
CSE 594 : Modern Cryptography 16/02/2017

Lecture 7: Pseudorandomness - I

Instructor: Omkant Pandey Scribe: Aravind Warrier, Vaishali Chanana

1 Randomness

Computer needs randomness for many of its operations. For example, randomness is needed for
encrypting a session key in an SSL connection or for encrypting a hard drive. The question that
arises is how a computer can get randomness. It can use key strokes or mouse movements to
generate randomness but it proves out to be uniform as it depends on the entropy of the source.

A natural approach for making any encryption scheme that uses key would be to start off with
a short length random key k and expand it to longer random looking key k′ by using random key
generator g such that k′ = g(k). One fundamental question is can we really expand few random
bits into many random bits?

The approach could be good in some cases. For instance, in Goldreich-Levin Theorem, pair-wise
independent randomness did the job showing that it could be worked out with smaller randomness.
But in cryptography, we need something as good as truly random.

2 Pseudorandomness

Let us suppose there are n uniformly random bits: x = x1‖...‖xn. Pseudorandomness is finding a
deterministic (polynomial-time) algorithm G such that:

• G(x) outputs a n+ 1 bits: y = y1‖...‖yn+1

• y looks as good as a truly random string r = r1‖..‖rn+1

{G : {0, 1}n → {0, 1}n+1} is called a pseudorandom generator(PRG) that takes n random bits
of x with no additional randomness of its own and outputs n + 1 random bits of y. This will be
discussed in detail later.

What is actually meant by as good as truly random? In cryptography, as good as truly random
means the bits should not follow any pattern. It should also pass all the statistical tests like:

• As many 0s as there are 1s

• Each particular bit is roughly unbiased

• Each sequence of bits occur roughly with same probability

The main idea is that no efficient computer can tellG(x) and r apart. In cryptographic language,
it means that distributions {x ← {0, 1}n : G(x)} and {r ← {0, 1}n+1 : r} are computationally
indistinguishable.

Before knowing more about pseudorandomness, let us look at some of the underlying definitions
that will help us understand the concept better.

7-1

2.1 Distribution

X refers to a distribution over sample space S, if it assigns probability ps to the element s ∈ S s.t.∑
s

ps = 1 (1)

2.2 Ensembles

Definition 1 A sequence {Xn}n∈N is called an ensemble if for each n ∈ N, Xn is a probability
distribution over {0, 1}∗.

Generally, Xn will be a distribution over the sample space{0, 1}l(n)1

3 Computational Indistinguishability

The term computational indistinguishable is being used to formalize a way to capture what it means
for two distributions X and Y to look alike to any efficient test. In short,

Efficient test = Efficient computation = Non-uniform PPT

Intuition: No non-uniform PPT “distinguisher” algorithm D can tell the two distributions X and
Y apart i.e. “behavior” of D is same for both of them.

Let us try to figure out the concept through two systems: scoring system and guessing system.

3.1 Scoring System

Giving non-uniform PPT algorithm D a sample of probability distribution X, calculating score on
the D’s output:

• +1 point if output2 says “Sample is from X”

• −1 point if output says “Sample is from Y”

For this system, the concept of computationally indistinguishability says that the average score
of D on X and Y should roughly be the same. Mathematically, which is:

Pr[x← X;D(1n, x) = 1] ≈ Pr[y ←;D(1n, y) = 1]

⇒ |Pr[x← X;D(1n, x) = 1]− Pr[y ← Y ;D(1n, y) = 1]|≤ µ(n)3

Definition 2 (Computationally Indistinguishability): Two ensembles of probability distributions
X = {Xn}n∈N and Y = {Yn}n∈N are said to be computationally indistinguishable if for every
non-uniform PPT D, there exists a negligible function v(.) s.t:

|Pr[x← Xn;D(1n, x) = 1]− Pr[y ← Yn;D(1n, y) = 1]|≤ v(n) (2)

1l(n) is any polynomial in n.
2output can be encoded using just one bit: 1 when sample is from X, 0 when sample is from Y
3µ(n) is any negligible function in n

7-2

3.2 Guessing system(Prediction advantage)

Giving a non-uniform PPT algorithm D a random sample from either probability distribution X
or Y and asking it to guess. D can guess it with probability 1

2 , beyond which D would not be able
to.

