The Setting

- Alice and Bob don’t share any secret
- Alice wants to send a private message m to Bob
- Goals:
 - **Public key:** Encryption and decryption keys are different. Encryption key can be “public”
 - **Correctness:** Alice can compute an encryption c of m using pk. Bob can decrypt m from c correctly using sk
 - **Security:** No eavesdropper can distinguish between encryptions of m and m' (even using pk)
Definition

- **Syntax:**
 - Gen$(1^n) \rightarrow (pk, sk)$
 - Enc$(pk, m) \rightarrow c$
 - Dec$(sk, c) \rightarrow m'$ or ⊥

 All algorithms are polynomial time

- **Correctness:** For every m, Dec$(sk, Enc(pk, m)) = m$, where $(pk, sk) \leftarrow \text{Gen}(1^n)$

- **Security:** ?
Definition ((Weak) Indistinguishability Security)

A public-key encryption scheme \((\text{Gen, Enc, Dec})\) is weakly indistinguishably secure under chosen plaintext attack (weak IND-CPA) if for all n.u. PPT adversaries \(A\), there exists a negligible function \(\mu(\cdot)\) s.t.:

\[
\Pr \left[\begin{array}{c}
(pk, sk) \xleftarrow{\$} \text{Gen}(1^n), \\
(m_0, m_1) \xleftarrow{\$} A(1^n), \quad : A(pk, \text{Enc}(pk, m_b)) = b
\end{array} \right] \leq \frac{1}{2} + \mu(n)
\]

\(b \xleftarrow{\$} \{0, 1\}\)

1. Think: Semantic security style definition?
2. Think Equivalence of above definition and semantic security
A stronger definition:

Definition (Indistinguishability Security)

A public-key encryption scheme \((\text{Gen}, \text{Enc}, \text{Dec})\) is indistinguishably secure under chosen plaintext attack (IND-CPA) if for all n.u. PPT adversaries \(A\), there exists a negligible function \(\mu(\cdot)\) s.t.:

\[
\Pr \left[\begin{array}{c}
(pk, sk) \leftarrow \text{Gen}(1^n), \\
(m_0, m_1) \leftarrow A(1^n, pk), \quad : A(pk, \text{Enc}(m_b)) = b \\
b \leftarrow \{0, 1\}
\end{array} \right] \leq \frac{1}{2} + \mu(n)
\]

1. Think: IND-CPA is stronger than weak IND-CPA
2. Think Multi-message security?
Lemma (Multi-message security)

One-message security implies multi-message security for public-key encryption
Multi-message security

Lemma (Multi-message security)

One-message security implies multi-message security for public-key encryption

1. **Think**: Proof?
Multi-message security

Lemma (Multi-message security)

One-message security implies multi-message security for public-key encryption

1. Think: Proof?
2. Corollary: Suffices to consider single-bit message
A collection of one-way functions is a family $\mathcal{F} = \{f_i : D_i \rightarrow R_i\}_{i \in \mathcal{I}}$ satisfying the following conditions:

1. **Sampling function:** There exists a PPT algorithm Gen such that Gen outputs an element uniformly random from D_i.

2. **Sampling from domain:** There exists a PPT algorithm that on input i outputs a uniformly random element of D_i.

3. **Evaluation:** There exists a PPT algorithm that on input $i, x \in D_i$ outputs $f_i(x) = y$.

4. **Hard to invert:** For every PPT adversary A, there exists a negligible function μ such that:

 $$\Pr_{r \leftarrow \text{Gen}, y \leftarrow f_i(x)}[A(r, i, y) = 1] < \mu \cdot (\lambda)$$
One-way Functions, Revisited

Definition (Collection of OWFs)

A collection of one-way functions is a family \(\mathcal{F} = \{ f_i : D_i \rightarrow R_i \} \) satisfying the following conditions:

- **Sampling function:** There exists a PPT \(\text{Gen} \) s.t. \(\text{Gen}(1^n) \) outputs \(i \in \mathcal{I} \)

