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Abstract 
The purpose of this thesis is to study different issues concerning voice 

communication over mobile ad-hoc networks and try to find some solves for 

them. Starting with basic understanding of ad-hoc networks, its applicability 

and somewhat details of existing works of ad-hoc routing, this thesis digs into 

different troubles we face in ad-hoc voice communication. After that the 

research work focuses onto betterment of SIP Architecture support in ad-hoc 

realm. A new protocol is proposed in this purpose to improve performance 

over existing works and details is given on how the protocol works and how it 

would behave in different situations. A section is also provided on how to set 

up the simulation environment to analyze performance of such protocol. But 

in order to maintain brevity and conciseness, their discussion has been 

limited. 
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Chap t e r  1  

Introduction 
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1.1 Motivation 

Whenever there is an opportunity of achieving some services or goods for free, 

it’s a common human response is to get hold of it even if there is a compromise 

to be made about quality, performance or security. In modern world the burden 

of distant communication is mostly handled by cellular networks, which is 

popular, reliable, easily available, widely accepted but comes at a price. Now if 

someone provides the mass people with something that can enable them to skip 

the existing cellular communication structure and have voice conversation for 

hours without having to worry about credits running out, surely, it would be very 

interesting. In a perfect world it might have been possible to provide all possible 

communications for free. But in reality we can provide such facility in some small 

scale. When a caller tries to call someone from cellular phone, who is 

geographically very close to him, we might think it as a waste of cellular network 

because we are trying to make a communication through complicated cellular 

architecture that might have been really easily made directly between two devices. 

Since every cellular phone is some kind of sophisticated radio device and can 

connect to a base station that is far off, it already has the capability of connecting 

to another device that is nearby. So if we can somehow provide a way of 

connecting those two devices without the help of any central architecture, we can 

allow free, independent communication between caller and callee. 

The idea of communicating without the help of any central architecture is known 

as ad-hoc communication. Ad-hoc network is a general concept and can be 

created on any kind of radio capable network mechanism. Most suitable of them 

is wireless LAN or (1)WiFi. With more and more devices being made WiFi 

enabled (including cell phones), having ad-hoc networks available is becoming 

easier day by day. Besides the obvious and elusive feature of free calling, having 

facility of voice communication over such a network can provide us a lot of 
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advantages in some situations with deferent perspectives. The base concept of 

such communication is to avoid any infrastructure based communication. So 

whenever we face a situation where the reliability of such structures comes into 

question, we have our system come to rescue. 

• Every infrastructure based voice communication system (GSM, CDMA 

etc) is driven by centralized structures like Base Station/MTSO etc., 

which are limited in capacity and can only provide for some statistically 

average load. When a huge gathering happens, like in a football match or 

concert or some procession they miserably fail to support voice 

communication. In such an extreme cases, ad-hoc network can provide 

useful alternate way of communication between people. 

• In case of natural calamity like earthquake, flood, cyclone infrastructure 

based communication is bound to suffer disturbance or lack of 

operability. Rescue or relief teams generally have to be well equipped with 

expensive equipments to enable communication between individuals. 

Introduction of ad-hoc network based voice communication can serve 

well in this purpose. Also people suffering such disaster can have a way to 

communicate with each other and the rescue team. Since this network 

doesn’t require any predefined setup or any non-regular device, 

connectivity is instant and useful. 

• When communication between groups is required to be secured (like 

covert teams) avoidance of public network is necessary. Ad-hoc network 

in some secured channel with proper encryption can go a long way here 

in providing some solution. 

So voice communication over such alternate network can be really handy. 
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1.2 Problem Specification 

To transmit real time data like voice over any network, there are always some 

common requirements to meet to bring out acceptable performance. To support 

voice transmission a network should provide, 

• Minimal delay in connection setup 

• Minimal delay in packet transmission 

• Minimal jitter 

• Minimal hand-off time 

• Adequate bandwidth allocation to transmit voice packets etc. 

When we think about voice transmission, we need to think about these properties 

of a network. There had been some real progress in voice transmission over IP 

networks. But in case of ad-hoc networks it’s still in the early stages of research 

cycle. 

Like any other infrastructureless network, ad-hoc network suffers from lot of 

complexities due to its dynamic nature and it fails to provide the reliability of a 

structured network. There are lots of things to be done in this field. The primary 

goal of this research work is to go in deep of this field and to make ad-hoc voice 

communication as close as possible to voice communication systems available to 

general users in terms of both performance and usability. 

