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Lecture 10: Symmetric Encryption

Instructor: Omkant Pandey Scribe: Hyungjoon Koo, FNU Gaurav

1 Symmetric Encryption

Assume that Alice and Bob share a secret s ∈ {0, 1}n and Alice wants to send a private message
m to Bob. We want to achieve both correctness and security, which means no eavesdropper could
reveal their message but Alice and Bob. In this setting, Alice encodes m to c with s. Likewise,
Bob decodes c using s to obtain the correct m. The definition of symmetric encryption can be set
up as following.

Gen(1n)→ s

Enc(s,m)→ c

Dec(s, c)→ m′or ⊥
All algorithms are PPT in n, known as a security parameter. With the parameter of your choice
separately, you can sit on the balance between security and efficiency. Sometimes you may want to
run your system faster by adjusting the parameter.

For correctness of the definition, we can compute Dec(s,Enc(s,m)) = m ∀mands, where s ←
Gen(1n). For security it is computationally indistinguishable. In other words, an adversary cannot
tell if m0 or m1 was encrypted by looking at c.

Definition 1 Indistinguishability security A symmetric encryption scheme (Gen, Enc, Dec) is
secure if for all n.u. PPT adversaries A, there exists a negligible function µ(· ) s.t.

Pr[s← Gen(1n), (m0,m1)← A(1n), b← {0, 1} : A(Enc(s,mb)) = b] ≤ 1

2
+ µ(· )

In this scenario, we assume all system including encryption, decryption, and key generation algo-
rithm, is known to our adversary but the key, secret.

Definition 2 Indistinguishability security (alternative) A symmetric encryption scheme (Gen, Enc,
Dec) is secure if ∀m0,m1 :

{Enc(s,m0) : s← Gen(1n)} ≈ {Enc(s,m1) : s← Gen(1n)}
We can convert this definition to another that is computational analogue of perfect secrecy. These
two definitions are equivalent with a normalization factor 2 in terms of “prediction advantage”
versus “computational indistinguishability”. Here one cannot tell the two distributions apart com-
putationally within polynomial time.

With one-time pads, indistinguishability security can be written as following:

Gen(1n) := s← {0, 1}n

Enc(s,m) := m⊕ s
Enc(s← {0, 1}n,m0) ≡ Enc(s← {0, 1}n,m1)
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2 Encryption using PRGs

Now how can we encrypt messages longer than n bits? With poly-stretch PRG, m can be poly-
nomially long. Like one-time pads, first generate the key s from key generation algorithm. Next,
compute encryption by xoring m with PRG(s) instead of s. In this setting, the distinguisher D
cannot tell two ciphers apart within polynomial time.

Gen(1n) := s← {0, 1}n

Enc(s,m) := m⊕ PRG(s)

Enc(s← {0, 1}n,m0) ≈ Enc(s← {0, 1}n,m1)

Proof. We can prove the above via hybrids.

• H0 : Enc(s,m0) = m0 ⊕ PRG(s)

• H1 : Enc(s,m0) ≈ m0 ⊕ R

• H2 : Enc(s,m1) ≈ m1 ⊕ R

• H3 : Enc(s,m1) = m1 ⊕ PRG(s)

Let us replace PRG with R, a random string under one-time pads which is perfectly secure. When
giving H0 and H1 to the distinguisher D, it can be distinguishable at most ε, security of PRF
(H0 ≈ H1) because of PRG ≈ R. Likewise, H2 and H3 are indistinguishable in a polynomial time
(H2 ≈ H3). Hence total prediction advantage is at most 2ε, which is negligible. Note that H1 and
H2 are identical.

3 Stream Ciphers: Encryption using PRGs

So far, we have considered the encryption once with a single PRG. It only addresses the size of the
key. How can we encrypt more than one message? It is called stream ciphers, which is another
name for “encryption with a PRG (or PRNG)”. Recall our PRG stretch construction looks like
this: G(s0 = s) = b1||s1 → G(s1) = b1||s2 → G(s2) = b3||s3 → ... However, the design of stream
ciphers is different in practice so that it works much faster. Many stream ciphers have been broken
or known weaknesses. For example, the RC4 was broken because of its biases in initial output. The
CSS for DVD encryption was also badly broken. Yet SOSEMANUK and Salsa20 have not been
broken.

4 Multi-message Secure Encryption

We now have an encryption scheme which shows indistinguishability, assuming PRGs exist. But
there is one thing which is unrealistic about this scheme that how is communication supposed to
happen with one message. In reality, one expects to exchange multiple messages over time. For
that, we need an encryption technique that enables security of multiple messages while maintaining
the principle of indistinguishability. It seems that our source of trouble is that we are using the
same portion of the PRG output to encrypt multiple messages. One way to counter this is by using
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some ’m’ bits to encrpyt the first message, the next ’m’ bits for second message and so on. But
this solution requires us to maintain state at both encoding as well decoding levels i.e. to decode
any jth message we need to know the exact position so in order to start decoding at the correct
place. Such a state may or may not be maintained. The solution to this is to design a stateless
encryption scheme such that there is randomness supplementing our previous encryption scheme
in order to beat the shortcomings of it being deterministic.

