CSE 594 : Modern Cryptography 2/21/2017
Pseudorandomness-11

Instructor: Omkant Pandey Scribes: Gustavo Poscidonio, Subathra Vijayakumar

1 Pseudorandom Generators
Before continuing, let us recall some definitions:

Definition 1 (Pseudorandom Ensembles) An ensemble {X,}, where X,, is a distribution over
{0,1}() | is said to be pseudorandom if:

{Xn} =~ {Un}
That is, X, is computationally indistinguishable from U,.

Definition 2 (Next-bit Unpredictability) An ensemble of distributions {X,} over {0,1}4") is
next-bit unpredictable if, for all 0 < i < {(n) and non-uniform PPT A, 3 negligible function v(-)
such that:

1
Pr[t =t... tg(n) ~ X, : .A(tl .. .ti) = ti+1] < 5 + V(n)

That is, next-bit unpredictability implies that given some prefix of a sample t from X, it is impossible
to predict the next bit of t with probability better than %

Theorem 1 (Completeness of Next-bit Test) If {X,} is next-bit unpredictable then {X,} is
pseudorandom.

Understanding the above recollections allows us to proceed and define a pseudorandom gen-
erator.

Definition 3 (Pseudorandom Generators) A deterministic algorithm G is called a pseudoran-
dom generator (PRG) if:

e (GG can be computed in polynomial time

o 1G@)| > o

o {z+ {0,1}": G(2)} =~ {U,} where £(n) = |G(0")|
The stretch of G is defined as |G(z)| — |x|.

Elaborating on the above definition, we have that G should be efficient, that it should produce
some ‘extra bits’ (hence that it is a generator) and the output of G should produce an ensemble
which is computationally indistinguishable from the uniform ensemble.

Here, we impose a short term goal upon ourselves: construct a PRG with 1-bit stretch. Doing
so will allow us to then extrapolate on that construction and generate polynomially many bits. So
consider the hardcore predicate h for some function f. We know that h(s) is hard to guess even if
given f(z). So let G(s) = f(x)||h(s). Here we encounter some minor issues:

1-1

e |f(s)| might be smaller than s which would prevent G from generating more bits.
e f(s) may always start with some non-random prefix.

We solve both of these issues by letting f be a one-way permutation over {0,1}". This way
we have that:

e Domain and Range are of the same size. That is, |f(s)| = |s| = n.

e f(s) is uniformly random over {0,1}" since f establishes a bijection over {0,1}" — {0,1}".
This prevents f(s) from starting with any fixed value.

Theorem 2 (PRG based on OWP) Let f : {0,1}* — {0,1}* be a OWP. Let h : {0,1}* —
{0,1} be a hardcore predicate for f. Then we define G to be:

G(s) = f(s)llh(s)
G is a pseudorandom generator with 1-bit stretch.

If you did the proof from the previous lecture where the ‘next bit test’ implies pseudorandom-
ness, then the proof for this statement is trivial. By contradiction you would assume that G is not
a PRG. Then an attacker D should succeed in guessing the i*" bit of G(s) given the first i — 1 for
some 7. But of course the frist n bits of G(s) are uniformly random since f is a permutation, and
the (n + 1)* bit is the hardcore bit, which is hard to guess. So D can’t possibly guess any of the
bits from any prefix, so D fails the next bit test which is a contradiction. For completeness, we will
provide a complete proof based on hardcore bits.

Proof. First, we know G is computable in polynomial time because f and h are both com-
putable in polynomial time. Additionally, we know that the stretch of G is 1 because |G(s)| =
|f(s)] + |h(s)] = |s| + 1. All we have to show know is that the output of G computationally
indistinguishable from randomly sampled values. That is:

{s < {0,1}": G(s)} =c {Uns1}

We begin by assuming to the contrary that this is not true. Then 3 an efficient distinguisher D
and a polynomial ¢(-) such that:

| Prls ¢ {0,1}" D(G(s)) = 1] — Prfu - Ups1; D(u) = 1] > q(ln)

for large enough n. Our goal is to use D to break the OWP f. Let us define u = uy ... ||up41 =
Y||un+1 where y € {0,1}™. Observe that since f is a permutation, 3 a unique s such that y = f(s).
And of course, by the bijective properties of f, since y is uniform over {0,1}", s is also uniform
over {0,1}". Note that in the subsequent equations, the domains of each variable in the probability
will be omitted to simplify the notation. So we have:

1-2

Pr[D(u) = 1] = Pr[D(y[[un+1) = 1]
= Pr{D(F($)l[un+1) = 1]
splitting this up for up4+1 =0

and up41 = 1 we have

= > PrD(f() 1) = Uungr = 1] - Priunga =71

re{0,1}
= 32 PP)une) = Honr =71 5
re{0,1}
=5 3 PADG)i = unsr =]
re{0,1}
=2 3 Pl = 1]
re{0,1}
_ % - (Pr[D(f(s)][0) = 1] + Pr[D(f(s)|[1) = 1])