Existing ad-hoc structure provides us with dynamic mechanism of routing and IP 

assignment of nodes, and gives the upper layer a way of sending datagram 

packets from one node to another node. But the service is best of effort without 
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any promise of QoS. Aside from assurance of voice transmission quality, we have 

few more issues to consider when we try to match our system existing well-

developed cellular network. One issue is subscriber identification. When we try to 

mail someone, we use a mail address. When we try to call someone we use a 

phone number that is unique to that person. In case of ad-hoc network, when we 

start up some device enabled with ad-hoc networking capability, what we are 

presented with is a list of IP addresses or MAC addresses. This might be 

meaningful to lot of researchers but when general communication is concerned, 

this is just meaningless. Since nodes are assigned with dynamic IP addresses we 

can never tell which one is who, just by looking at such list. To support usability 

of such network, we must provide with something like email address or phone 

number that can identify a user among all these devices. 

Now there are many existing mechanism of translating some human identifiable 

name into IP address or other number (one being DNS). In recent times SIP 

(session initiation protocol) has gained a lot of credibility in the realm of VoIP for 

its simplicity and acceptability. SIP also provides a useful mechanism similar to 

DNS in translating SIP URI into IP address. But the architecture of SIP is built 

assuming that it would be implemented on an infrastructure-based network. But 

in case of ad-hoc network this is quite impossible to have some special node that 

can act like some server and be dedicated. So to allow users to call others using 

some name or number we need to adopt SIP into dynamic non-centralized 

structure of ad-hoc network. This thesis work is wholly devoted to this problem. 

1.3 Related Works 

There had been some effort made to adopt SIP architecture onto ad-hoc 

networks (2) (3) (4) (5) . But most of them lacked the required performance 

criteria. Few of those tried to create an overlay network on top of ad-hoc 

network to give a common naming mechanism. But maintaining such a network 
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can be costly in terms of overhead generated. Such methods require a lot of 

broadcasts at the application level. Since the underlying routing mechanism itself 

does a lot of flooding there is already some control overhead. When addition 

overhead is generated on its top, quality of communication degrades a lot due to 

lack of available bandwidth. One way to subside this problem is to merge SIP 

architecture with routing broadcast. Merging network layer to optimize 

performance might seem irrational at first but the performance advantage can be 

well worth. 

Li Li and Louise Lamont published a paper (4) with a view to utilize optimized 

flooding mechanisms provided by underlying routing algorithm and support SIP 

registration service to SIP nodes available in the network. Here the base concept 

is that every SIP node is also a registrar server itself. Each of them saves a table 

with URI to IP address mapping. Each SIP node periodically broadcasts register 

message in the network. Any other node receiving that message updates its table. 

Whenever it needs to communicate with someone else on the network, it just 

looks up the table and connects using the IP address. Problem with this 

mechanism is there is still broadcast from each node. The paper states that if 

there is some registrar server available on the network, SIP nodes just stops 

broadcasting on their part and registers themselves on that registrar server. But 

they don’t make any kind of reference about how the server was created or what 

happens when they goes down. If we can manage such registrar server obviously 

control overhead of maintaining SIP architecture decreases, but again we face 

some other problems. Every time a node tries to connect to other node on the 

network it has to make a query to the registrar server and waits for response. So 

data packet concentration around that server increases by a huge amount and 

creates congestion. Having a single registrar server also creates the problem of 

single point of failure. When this node goes down the whole network will go 

down. So existing works provide us with two solutions to adopt SIP, one is 
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totally decentralized with lot of broadcast and the other one with totally 

centralized mechanism with possible congestion and downtime. In our work, we 

can try to make something better by utilizing both the concept and creating 

something that lies in between. 

 

1.4 Project Organization 

This thesis dissertation describes the design and performance measure of the 

protocol to incorporate SIP architecture onto ad-hoc networks. 

Chapter 2 provides background reading required to understand the protocol 

developed. 

Chapter 3 specifies in details how the protocol works. 

Chapter 4 gives an overview on performance testing of the protocol in simulated 

environment. It also provides details on how to setup such simulation. 