A symmetric encryption scheme (Gen, Enc, Dec) is multi-message secure if for all n.u. PPT
adversaries A, for all polynomials q(.), there exists a negligible function µ(.) s.t.:

Pr[s
$←− Gen(1n), {(mi

0,m
i
1)}

q(n)
i=1 ← A(1n), b

$←− {0, 1} : A({Enc(mi
b)}

q(n)
i=1 ) = b] 6 1/2 + µ(n)

4.1 Necessity of Randomized (Probabilistic) Encryption

A multi-message secure encryption scheme cannot be deterministic and stateless. Randomized en-
cryption is the use of randomness in an encryption algorithm, so that when encrypting the same
message several times it will, in general, yield different ciphertexts. The term ”randomized encryp-
tion” is typically used in reference to public key encryption algorithms, however various symmetric
key encryption algorithms achieve a similar property (e.g., block ciphers when used in a chaining
mode such as CBC). To be semantically secure, that is, to hide even partial information about the
plaintext, an encryption algorithm must be randomized.

{Enc(s,m0) = c0;Enc(s,m
′
0) = c′0} ← D → {Enc(s,m1) = c1;Enc(s,m

′
1) = c′1}

4.2 Encryption using PRFs (Pseudo Random Functions)

Let fs : {0, 1}n → {0, 1}n be a family of PRFs where (Gen, Enc, Dec) is a multi-message secure
encryption scheme:

• Gen(1n) : s
$←− {0, 1}n

• Enc(s,m) : Pick r
$←− {0, 1}n; Output (r,m⊕ fs(r))

• Dec(s, (r, c)) : Output (c⊕ fs(r))

4.2.1 Proof via hybrids

To prove - If (Gen, Enc, Dec) is (s, 2ε) is message indistinguishable, then that same scheme is
(s− nm, 2nε) message indistinguishable for n messages

• H1: Real experiment with m1
0, .....,m

q(n)
0 (i.e., b=0)

• H2: Replace fs with random function f
$←− Fn

• H3: Switch to one-time pad encryption

• H4: Switch to encryption of m1
1, .....,m

q(n)
1
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• H5: Use random function f
$←− Fn to encrypt

• H6: Encrypt using fs. Same as real experiment with m1
0, .....,m

q(n)
0 (i.e., b=1)

5 Semantic Security

A symmetric encryption scheme (Gen, Enc, Dec) is semantically secure if for every A there ex-
ists a PPT algorithm S (the simulator) s.t. the following two experiments are computationally
indistinguishable:

(m, z)← A(1n),
s← Gen(1n),

Output(Enc(s,m), z)

 c
≈
{

(m, z)← A(1n),
OutputS(1n, z)

}
where A is an ”adversarial” machine that samples a message from the message space and

arbitrary auxiliary information.
In other words, knowledge of the ciphertext (and length) of some unknown message does not

reveal any additional information on the message that can be feasibly extracted. This concept is the
computational complexity analogue to Shannon’s concept of perfect secrecy. Perfect secrecy means
that the ciphertext reveals no information at all about the plaintext, whereas semantic security
implies that any information revealed cannot be feasibly extracted.

Indistinguishability security ⇔ Semantic security

6 Block Ciphers

In cryptography, a block cipher is a deterministic algorithm operating on fixed-length groups of bits,
called blocks, with an unvarying transformation that is specified by a symmetric key. Block ciphers
operate as important elementary components in the design of many cryptographic protocols, and
are widely used to implement encryption of bulk data.

• Encrpyt blocks (say 64-bit) instead of bits as in stream ciphers

• AES is a block cipher

• Block ciphers does not yield encryption directly

• The cipher comes with many ”encryption modes” to encrypt arbitrarily long messages

• Weakest example: ECB (Electronic Code Book) as there are identifiable patterns in this
cipher as seen in figure 1

• Other examples: CBC (Cipher Block Chaining) as seen in figure 2, PCBC (Propagating
Cipher Block Chaining - type of CBC), CFB (Cipher Feedback), OFB (Output Feedback),
CTR (Counter) etc.

10-4



Figure 1: ECB Shortcoming - Source: https://en.wikipedia.org/wiki/Block_cipher_mode_

of_operation

6.1 Cipher Block Chaining

CBC has been the most commonly used method. Its main drawbacks are that encryption is
sequential (i.e., it cannot be parallelized), and that the message must be padded to a multiple of
the cipher block size. One way to handle this last issue is through the method known as ciphertext
stealing. Note that a one-bit change in a plaintext or IV (Initialization Vector) affects all the
following ciphertext blocks.

If the first block has index 1, the mathematical formula for CBC encryption is
Ci = EK(Pi ⊕ Ci−1),
C0 = IV.
while the mathematical formula for CBC decryption is
Pi = DK(Ci)⊕ Ci−1,
C0 = IV.
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Figure 2: Cipher Block Chaining - Source: https://en.wikipedia.org/wiki/Block_cipher_

mode_of_operation
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