Problem 1. [5 points] Alice and Bob want to write encrypted messages to a diary so that after decrypting the message they will know who wrote which message. They decide on the following method:

1. all messages of Alice will start with n 0s, whereas
2. all messages of Bob will end with all 0s; and
3. no one will write the message where everything is all 0.

So if Alice wants to write a message m to the diary, she will encrypt the message $0^n \| m$ where 0^n is a string of n 0s, and $\|$ denotes concatenation.

Likewise, Bob’s messages will be of the form $m \| 0^n$. Assume that m is also of length n and $m \neq 0^n$. Note that with this encoding, each string that Alice and Bob write in the diary is of length $2n$ and it is never all 0.

To encrypt the message Alice and Bob agree to use one-time pad and jointly select a random key k of length $2n$ which they will use to encrypt and write their strings to the diary.

Show how to decrypt all the messages in the diary without knowing the key k as soon as both Alice and Bob written one string each in the diary. Also, show how to recover the key k.

Problem 2. [15 points] Give an example of a function $\nu : \mathbb{N} \rightarrow \mathbb{R}$ which is neither negligible nor non-negligible.

Problem 3. Suppose that $f : \{0,1\}^n \rightarrow \{0,1\}^n$ is a function such that $f(x) = 011\|0^{n-3}$.

- [5 points] Show that f is not a one-way function (OWF).
- [5 points] Show that the last bit of x is a hard-core bit for f (even though f is not a OWF).

Problem 4. [40 points] For any two functions h and g, $h \circ g$ denotes their composition function, defined as follows1:

$$(h \circ g)(x) = h(g(x)).$$

Let $f : \{0,1\}^n \rightarrow \{0,1\}^n$ be a OWF from n-bit strings to n-bit strings. Construct a new function F using f such that F is also a OWF but $F \circ F$ is not a OWF. Support your answer by giving a proof that (a) F is one-way, and (b) showing an attack against $F \circ F$.

1Assume that the range of function g is a subset of the domain of function f.
Problem 5. This question highlights the difference between a one-way permutation (OWP) and a one-way function (OWF). Suppose that \(g : \{0,1\}^n \rightarrow \{0,1\}^n \) is a permutation. This means that for every \(y \in \{0,1\}^n \) there exists a unique \(x \in \{0,1\}^n \) such that \(g(x) = y \). (Note: do not assume that \(g \) is one-way).

- **[15 points]** Prove that if \(g \) has a hardcore predicate \(h \), then \(g \) is also one-way.

 Hint 1: Prove by contradiction. Assume that an efficient adversary \(A \) can invert \(g \) with noticeable probability. Then use \(A \) to prove that \(h \) is not a hardcore predicate for \(g \) by guessing \(h(x) \) with more than \(1/2 \) probability.

 Hint 2: When using \(A \) to guess \(h(x) \) (given \(g(x) \) for a random \(x \)), if \(A \) fails to invert \(g \), you can always make a random guess for \(h(x) \) and be correct with probability \(1/2 \).

 Hint 3: Do you notice the difference between this problem and Problem 3?

- **[5 points]** Prove that the composition function \(G = g \circ g \) is also a permutation.

- **[10 points]** Prove that if \(g \) is one-way then \(G = g \circ g \) define above is also one-way.

 Hint 3: Do you notice the difference between this problem and Problem 4?