Definition 3 (Prediction Advantage): A non-uniform PPT A is said to guess the bit b from the
sample t that is picked out of sequence of distribution Xb

n(made with randomness $) with prediction

advantage when {max
A
|Pr[b $← 0, 1, t ∼ Xb

n : A(t) = b]− 1
2 |} is negligibly close to 0.

|Pr
b

[(A | x← Xb
n) = b]− 1

2
| ≤ µ(n) ∀A (3)

3.3 Proof of equivalence(Computationally Indistinguishability⇔ Prediction Ad-
vantage)

Proof. Starting with value from prediction advantage:

|Pr[b← {0, 1}; z ← X(b);D(1n, z) = b]− 1
2 |

= |Prx←X1 [D(x) = 1] · Pr[b = 1] + Prx←X0 [D(x) = 0] · Pr[b = 0]− 1
2 |

= 1
2 · |Prx←X1 [D(x) = 1] + Prx←X0 [D(x) = 0]− 1| [∵ Pr[b = 1] = Pr[b = 0] = 1

2]

= 1
2 · |Prx←X1 [D(x) = 1]− (1− Prx←X0 [D(x) = 0])︸ ︷︷ ︸

Prob. of D guessing it wrong

|

= 1
2 · |Prx←X1 [D(x) = 1]− Prx←X0 [D(x) = 1]|

3.4 Formal Statement

Lemma 1 (Predication Lemma): Let {X0
n} and {X1

n} be ensembles of probability distribution. Let
D be a n.u. PPT that ε(·)-distinguishes {X0

n} and {X1
n} for infinitely many n ∈ N. Then, ∃ n.u.

PPT A s.t.

Pr[b
$←− {0, 1}, t← Xb

n : A(t) = b]− 1

2
≥ ε(n)

2
(4)

for infinitely many n ∈ N

3.5 Properties of Computational Indistinguishability

• Closure: If we apply an efficient operation X and Y, they remain computationally indistin-
guishable. i.e., ∀ n.u.PPT M

{Xn} ≈ {Yn} ⇒ {M(Xn)} ≈ {M(Yn)}4 (5)

4Notation: {Xn} ≈ {Yn} means both the distributions are computationally indistinguishable.

7-3

Proof. Lets assume that there exists a n.u. PPT D that that can distinguish between
{M(Xn)} and {M(Yn)} with non negligible probability µ(n). i.e./

|Pr[t←−M(Xn) : D(t) = 1]− Pr[t←−M(Yn) : D(t) = 1]| > µ(n) (6)

This implies that:

|Pr[t←− (Xn) : D(M(t)) = 1]− Pr[t←− (Yn) : D(M(t)) = 1]| > µ(n) (7)

• Transitivity : Let X1, X2,..,Xm, be a sequence of probability distributions. Assume that the
machine D distinguishes X1 and X2 with probability ε. Then

∃ i ∈ [1, 2, ..,m− 1] : D distinguishes Xi and Xi+1 with probability ≥ ε

m
. (8)

Proof. Assume that there exists a n.u PPT D, which distinguishes X1 and Xm with prob-
ability at least ε.

|Pr[t←− (X1) : D(t) = 1]− Pr[t←− (Xm) : D(t) = 1]| > µ(n) (9)

Let gi = Pr[t← Xi : D(t) = 1]. Since |g1 - gm| > ε,
|g1 - g2| + |g2 - g3| + ... + |gm−1 - gm| > |g1 - g2 + g2 - ... + gm−1 + gm |

∴ ∃ i, s.t., |gi − gi+1| >
ε

m
(10)