- **Evaluation:** There exists a PPT algorithm that on input \(i, x \) outputs \(f_i(x) \)

- **Hard to invert:** For every n.u. PPT adversary \(A \), there exists a negligible function \(\mu \) s.t.:
 \[
 \Pr_{r,i \leftarrow \text{Gen}(1^n), x \leftarrow D_i, y \leftarrow f_i(x)}[A(r,i,y) \neq x] < \mu(n)
 \]
One-way Functions, Revisited

Definition (Collection of OWFs)

A collection of one-way functions is a family $\mathcal{F} = \{f_i : D_i \rightarrow R_i\}_{i \in \mathcal{I}}$ satisfying the following conditions:

- **Sampling function:** There exists a PPT Gen s.t. $\text{Gen}(1^n)$ outputs $i \in \mathcal{I}$

- **Sampling from domain:** There exists a PPT algorithm that on input i outputs a uniformly random element of D_i
One-way Functions, Revisited

Definition (Collection of OWFs)

A collection of one-way functions is a family $\mathcal{F} = \{f_i : \mathcal{D}_i \to \mathcal{R}_i\}_{i \in \mathcal{I}}$ satisfying the following conditions:

- **Sampling function:** There exists a PPT Gen s.t. $\text{Gen}(1^n)$ outputs $i \in \mathcal{I}$

- **Sampling from domain:** There exists a PPT algorithm that on input i outputs a uniformly random element of \mathcal{D}_i

- **Evaluation:** There exists a PPT algorithm that on input $i, x \in \mathcal{D}_i$ outputs $f_i(x)$

- **Hard to invert:** For every n.u. PPT adversary A, there exists a negligible function μ s.t.:
 \[
 \Pr[r \leftarrow \text{Gen}(1^n), x \leftarrow \mathcal{D}_i, y \leftarrow f_i(x); A(r, i, y) = 1] \leq \mu(n)
 \]
One-way Functions, Revisited

Definition (Collection of OWFs)

A collection of one-way functions is a family \(\mathcal{F} = \{ f_i : D_i \rightarrow R_i \}_{i \in \mathcal{I}} \) satisfying the following conditions:

- **Sampling function:** There exists a PPT \(\text{Gen} \) s.t. \(\text{Gen}(1^n) \) outputs \(i \in \mathcal{I} \)

- **Sampling from domain:** There exists a PPT algorithm that on input \(i \) outputs a uniformly random element of \(D_i \)

- **Evaluation:** There exists a PPT algorithm that on input \(i, x \in D_i \) outputs \(f_i(x) \)

- **Hard to invert:** For every n.u. PPT adversary \(A \), there exists a negligible function \(\mu(\cdot) \) s.t.:

\[
\Pr \left[i \leftarrow \text{Gen}(1^n) , x \leftarrow D_i, y \leftarrow f_i(x) : f_i (A (1^n, i, y)) = y \right] \leq \mu(n)
\]
Theorem

There exists a collection of one-way functions iff there exists a strong one-way function

Think: Proof?
A collection $\mathcal{F} = \{f_i : D_i \rightarrow R_i\}_{i \in \mathcal{I}}$ is a collection of one-way permutations if \mathcal{F} is a collection of OWFs and for every $i \in \mathcal{I}$, f_i is a permutation.
Definition (Trapdoor OWPs)

A collection of trapdoor permutations is a family of permutations \(\mathcal{F} = \{ f_i : D_i \rightarrow R_i \}_{i \in I} \) satisfying the following properties:
Trapdoor Permutations

Definition (Trapdoor OWPs)

A collection of trapdoor permutations is a family of permutations $\mathcal{F} = \{f_i : \mathcal{D}_i \rightarrow \mathcal{R}_i\}_{i \in \mathcal{I}}$ satisfying the following properties:

- **Sampling function:** \exists a PPT Gen s.t. $\text{Gen}(1^n)$ outputs $(i, t) \in \mathcal{I}$
Trapdoor Permutations

