Recall: Zero Knowledge

Definition (Zero Knowledge)

An interactive proof \((P, V)\) for a language \(L\) with witness relation \(R\) is said to be zero knowledge if for every non-uniform PPT adversary \(V^*\), there exists a PPT simulator \(S\) s.t. for every non-uniform PPT distinguisher \(D\), there exists a negligible function \(\nu(\cdot)\) s.t. for every \(x \in L\), \(w \in R(x)\), \(z \in \{0,1\}^*\), \(D\) distinguishes between the following distributions with probability at most \(\nu(|x|)\):

- \(\{\text{View}^*_V[P(x, w) \leftrightarrow V^*(x, z)]\}\)
- \(\{S(1^n, x, z)\}\)

If the distributions are statistically close, then we call it statistical zero knowledge

If the distributions are identical, then we call it perfect zero knowledge
Recall: Interactive Proof for Graph Isomorphism

Common Input: \(x = (G_0, G_1) \)

P’s witness: \(\pi \) s.t. \(G_1 = \pi(G_0) \)

Protocol \((P, V)\): Repeat the following procedure \(n \) times using fresh randomness

\[
P \rightarrow V: \text{ Prover chooses a random permutation } \sigma \in \Pi_n, \text{ computes } H = \sigma(G_0) \text{ and sends } H
\]

\[
V \rightarrow P: V \text{ chooses a random bit } b \in \{0, 1\} \text{ and sends it to } P
\]

\[
P \rightarrow V: \text{ If } b = 0, \text{ } P \text{ sends } \sigma. \text{ Otherwise, it sends } \phi = \sigma \cdot \pi^{-1}
\]

\[
V(x, b, \phi): V \text{ outputs } 1 \text{ iff } H = \phi(G_b)
\]
(P, V) is Perfect Zero Knowledge: Strategy

- Will prove that a single iteration of (P, V) is perfect zero knowledge
- For the full protocol, use the following (read proof online):

Theorem

Sequential repetition of any ZK protocol is also ZK

- To prove that a single iteration of (P, V) is perfect ZK, we need to do the following:
 - Construct a Simulator S for every PPT V*
 - Prove that expected runtime of S is polynomial
 - Prove that the output distribution of S is correct (i.e., indistinguishable from real execution)
(P, V) is Perfect Zero Knowledge: Simulator

Simulator $S(x, z)$:

- Choose random $b' \leftarrow \{0, 1\}$, $\sigma \leftarrow \Pi_n$
- Compute $H = \sigma(G_{b'})$
- Emulate execution of $V^*(x, z)$ by feeding it H. Let b denote its response
- If $b = b'$, then feed σ to V^* and output its view. Otherwise, restart the above procedure
Correctness of Simulation

Lemma

In the execution of \(S(x, z) \),
- \(H \) is identically distributed to \(\sigma(G_0) \), and
- \(\Pr[b = b'] = \frac{1}{2} \)

Proof:
- Since \(G_0 \) is isomorphic to \(G_1 \), for a random \(\sigma \leftarrow \Pi_n \), \(\sigma(G_0) \) and \(\sigma(G_1) \) are identically distributed
- That is, distribution of \(H \) is independent of \(b' \)
- Therefore, \(H \) has the same distribution as \(\sigma(G_0) \)
- Now, since \(V^* \) only takes \(H \) as input, its output \(b' \) is also independent of \(b' \)
- Since \(b' \) is chosen at random, \(\Pr[b' = b] = \frac{1}{2} \)
Correctness of Simulation (contd.)

Runtime of S:
- From Lemma 3: S has probability $\frac{1}{2}$ of succeeding in each trial
- Therefore, in expectation, S stops after 2 trials
- Each trial takes polynomial time, so run time of S is expected polynomial

Indistinguishability of Simulated View:
- From Lemma 3: H has the same distribution as $\sigma(G_0)$
- If we could always output σ, then output distribution of S would be same as in real execution
- S, however, only outputs H and σ if $b' = b$
- But since H is independent of b', this does not change the output distribution
Reflections on Zero Knowledge Proofs

Paradox?