Chapter 5 will suggest improvements and extensions for future development and 

the thesis will conclude with a brief summary.  
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Chap t e r  2  

General Concepts 
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2.1 Wireless ad-hoc networks 

2.1.1 General 

  A wireless ad-hoc network (6) is a collection of mobile/semi-mobile nodes with 

no pre-established infrastructure, forming a temporary network. Each of the 

nodes has a wireless interface and communicates with each other over either 

radio or infrared. Laptop computers and personal digital assistants that 

communicate directly with each other are some examples of nodes in an ad-hoc 

network. Nodes in the ad-hoc network are often mobile, but can also consist of 

stationary nodes, such as access points to the Internet. Semi mobile nodes can be 

used to deploy relay points in areas where relay points might be needed 

temporarily. 

Figure 1 shows a simple ad-hoc network with three nodes. The outermost nodes 

are not within transmitter range of each other. However the middle node can be 

used to forward packets between the outermost nodes. The middle node is acting 

as a router and the three nodes have formed an ad-hoc network. 

 

Figure 1 Example of a three node mobile ad-hoc network 
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An ad-hoc network uses no centralized administration. This is to be sure that the 

network won’t collapse just because one of the mobile nodes moves out of 

transmitter range of the others. Nodes should be able to enter/leave the network 

as they wish. Because of the limited transmitter range of the nodes, multiple hops 

may be needed to reach other nodes. Every node wishing to participate in an ad-

hoc network must be willing to forward packets for other nodes. Thus every 

node acts both as a host and as a router. A node can be viewed as an abstract 

entity consisting of a router and a set of affiliated mobile hosts (Figure 2). A 

router is an entity, which, among other things runs a routing protocol. A mobile 

host is simply an IP-addressable host/entity in the traditional sense. Ad-hoc 

networks are also capable of handling topology changes and malfunctions in 

nodes. It is fixed through network reconfiguration. For instance, if a node leaves 

the network and causes link breakages, affected nodes can easily request new 

routes and the problem will be solved. This will slightly increase the delay, but the 

network will still be operational. 

Wireless ad-hoc networks take advantage of the nature of the wireless 

communication medium. In other words, in a wired network the physical cabling 

is done a priori restricting the connection topology of the nodes. This restriction 

is not present in the wireless domain and, provided that two nodes are within 

transmitter range of each other, an instantaneous link between them may form. 
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Figure 2 Block diagram of mobile node acting both as hosts and as router 

2.1.2 Usage 

  

There is no clear picture of what these kinds of networks will be used for. The 

suggestions vary from document sharing at conferences to infrastructure 

enhancements and military applications. In areas where no infrastructure such as 

the Internet is available an ad-hoc network could be used by a group of wireless 

mobile hosts. This can be the case in areas where a network infrastructure may be 

undesirable due to reasons such as cost or convenience. Examples of such 

situations include disaster recovery personnel or military troops in cases where 

the normal infrastructure is either unavailable or destroyed. 

Other examples include business associates wishing to share files in an airport 

terminal, or a class of students needing to interact during a lecture. If each mobile 

host wishing to communicate is equipped with a wireless local area network 

interface, the group of mobile hosts may form an ad-hoc network. Access to the 
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Internet and access to resources in networks such as printers are features that 

probably also will be supported. 

With more and more portable devices with WiFi radio pre-built coming into 

market soon it might be get some real acceptance in the filed of insecure but free 

voice communication over short rage in case of campus talk or disaster scenarios 

where no infrastructure might be up and running. 

2.1.3 Characteristics 

Ad-hoc networks are often characterized by a dynamic topology due to the fact 

that nodes change their physical location by moving around. This favors routing 

protocols that dynamically discover routes over conventional routing algorithms 

like distant vector and link state (7). Another characteristic is that a host/node 

have very limited CPU capacity, storage capacity, battery power and bandwidth, 

also referred to as a “thin client”. This means that the power usage must be 

limited thus leading to a limited transmitter range. The access media, the radio 

environment, also has special characteristics that must be considered when 

designing protocols for ad-hoc networks. One example of this may be 

unidirectional links. These links arise when for example two nodes have different 

strength on their transmitters, allowing only one of the host to hear the other, but 

can also arise from disturbances from the surroundings. Multihop in a radio 

environment may result in an overall transmit capacity gain and power gain, due 

to the squared relation between coverage and required output power. By using 

multihop, nodes can transmit the packets with a much lower output power. 
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2.2 Routing 

  

Because of the fact that it may be necessary to hop several hops (multi-hop) 

before a packet reaches the destination, a routing protocol is needed. The routing 

protocol has two main functions, selection of routes for various source-

destination pairs and the delivery of messages to their correct destination. The 

second function is conceptually straightforward using a variety of protocols and 

data structures (routing tables).  