Definition (Trapdoor OWPs)
A collection of trapdoor permutations is a family of permutations \(F = \{ f_i : D_i \rightarrow R_i \}_{i \in \mathcal{I}} \) satisfying the following properties:

- **Sampling function:** \(\exists \) a PPT Gen s.t. \(\text{Gen}(1^n) \) outputs \((i, t) \in \mathcal{I}\)
- **Sampling from domain:** \(\exists \) a PPT algorithm that on input \(i \) outputs a uniformly random element of \(D_i \)
Definition (Trapdoor OWPs)

A collection of trapdoor permutations is a family of permutations \(F = \{ f_i : D_i \rightarrow R_i \}_{i \in \mathcal{I}} \) satisfying the following properties:

- **Sampling function:** \(\exists \) a PPT Gen s.t. \(\text{Gen}(1^n) \) outputs \((i, t) \in \mathcal{I} \)

- **Sampling from domain:** \(\exists \) a PPT algorithm that on input \(i \) outputs a uniformly random element of \(D_i \)

- **Evaluation:** \(\exists \) PPT that on input \(i, x \in D_i \) outputs \(f_i(x) \)
A collection of trapdoor permutations is a family of permutations \(\mathcal{F} = \{ f_i : \mathcal{D}_i \to \mathcal{R}_i \}_{i \in \mathcal{I}} \) satisfying the following properties:

- **Sampling function:** \(\exists \) a PPT Gen s.t. \(\text{Gen}(1^n) \) outputs \((i, t) \in \mathcal{I} \)
- **Sampling from domain:** \(\exists \) a PPT algorithm that on input \(i \) outputs a uniformly random element of \(\mathcal{D}_i \)
- **Evaluation:** \(\exists \) PPT that on input \(i, x \in \mathcal{D}_i \) outputs \(f_i(x) \)
- **Hard to invert:** \(\forall \) n.u. PPT adversary \(\mathcal{A} \), \(\exists \) a negligible function \(\mu(\cdot) \) s.t.:

\[
\Pr [i \leftarrow \text{Gen}(1^n), x \leftarrow \mathcal{D}_i, y \leftarrow f_i(x) : f_i(\mathcal{A}(1^n, i, y)) = y] \leq \mu(n)
\]
Trapdoor Permutations

Definition (Trapdoor OWPs)

A collection of trapdoor permutations is a family of permutations \(\mathcal{F} = \{f_i : \mathcal{D}_i \rightarrow \mathcal{R}_i\}_{i \in \mathcal{I}} \) satisfying the following properties:

- **Sampling function:** \(\exists \) a PPT \(\text{Gen} \) s.t. \(\text{Gen}(1^n) \) outputs \((i, t) \in \mathcal{I} \)
- **Sampling from domain:** \(\exists \) a PPT algorithm that on input \(i \) outputs a uniformly random element of \(\mathcal{D}_i \)
- **Evaluation:** \(\exists \) PPT that on input \(i, x \in \mathcal{D}_i \) outputs \(f_i(x) \)
- **Hard to invert:** \(\forall \) n.u. PPT adversary \(\mathcal{A} \), \(\exists \) a negligible function \(\mu(\cdot) \) s.t.:
 \[
 \Pr[i \leftarrow \text{Gen}(1^n), x \leftarrow \mathcal{D}_i, y \leftarrow f_i(x) : f_i(\mathcal{A}(1^n, i, y)) = y] \leq \mu(n)
 \]
- **Inversion with trapdoor:** \(\exists \) a PPT algorithm that given \((i, t, y) \) outputs \(f_i^{-1}(y) \)
Public-key Encryption from Trapdoor Permutations

Let \(\mathcal{F} = \{ f_i : D_i \rightarrow R_i \}_{i \in \mathcal{I}} \) be a family of trapdoor permutations

Theorem (PKE from Trapdoor Permutations)