- Protocol execution convinces V of the validity of x
- Yet, V could have generated the protocol transcript on its own

To understand why there is no paradox, consider the following story:

- Alice and Bob run (P, V) on input (G_0, G_1) where Alice acts as P and Bob as V
- Now, Bob goes to Eve: “G_0 and G_1 are isomorphic”
- Eve: “Oh really?”
- Bob: “Yes, you can see this accepting transcript”
- Eve: “Are you kidding me? Anyone can come up with this transcript without knowing the isomorphism!”
- Bob: “But I computed this transcript by talking to Alice who answered my challenge correctly every time!”
Moral of the story:

- Bob participated in a “live” conversation with Alice, and was convinced by how the transcript was generated.
- But to Eve, who did not see the live conversation, there is no way to tell whether the transcript is from real execution or produced by simulator.
Zero-Knowledge Proofs for NP

The assumption can in fact be relaxed to just one-way functions

Think: How to prove the theorem?

Construct ZK proof for every NP language?

Not efficient!
Zero-Knowledge Proofs for NP (contd.)

Proof Strategy:

Step 1: Construct a ZK proof for an NP-complete language. We will consider Graph 3-Coloring: language of all graphs whose vertices can be colored using only three colors s.t. no two connected vertices have the same color.

Step 2: To construct ZK proof for any NP language \(L \), do the following:

- Given instance \(x \) and witness \(w \), \(P \) and \(V \) reduce \(x \) into an instance \(x' \) of Graph 3-coloring using Cook’s (deterministic) reduction.
- \(P \) also applies the reduction to witness \(w \) to obtain witness \(w' \) for \(x' \).
- Now, \(P \) and \(V \) can run the ZK proof from Step 1 on common input \(x' \).
Consider graph $G = (V, E)$. Let C be a 3-coloring of V given to P. P picks a random permutation π over colors $\{1, 2, 3\}$ and colors G according to $\pi(C)$. It hides each vertex in V inside a locked box. V picks a random edge (u, v) in E. P opens the boxes corresponding to u, v. V accepts if u and v have different colors, and rejects otherwise.

The above process is repeated $n|E|$ times.

Intuition for Soundness: In each iteration, cheating prover is caught with probability $\frac{1}{|E|}$.

Intuition for ZK: In each iteration, V only sees something it knew before – two random (but different) colors.
Towards ZK Proof for Graph 3-Coloring

To “digitize” the above proof, we need to implement locked boxes

Need two properties from digital locked boxes:

- **Hiding**: V should not be able to see the content inside a locked box
- **Binding**: P should not be able to modify the content inside a box once its locked
Commitment Schemes

- Digital analogue of locked boxes

- Two phases:
 - **Commit phase**: Sender locks a value v inside a box
 - **Open phase**: Sender unlocks the box and reveals v

- Can be implemented using interactive protocols, but we will consider non-interactive case. Both commit and reveal phases will consist of single messages
Commitment Schemes: Definition

Definition (Commitment)

A randomized polynomial-time algorithm Com is called a commitment scheme for n-bit strings if it satisfies the following properties:

- **Binding:** For all $v_0, v_1 \in \{0, 1\}^n$ and $r_0, r_1 \in \{0, 1\}^n$, it holds that $\text{Com}(v_0; r_0) \neq \text{Com}(v_1; r_1)$

- **Hiding:** For every non-uniform PPT distinguisher D, there exists a negligible function $\nu(\cdot)$ s.t. for every $v_0, v_1 \in \{0, 1\}^n$, D distinguishes between the following distributions with probability at most $\nu(n)$

 $\{r \leftarrow \{0, 1\}^n : \text{Com}(v_0; r)\}$

 $\{r \leftarrow \{0, 1\}^n : \text{Com}(v_1; r)\}$
Commitment Schemes: Remarks

- The previous definition only guarantees hiding for one commitment.
- **Multi-value Hiding:** Just like encryption, we can define multi-value hiding property for commitment schemes.
- Using hybrid argument (as for public-key encryption), we can prove that any commitment scheme satisfies multi-value hiding.
- **Corollary:** One-bit commitment implies string commitment.
Construction of Bit Commitments

Construction: Let f be an OWP, h be the hard core predicate for f

Commit phase: Sender computes $\text{Com}(b; r) = f(r), b \oplus h(r)$. Let C denote the commitment.

Open phase: Sender reveals (b, r). Receiver accepts if $C = (f(r), b \oplus h(r))$, and rejects otherwise.