2.2.1 Conventional protocols 

 If a routing protocol is needed, why not use a conventional routing protocol like 

link state or distance vector? They are well tested and most computer 

communications people are familiar with them. The main problem with link-state 

and distance vector is that they are designed for a static topology, which means 

that they would have problems to converge to a steady state in an ad-hoc 

network with a very frequently changing topology. 

Link state and distance vector would probably work very well in an ad-hoc 

network with low mobility, i.e. a network where the topology is not changing very 

often. The problem that still remains is that link-state and distance-vector are 

highly dependent on periodic control messages. As the number of network nodes 

can be large, the potential number of destinations is also large. This requires large 

and frequent exchange of data among the network nodes. This is in contradiction 

with the fact that all updates in a wireless interconnected ad hoc network are 

transmitted over the air and thus are costly in resources such as bandwidth, 

battery power and CPU. Because both link-state and distance vector tries to 

maintain routes to all reachable destinations, it is necessary to maintain these 

routes and this also wastes resources for the same reason as above. 
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Another characteristic for conventional protocols are that they assume bi-

directional links, e.g. that the transmission between two hosts works equally well 

in both directions. In the wireless radio environment this is not always the case. 

Because many of the proposed ad-hoc routing protocols have a traditional 

routing protocol as underlying algorithm, it is necessary to understand the basic 

operation for conventional protocols like distance vector, link state and source 

routing. 

2.2.2 Link State 

 

In link-state routing (7), each node maintains a view of the complete topology 

with a cost for each link. To keep these costs consistent; each node periodically 

broadcasts the link costs of its outgoing links to all other nodes using flooding. 

As each node receives this information, it updates its view of the network and 

applies a shortest path algorithm to choose the next-hop for each destination. 

Some link costs in a node view can be incorrect because of long propagation 

delays, partitioned networks, etc. Such inconsistent network topology views can 

lead to formation of routing-loops. These loops are however short-lived, because 

they disappear in the time it takes a message to traverse the diameter of the 

network. 

2.2.3 Distance Vector 

  

In distance vector (7) each node only monitors the cost of its outgoing links, but 

instead of broadcasting this information to all nodes, it periodically broadcasts to 

each of its neighbors an estimate of the shortest distance to every other node in 
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the network. The receiving nodes then use this information to recalculate the 

routing tables, by using a shortest path algorithm. Compared to link-state, 

distance vector is more computation efficient, easier to implement and requires 

much less storage space. However, it is well known that distance vector can cause 

the formation of both short-lived and long-lived routing loops. The primary 

cause for this is that the nodes choose their next-hops in a completely distributed 

manner based on information that can be stale. 

2.2.4 Source Routing 

  

Source routing (7)means that each packet must carry the complete path that the 

packet should take through the network. The routing decision is therefore made 

at the source. The advantage with this approach is that it is very easy to avoid 

routing loops. The disadvantage is that each packet requires a slight overhead. 

 

2.2.5 Flooding 

 

Many routing protocols uses broadcast to distribute control information, that is, 

send the control information from an origin node to all other nodes. A widely 

used form of broadcasting is flooding (7) and operates as follows. The origin 

node sends its information to its neighbors (in the wireless case, this means all 

nodes that are within transmitter range). The neighbors relay it to their neighbors 

and so on, until the packet has reached all nodes in the network. A node will only 

relay a packet once and to ensure this some sort of sequence number can be used. 

This sequence number is increased for each new packet a node sends. 
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2.2.6 Classification 

Routing protocols can be classified (8) into different categories depending on 

their properties. 

• Centralized vs. Distributed 

• Static vs. Adaptive 

• Reactive vs. Proactive 

 

One way to categorize the routing protocols is to divide them into centralized 

and distributed algorithms. In centralized algorithms, all route choices are made 

at a central node, while in distributed algorithms, the computation of routes is 

shared among the network nodes.  