\((\text{Gen}, \text{Enc}, \text{Dec})\) is IND-CPA secure public-key encryption scheme
Public-key Encryption from Trapdoor Permutations

Let $\mathcal{F} = \{f_i : D_i \rightarrow R_i\}_{i \in \mathcal{I}}$ be a family of trapdoor permutations

- $\text{Gen}(1^n)$: $(f_i, f_i^{-1}) \leftarrow \text{Gen}_T(1^n)$. Output $(pk, sk) \leftarrow ((f_i, h_i), f_i^{-1})$

Theorem (PKE from Trapdoor Permutations)

(Gen, Enc, Dec) is IND-CPA secure public-key encryption scheme
Public-key Encryption from Trapdoor Permutations

Let $\mathcal{F} = \{f_i : D_i \rightarrow R_i\}_{i \in \mathcal{I}}$ be a family of trapdoor permutations

- $\text{Gen}(1^n)$: $(f_i, f_i^{-1}) \leftarrow \text{Gen}_T(1^n)$. Output $(pk, sk) \leftarrow ((f_i, h_i), f_i^{-1})$
- $\text{Enc}(pk, m)$: Pick $r \leftarrow \$ \{0, 1\}^n$. Output $(f_i(r), h_i(r) \oplus m)$

Theorem (PKE from Trapdoor Permutations)

$(\text{Gen}, \text{Enc}, \text{Dec})$ is IND-CPA secure public-key encryption scheme
Let $\mathcal{F} = \{f_i : \mathcal{D}_i \rightarrow \mathcal{R}_i\}_{i \in I}$ be a family of trapdoor permutations

- $\text{Gen}(1^n): (f_i, f_i^{-1}) \leftarrow \text{Gen}_T(1^n)$. Output $(pk, sk) \leftarrow ((f_i, h_i), f_i^{-1})$
- $\text{Enc}(pk, m)$: Pick $r \leftarrow \{0, 1\}^n$. Output $(f_i(r), h_i(r) \oplus m)$
- $\text{Dec}(sk, (c_1, c_2))$: $r \leftarrow f_i^{-1}(c_1)$. Output $c_2 \oplus h_i(r)$

Theorem (PKE from Trapdoor Permutations)

$(\text{Gen}, \text{Enc}, \text{Dec})$ is IND-CPA secure public-key encryption scheme
Let $\mathcal{F} = \{ f_i : D_i \rightarrow R_i \}_{i \in \mathcal{I}}$ be a family of trapdoor permutations

- **Gen(1^n):** $(f_i, f_i^{-1}) \leftarrow \text{Gen}_T(1^n)$. Output $(pk, sk) \leftarrow ((f_i, h_i), f_i^{-1})$
- **Enc(pk, m):** Pick $r \leftarrow \{0, 1\}^n$. Output $(f_i(r), h_i(r) \oplus m)$
- **Dec($sk, (c_1, c_2)$):** $r \leftarrow f_i^{-1}(c_1)$. Output $c_2 \oplus h_i(r)$

Theorem (PKE from Trapdoor Permutations)

$(\text{Gen}, \text{Enc}, \text{Dec})$ is IND-CPA secure public-key encryption scheme

Think: Proof?
Public-key Encryption from Trapdoor Permutations

Let $\mathcal{F} = \{f_i : D_i \rightarrow R_i\}_{i \in \mathcal{I}}$ be a family of trapdoor permutations

- **Gen**: $(f_i, f_i^{-1}) \leftarrow \text{Gen}_T(1^n)$. Output $(pk, sk) \leftarrow ((f_i, h_i), f_i^{-1})$

- **Enc**: (pk, m): Pick $r \leftarrow \{0, 1\}^n$. Output $(f_i(r), h_i(r) \oplus m)$

- **Dec**: $(sk, (c_1, c_2))$: $r \leftarrow f_i^{-1}(c_1)$. Output $c_2 \oplus h_i(r)$

Theorem (PKE from Trapdoor Permutations)

$(\text{Gen}, \text{Enc}, \text{Dec})$ is IND-CPA secure public-key encryption scheme

- **Think**: Proof?