At this point we are going to substitute f(s)||0 and f(s)||1 with f(s)||h(s) and f(s)||h(s) where
h(s) =1 — h(s). We don’t know which one is which, but we know that if hA(s) = 0 then h(s) =1
and vice versa. So we have:

Pr[D(u) = 1] = o - (Pr[D(f(s)[|(s) = 1] + Pr[D(f (s)[n(s)) = 1])

N =

We also have that by definition of G(s):
Pr[D(G(s))] = Pr[f(s)||h(s)]
Subtracting the two equations above and taking their absolute value, we have that:
1 _
| Pr[D(u) = 1] = Pr[D(G(s)) = 1]| = 5 - [Pr[D(f(s)lIR(s)) = 1] = Pr[D(f(s)[[h(s)) = 1]|

Playing with the notation, we can rewrite the right-hand side as:

1
Pr[b + {0,1};2 + X°, D(2) = b] — 3

where:

X0 5= {5 {0,1}": f(s)][(s)}
X': = {5 {0,1)": f(s)][R(s))
2= f($)]I(h(s) @ b)

1-3

So we have that:

| Pr[D(u) = 1] = Pr[D(G(s)) = 1]| =

Pilb - 0.1)is < 0.1 DU e) &8) =11 - 3
or, with less verbose notation:

| Pr[D(u) = 1] = Pr[D(G(s)) = 1| =

Now we know that the left-hand side > ﬁ. Therefore, we have:

Here, we write 7 = h(s) @b so that r is uniform if b is and h(s) = r@&b. Making this substitution
allows use to manipulate the inequality as follows:

1 1
= — _ > —
PHDG I =07 B =r o] - 5| > -
An observation we should make here is that we can assume the probability in the inequality
is > % without loss of generality. The reason being that if D’s advantage is less than %, we may
always construct D’ from D such that the advantage of D’ > % Therefore:
PHD(f()lIr) = bAR(s) =r ©H] > 1 +
T s)||r) = s)=r -+ —
s — 2 q(n)

Finally, we will use D to break the hardcore bit. Consider the following algorithm:
Algorithm A(f(s)):
1. Sample bit r uniformly and compute b < D(f(s)||r)

2. Output r ® b.

Analyzing the probability of success of A, we find:

1 1
PrA((s)) = h(s)) = PrID(f()lr) = bAK(s) =1 & 2 5 + s
=—><= Contradiction! You shouldn’t be able to predict the hardcore bit with probability better
than half. Therefore, G(s) must be a pseudorandom generator, as required. [|

2 One-bit stretch PRG = Poly-stretch PRG

We can do G(G(G(s))) recursively or G(s1)G(s2)...G(sp). Here we present a slightly different

version which gives out bits one at a time (without having to wait for the entire output to generate).
Construction of Gy : {0,131 — {0,1} using a 1-bit stretch PRG G proceeds as follows:

output byby . ..b where G(s;) = si+1]|bi+1 yields the bit ;11 for i =0 to [— 1 and we set so = s.
Proof: We prove that Gy is a poly-stretch pseudorandom generator.

1-4

(i.e)s < {0, 1}(n) : Gpoly(s) . Ul(n)

Suppose not. Then, let D be a non-uniform PPT algorithm which can tell the two distributions
above apart with noticeable probability. We use hybrid arguments to show that this cannot be the
case.

s is a n-bit seed selected uniform randomly from {0,1}(™); let us write Xo = s. Then our first
hybrid experiment is really just the output of the distinguisher on the actual PRG value:

ExperimentHy
s = Xp
G(Xo) = X1l
G(X1) = Xal|b2

G(Xl,1> = Xlel
Output D(blebs..bz(n))

Our next hybrid changes the first bit b; (of the output of the PRG) to a uniformly random bit
u1 (and the corresponding value X; to a random value s7)

Experiment Hq
S = Xo

Xil[br = s1[|ux

G(X1) = Xal|b2

G(X;-1) = Xi||by
Output D(u1b2b3..by(y,))-

We prove using security of PRG G that Hy and H; can be distinguished with advantage no more
than u(n) for negligible function u. For any distinguisher who distinguishes Hy and H; consider
the following attacker A for G:

Attacker A:

o A gets a challenge Z||r sampled either as Xi|[by or s1]|ug (i.e. either pseudorandom output
of G or a uniform string)

1-5

e A computes the remaining values as in the construction, i.e., Xs||bs = G(Z) and so on for
bits bQ, ey bl.

e A outputs the output of D(r1bobs..b;)

Note that if Z||r is pseudorandom then output of D produced from previous step is directly
identical to the output of Hyp. On the other hand, if Z||r is truly random then output of D is
distributed identically to the output of Hi. Thus, advantage of A in breaking G is the same as
that of D in distinguishing Hy and H;. Continuing in this way for each of the next [hybrids, we
conclude that the advantage between Hy and H; (which will have all uniform bits as output) can
be at most lu. Since the advantage is €, we have that € < [u. This is a contradiction since [y is
negligible but € is not.

3 Function vs Generators

PRGs convert one short random string s into one long pseudorandom string. s is a seed and can
be used only once. Pseudorandom Fuctions(PRF) can be used instead which will be discussed in
the next class.

1-6