Another classification of routing protocols relates to whether they change routes 

in response to the traffic input patterns. In static algorithms, the route used by 

source-destination pairs is fixed regardless of traffic conditions. It can only 

change in response to a node or link failure. This type of algorithm cannot 

achieve high throughput under a broad variety of traffic input patterns. Most 

major packet networks uses some form of adaptive routing where the routes used 

to route between source-destination pairs may change in response to congestion 

A third classification that is more related to ad-hoc networks is to classify the 

routing algorithms as either proactive or reactive. Proactive protocols attempt to 

continuously evaluate the routes within the network, so that when a packet needs 

to be forwarded, the route is already known and can be immediately used. The 

family of Distance-Vector protocols is an example of a proactive scheme. 

Reactive protocols, on the other hand, invoke a route determination procedure 

on demand only. Thus, when a route is needed, some sort of global search 
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procedure is employed. The family of classical flooding algorithms belongs to the 

reactive group. Proactive schemes have the advantage that when a route is 

needed, the delay before actual packets can be sent is very small. On the other 

side proactive schemes needs time to converge to a steady state. This can cause 

problems if the topology is changing frequently. 

  

2.3 Ad-hoc routing protocols 

2.3.1 Desirable properties 

 If the conventional routing protocols do not meet our demands, we need a new 

routing protocol. The question is what properties such protocols should have? 

These are some of the properties (9) that are desirable: 

Distributed operation: The protocol should of course be distributed. It should 

not be dependent on a centralized controlling node. This is the case even for 

stationary networks. The difference is that nodes in an ad-hoc network can 

enter/leave the network very easily and because of mobility the network can be 

partitioned. 

Loop free: To improve the overall performance, we want the routing protocol to 

guarantee that the routes supplied are loop-free. This avoids any waste of 

bandwidth or CPU consumption. 

Demand based operation: To minimize the control overhead in the network 

and thus not wasting network resources more than necessary, the protocol should 

be reactive. This means that the protocol should only react when needed and that 

the protocol should not periodically broadcast control information. 
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Unidirectional link support: The radio environment can cause the formation of 

unidirectional links. Utilization of these links and not only the bi-directional links 

improves the routing protocol performance. 

Security: The radio environment is especially vulnerable to impersonation 

attacks, so to ensure the wanted behavior from the routing protocol, we need 

some sort of preventive security measures. Authentication and encryption is 

probably the way to go and the problem here lies within distributing keys among 

the nodes in the ad-hoc network. There are also discussions about using IP-sec 

(10)that uses tunneling to transport all packets. 

Power conservation: The nodes in an ad-hoc network can be laptops and thin 

clients, such as PDAs that are very limited in battery power and therefore uses 

some sort of stand-by mode to save power. It is therefore important that the 

routing protocol has support for these sleep-modes. 

Multiple routes: To reduce the number of reactions to topological changes and 

congestion multiple routes could be used. If one route has become invalid, it is 

possible that another stored route could still be valid and thus saving the routing 

protocol from initiating another route discovery procedure. 

Quality of service support: Some sort of Quality of Service support is probably 

necessary to incorporate into the routing protocol. This has a lot to do with what 

these networks will be used for. It could for instance be real-time traffic support. 

None of the proposed protocols from MANET have all these properties, but it is 

necessary to remember that the protocols are still under development and are 

probably extended with more functionality. The primary function is still to find a 

route to the destination, not to find the best/optimal/shortest-path route. 
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2.3.2 MANET 

  

IETF has a working group named MANET (Mobile Ad-hoc Networks) (11) that 

is working in the field of ad-hoc networks.. Even if MANET currently is working 

on routing protocols, it also serves as a meeting place and forum, so people can 

discuss issues concerning ad-hoc networks. Currently they have seven routing 

protocol drafts: 

• AODV - Ad-hoc On Demand Distance Vector (12) 

• ZRP - Zone Routing Protocol (13) 

• TORA / IMEP - Temporally Ordered Routing Algorithm / Internet 

MANET Encapsulation Protocol 

• DSR - Dynamic Source Routing (14) (15) 

• CBRP - Cluster Based Routing Protocol (16) 

• CEDAR - Core Extraction Distributed Ad hoc Routing  (17) 

• AMRoute – Ad-hoc Multicast Routing Protocol (18) 

• OLSR - Optimized Link State Routing Protocol (19) 

Of these proposed protocols we have chosen to analyze few of those with OLSR 

getting a little bit more attention.  
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2.3.3 Destination Sequenced Distance Vector - DSDV 

Description 

DSDV (20) is a hop-by-hop distance vector routing protocol that in each node 

has a routing table that for all reachable destinations stores the next-hop and 

number of hops for that destination. Like distance-vector, DSDV requires that 

each node periodically broadcast routing updates. The advantage with DSDV 

over traditional distance vector protocols is that DSDV guarantees loop-freedom. 