- **How to build trapdoor permutations?**
Candidate Trapdoor Permutations

Definition (RSA Collection)

\[\text{RSA} = \{ f_i : \mathcal{D}_i \rightarrow \mathcal{R}_i \}_{i \in \mathcal{I}} \text{ where:} \]

- \[\mathcal{I} = \{ (N, e) \mid N = p \cdot q \text{ s.t. } p, q \in \Pi_n, \ e \in \mathbb{Z}_{\Phi(N)}^* \} \]
- \[\mathcal{D}_i = \{ x \mid x \in \mathbb{Z}_N^* \} \]
- \[\mathcal{R}_i = \mathbb{Z}_N^* \]
- \[\text{Gen}(1^n) \rightarrow ((N, e), d) \text{ where } (N, e) \in \mathcal{I} \text{ and } e \cdot d = 1 \mod \Phi(N) \]
- \[f_{N,e}(x) = x^e \mod N \]
- \[f_{N,d}^{-1}(y) = y^d \mod N \]
Candidate Trapdoor Permutations

Definition (RSA Collection)

\[\text{RSA} = \{f_i : D_i \to R_i\}_{i \in I} \text{ where:} \]

- \[I = \{(N, e) \mid N = p \cdot q \text{ s.t. } p, q \in \Pi_n, \ e \in \mathbb{Z}_\Phi(N)\} \]
- \[D_i = \{x \mid x \in \mathbb{Z}_N^*\} \]
- \[R_i = \mathbb{Z}_N^* \]
- \[\text{Gen}(1^n) \to ((N, e), d) \text{ where } (N, e) \in I \text{ and } e \cdot d = 1 \mod \Phi(N) \]
- \[f_{N, e}(x) = x^e \mod N \]
- \[f_{N, d}^{-1}(y) = y^d \mod N \]

Think: Why is \(f_{N, e} \) a permutation?
Assumption (RSA Assumption)

For any n.u. PPT adversary \(A \), there exists a negligible function \(\mu(\cdot) \) s.t.:

\[
\Pr \left[p, q \xleftarrow{\$} \Pi_n, \ N = p \cdot q, \ e \xleftarrow{\$} \mathbb{Z}_\Phi(N), \ y \xleftarrow{\$} \mathbb{Z}_N^*; \ x \xleftarrow{} A(N, e, y) : x^e = y \mod N \right] \leq \mu(n)
\]

Theorem

Assuming the RSA assumption, the RSA collection is a family of trapdoor permutations
Candidate Trapdoor Permutations (contd.)

Assumption (RSA Assumption)

For any n.u. PPT adversary A, there exists a negligible function $\mu(\cdot)$ s.t.:

$$\Pr \left[\begin{array}{l}
 p, q \leftarrow \Pi_n, \ N = p \cdot q, \ e \leftarrow \mathbb{Z}_\Phi(N)^*, \\
 y \leftarrow \mathbb{Z}_N^*, \ x \leftarrow A(N, e, y) \\
 : \ x^e = y \mod N
\end{array} \right] \leq \mu(n)$$

- **Think:** RSA assumption implies the factoring assumption

Theorem

Assuming the RSA assumption, the RSA collection is a family of trapdoor permutations
Food for Thought

- Direct (more efficient) constructions of PKE (e.g., El-Gamal)
- Stronger security notions:
 - Indistinguishability under chosen-ciphertext attacks (IND-CCA) [Naor-Segev],[Dolev-Dwork-Naor],[Sahai]
 - Circular security/key-dependent message security [Boneh-Halevi-Hamburg-Ostrovsky]
 - Leakage-resilient encryption [Dziembowski-Pietrzak], [Akavia-Goldwasser-Vaikuntanathan]
- Weaker security notions:
 - Deterministic encryption [Bellare-Boldyreva-O’Neill]