ≈c (A, u)

where u ε Zmq is a random column vector.

Key Generation:
choose the same parameters as before,

s
$←− Znq , A

$←− ZMXN
q , e

X←− Znq , b = A.s+ e

pk = (A, b), sk = s

Encryption:

pick a row-vector of bits X
$←− 0, 1m and output is,

c = xA, c′ = xb+ bit.
q

2

Hence if the bit is 0, the value of c′ = xb else it will be c′ = xb+ q
2 .

1-6

Decryption:

c′ − c.s =

(
xb+ bit.

q

2

)
− xAs

=

(
xb+ bit.

q

2

)
− xb+ xe ≈ bit. q

2

Parameters:

n2 ≤ q ≤ 2n2,m = 1.1n log q, α = 1/(
√
n log2 n)

Correctness: if not for the error term, the value would be either 0 or q
2 .

The error is adding at most m independent normally distributed variables whose standard deviation
is
√
mαq < q/ log n.

The probability that it goes over q/4 is negligible.

Security: (LWE + LHL)
Game 0: Real pk = LWE instance = (A, b)
Game 1: change pk to a random instance = (A, u)
Game 2: change bit from 0 to 1 (one-time pad, due to LHL)
Game 3: change pk back to LWE instance.
where LHL is Left over hash lemma, and we use hybrid arguments to prove security. We need the
LHL in the second step. We finish the argument using prediction advantage or use game theory
where we use LWE instance.

1-7