To guarantee loop-freedom DSDV uses a sequence numbers to tag each route. 

The sequence number shows the freshness of a route and routes with higher 

sequence numbers are favorable. A route R is considered more favorable than R' 

if R has a greater sequence number or, if the routes have the same sequence 

number but R has lower hop-count. The sequence number is increased when a 

node A detects that a route to a destination D has broken. So the next time node 

A advertises its routes, it will advertise the route to D with an infinite hop-count 

and a sequence number that is larger than before. DSDV basically is distance 

vector with small adjustments to make it better suited for ad-hoc networks. 

These adjustments consist of triggered updates that will take care of topology 

changes in the time between broadcasts. To reduce the amount of information in 

these packets there are two types of update messages defined: full and 

incremental dump. The full dump carries all available routing information and the 

incremental dump that only carries the information that has changed since the 

last dump. 
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Properties 

Because DSDV is dependent on periodic broadcasts it needs some time to 

converge before a route can be used. This converge time can probably be 

considered negligible in a static wired network, where the topology is not 

changing so frequently. In an ad-hoc network on the other hand, where the 

topology is expected to be very dynamic, this converge time will probably mean a 

lot of dropped packets before a valid route is detected. The periodic broadcasts 

also add a large amount of overhead into the network. 

 

2.3.4 Ad-hoc On Demand Distance vector - AODV 

Description 

 The Ad Hoc On-Demand Distance Vector (AODV) (21) routing protocol 

enables multi-hop routing between participating mobile nodes wishing to 

establish and maintain an ad-hoc network. AODV is based upon the distance 

vector algorithm. The difference is that AODV is reactive, as opposed to 

proactive protocols like DV, i.e. AODV only requests a route when needed and 

does not require nodes to maintain routes to destinations that are not actively 

used in communications. As long as the endpoints of a communication 

connection have valid routes to each other, AODV does not play any role. 

Features of this protocol include loop freedom and that link breakages cause 

immediate notifications to be sent to the affected set of nodes, but only that set. 

Additionally, AODV has support for multicast routing and avoids the Bellman 

Ford "counting to infinity" problem. The use of destination sequence numbers 

guarantees that a route is "fresh". 
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The algorithm uses different messages to discover and maintain links. Whenever 

a node wants to try and find a route to another node, it broadcasts a Route 

Request (RREQ) to all its neighbors. The RREQ propagates through the network 

until it reaches the destination or a node with a fresh enough route to the 

destination. Then the route is made available by unicasting a RREP back to the 

source. 

The algorithm uses hello messages (a special RREP) that are broadcasted 

periodically to the immediate neighbors. These hello messages are local 

advertisements for the continued presence of the node and neighbors using 

routes through the broadcasting node will continue to mark the routes as valid.  

If hello messages stop coming from a particular node, the neighbor can assume 

that the node has moved away and mark that link to the node as broken and 

notify the affected set of nodes by sending a link failure notification (a special 

RREP) to that set of nodes. 

Properties 

 The advantage with AODV compared to classical routing protocols like distance 

vector and link-state is that AODV has greatly reduced the number of routing 

messages in the network. AODV achieves this by using a reactive approach. This 

is probably necessary in an ad-hoc network to get reasonably performance when 

the topology is changing often. 

AODV is also routing in the more traditional sense compared to for instance 

source routing based proposals like DSR. The advantage with a more traditional 

routing protocol in an ad-hoc network is that connections from the ad-hoc 

network to a wired network like the Internet is most likely easier. 
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The sequence numbers that AODV uses represents the freshness of a route and 

is increased when something happens in the surrounding area. The sequence 

prevents loops from being formed, but can however also be the cause for new 

problems. What happens for instance when the sequence numbers no longer are 

synchronized in the network? This can happen when the network becomes 

partitioned, or the sequence numbers wrap around. 