Security:

- Binding follows from construction since f is a permutation.
- Hiding follows in the same manner as IND-CPA security of public-key encryption scheme constructed from trapdoor permutations.
ZK Proof for Graph 3-Coloring

Common Input: $G = (V, E)$, where $|V| = n$

P’s witness: Colors $\text{color}_1, \ldots, \text{color}_n \in \{1, 2, 3\}$

Protocol (P, V): Repeat the following procedure $n|E|$ times using fresh randomness

$P \rightarrow V$: P chooses a random permutation π over $\{1, 2, 3\}$. For every $i \in [n]$, it computes $C_i = \text{Com}(\text{color}_i)$ where $\text{color}_i = \pi(\text{color}_i)$. It sends (C_1, \ldots, C_n) to V

$V \rightarrow P$: V chooses a random edge $(i, j) \in E$ and sends it to P

$P \rightarrow V$: Prover opens C_i and C_j to reveal $(\text{color}_i, \text{color}_j)$

V: If the openings of C_i, C_j are valid and $\text{color}_i \neq \text{color}_j$, then V accepts the proof. Otherwise, it rejects.
Proof of Soundness

- If G is not 3-colorable, then for any coloring $\text{color}_1, \ldots, \text{color}_n$, there exists at least one edge which has the same colors on both endpoints.

- From the binding property of Com, it follows that C_1, \ldots, C_n have unique openings $\widetilde{\text{color}}_1, \ldots, \widetilde{\text{color}}_n$.

- Combining the above, let $(i^*, j^*) \in E$ be s.t. $\widetilde{\text{color}}_{i^*} = \widetilde{\text{color}}_{j^*}$.

- Then, with probability $\frac{1}{|E|}$, V chooses $i = i^*, j = j^*$ and catches P.

- In $n|E|$ independent repetitions, P successfully cheats in all repetitions with probability at most

$$
\left(1 - \frac{1}{|E|}\right)^{n|E|} \approx e^{-n}
$$
Intuition:

- In each iteration, V only sees two random colors
- Hiding property of Com guarantees that everything else remains hidden from V
- As for Graph Isomorphism, we will only prove zero knowledge for one iteration. For the full protocol, we can prove zero knowledge using Theorem 2
Simulator $S(x = G, z)$:

- Choose a random edge $(i', j') \leftarrow E$ and pick random colors $\text{color}_{i'}', \text{color}_{j'}' \leftarrow \{1, 2, 3\}$ s.t. $\text{color}_{i'}' \neq \text{color}_{j'}'$. For every other $k \in [n] \setminus \{i', j'\}$, set $\text{color}_{k}^{''} = 1$
- For every $\ell \in [n]$, compute $C_{\ell} = \text{Com}(\text{color}_{\ell}')$
- Emulate execution of $V^*(x, z)$ by feeding it (C_1, \ldots, C_n). Let (i, j) denote its response
- If $(i, j) = (i', j')$, then feed the openings of C_i, C_j to V^* and output its view. Otherwise, restart the above procedure, at most $n|E|$ times
- If simulation has not succeeded after $n|E|$ attempts, then output fail
Correctness of Simulation

Hybrid Experiments:

- H_0: Real execution
- H_1: Hybrid simulator S' that acts like the real prover (using witness $\text{color}_1, \ldots, \text{color}_n$), except that it also chooses $(i', j') \leftarrow E$ at random and if $(i', j') \neq (i, j)$, then it outputs fail
- H_2: Simulator S
Correctness of Simulation (contd.)

- $H_0 \approx H_1$: If S' does not output fail, then H_0 and H_1 are identical. Since (i, j) and (i', j') are independently chosen, S' fails with probability at most:

$$
\left(1 - \frac{1}{|E|}\right)^{n|E|} \approx e^{-n}
$$

Therefore, H_0 and H_1 are statistically indistinguishable.

- $H_1 \approx H_2$: The only difference between H_1 and H_2 is that for all $k \in [n] \setminus \{i', j'\}$, C_k is a commitment to $\pi(\text{color}_k)$ in H_1 and a commitment to 1 in H_2. Then, from the multi-value hiding property of Com, it follows that $H_1 \approx H_2$.
Additional Reading

- Zero-knowledge Proofs for Nuclear Disarmament [Glaser-Barak-Goldston’14]
- Non-black-box Simulation [Barak’01]
- Concurrent Composition of Zero-Knowledge Proofs [Dwork-Naor-Sahai’98, Richardson-Kilian’99, Kilian-Petrack’01, Prabhakaran-Rosen-Sahai’02]
- Non-malleable Commitments and ZK Proofs [Dolev-Dwork-Naor’91]
- Non-interactive Zero-knowledge Proofs [Blum-Feldman-Micali’88, Feige-Lapidot-Shamir’90]