Lemma 2 (Hybrid Lemma): Let {X0}...{Xm} where m = poly(n). Suppose there is a n.u PPT
D that can distinguish between {X0} and {Xm} with a prediction advantage. Then ∃ i ∈ [1..,m-1]
such that D can distinguish between {Xi} and {Xi+1} at an advantage of at least ε

n .
Proof. By the transitivity property of prediction advantages among computational indistinguish-
able distributions, the prediction advantage between {X0} and {Xn} is limited by the sum of all
prediction advantages. i.e.

n−1∑
i=1

µi = ε (11)

∴ ∃i, µi ≥
ε

n
(12)

4 Back to Pseudorandomness

Intuition: A distribution is pseudorandom if it looks like a uniform distribution 5 any n.u PPT.

5Notation: Uniform Distribution over {0, 1}l(n) is denoted by Ul(n) or Ul

7-4

Definition 4 An ensemble {Xn}, where Xn is a distribution over {0, 1}l(n) is said to be pseudo
random if:

{Xn} ≈ {Ul(n)} (13)

5 Pseudorandom Generators PRG

A Pseudorandom Generator is a computer program which can convert a few random bits into many
random bits.

Definition 5 A deterministic algorithm G is called a pseudorandom generator (PRG) if:

• G can be computed in polynomial time.

• |G(x)| > |x|

• {x ←{0, 1}l(n): G(x)} ≈ {Ul(n)} where |l(n)| = |G(0n)|

The stretch of G is defined as |G(x)| - |x|

A PRG doesn’t have any state associated with it, unlike pseudo random functions, which makes
use of a secret key. Another interesting definition of pseudorandomness is that it should pass all
the tests that a truly random string would pass. One such test is the Next Bit Test.

6 Next Bit Test

For a truly random sequence of bits, it is not possible to predict the next bit in the sequence with
probability better than 1/2 even given all previous bits of the sequence so far. A sequence of bits
passes the next bit test if no efficient adversary (n.u. PPT) can predict the next bit in the sequence
with probability better than 1/2 even given all previous bits of the sequence so far.

7 Next-Bit Predictability

Definition 6 Next-Bit Predictability: An ensemble of distributions {Xn} over {0, 1}l(n) is next-bit
unpredictable if, for ∀i, 0≤ i <l(n) and a n.u PPT A, ∃ negligible function υ(·) s.t:

Pr[t = t1...tl(n) ∼ Xn : A(t1...ti) = ti+1] ≤
1

2
+ υ(n) (14)

8 Next-bit Unpredictability ⇐⇒ Pseudorandomness

Theorem 3 If {Xn} is next-bit unpredictable then {Xn} is pseudorandom.

Proof. (Sketch) Lets assume that it is not. Assume that there is a n.u PPT D which cannot
predict what the next bit is, but can identify from which distribution the whole string came from:
from a newly constructed one or from uniform. i.e., the Prediction Advantage is noticeable (> ε)

7-5

Consider the following experiments:
There are two strings x = x1x2..xl(n), drawn from the distribution X and u = u1u2..ul(n) is drawn
from the uniform distribution U.

• H0 := D is given x = x1x2..xl(n) and u = u1u2..ul(n) correctly identifies that it is from x

• H1 := D is given x = x1x2..xl(n) and u1x2..xl(n)
The first bit of x is replaced by the first bit of u. Say, µ1 is the predicted advantage.

• H2 := D is given u1x2..xl(n) and u1u2..xl(n)
The second bit of x is replaced by the second bit of u. Say, µ2 is the predicted advantage.

• Hn := D is given x = u1u2..ul(n)−1xl(n) and x = u1u2..ul(n)
The last bit of x is replaced by the last bit of u. Say, µn is the predicted advantage

By Hybrid Lemma ∃i s.t., µi ≥ ε
l(n) . Using such a n.u. PPT, we can build another n.u PPT which

can predict the next bit with non-negligible probability.

7-6