AODV only support one route for each destination. It should however be fairly 

easy to modify AODV, so that it supports several routes per destination. Instead 

of requesting a new route when an old route becomes invalid, the next stored 

route to that destination could be tried. The probability for that route to still be 

valid should be rather high. 

Although the Triggered Route Replies are reduced in number by only sending the 

Triggered Route Replies to affected senders, they need to traverse the whole way 

from the failure to the senders. This distance can be quite high in numbers of 

hops. AODV sends one Triggered RREP for every active neighbor in the active 

neighbor list for all entries that have been affected of a link failure. This can mean 

that each active neighbor can receive several triggered RREPs informing about 

the same link failure, but for different destinations, if a large fraction of the 

network traffic is routed through the same node and this node goes down. An 

aggregated solution would be more appropriate here. 

AODV uses hello messages at the IP-level. This means that AODV does not 

need support from the link layer to work properly. It is however questionable if 

this kind of protocol can operate with good performance without support from 

the link layer. The hello messages adds a significant overhead to the protocol. 

AODV does not support unidirectional links. When a node receives a RREQ, it 

will setup a reverse route to the source by using the node that forwarded the 
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RREQ as nexthop. This means that the route reply, in most cases is unicasted 

back the same way as the route request used. Unidirectional link support would 

make it possible to utilize all links and not only the bi-directional links. It is 

however questionable if unidirectional links are desirable in a real environment. 

The acknowledgements in the MAC protocol IEEE 802.11 would for instance 

not work with unidirectional links. 

 

2.3.5 Dynamic Source Routing - DSR 

Description 

 Dynamic Source Routing (DSR) (22) (14) (15) also belongs to the class of 

reactive protocols and allows nodes to dynamically discover a route across 

multiple network hops to any destination. Source routing means that each packet 

in its header carries the complete ordered list of nodes through which the packet 

must pass. DSR uses no periodic routing messages (e.g. no router 

advertisements), thereby reducing network bandwidth overhead, conserving 

battery power and avoiding large routing updates throughout the ad-hoc network. 

Instead DSR relies on support from the MAC layer (the MAC layer should 

inform the routing protocol about link failures).  

Properties 

 DSR uses the key advantage of source routing. Intermediate nodes do not need 

to maintain up-to-date routing information in order to route the packets they 

forward. There is also no need for periodic routing advertisement messages, 

which will lead to reduce network bandwidth overhead, particularly during 

periods when little or no significant host movement is taking place. Battery power 
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is also conserved on the mobile hosts, both by not sending the advertisements 

and by not needing to receive them, a host could go down to sleep instead. 

This protocol has the advantage of learning routes by scanning for information in 

packets that are received. A route from A to C through B means that A learns the 

route to C, but also that it will learn the route to B.  The source route will also 

mean that B learns the route to A and C and that C learns the route to A and B. 

This form of active learning is very good and reduces overhead in the network. 

However, each packet carries a slight overhead containing the source route of the 

packet. This overhead grows when the packet has to go through more hops to 

reach the destination. So the packets sent will be slightly bigger, because of the 

overhead. 

Running the interfaces in promiscuous mode is a serious security issue. Since the 

address filtering of the interface is turned off and all packets are scanned for 

information. A potential intruder could listen to all packets and scan them for 

useful information such as passwords and credit card numbers. Applications have 

to provide the security by encrypting their data packets before transmission. The 

routing protocols are prime targets for impersonation attacks and must therefore 

also be encrypted.  

DSR also has support for unidirectional links by the use of piggybacking the 

source route a new request. This can increase the performance in scenarios where 

we have a lot of unidirectional links. We must however have a MAC protocol 

that also supports this. 
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2.3.6 Zone Routing Protocol - ZRP 

 Description 

 Zone Routing Protocol (ZRP) (13) is a hybrid of a reactive and a proactive 

protocol. It divides the network into several routing zones and specifies two 

totally detached protocols that operate inside and between therouting zones. 

The Intrazone Routing Protocol (IARP) operates inside the routing zone and 

learns the minimum distance and routes to all the nodes within the zone. The 

protocol is not defined and can include any number of proactive protocols, such 

as Distance Vector or link-state routing. Different zones may operate with 

different intrazone protocols as long as the protocols are restricted to those 

zones. A change in topology means that update information only propagates 

within the affected routing zones as opposed to affecting the entire network. 

The second protocol, the Interzone Routing Protocol (IERP) is reactive and is 

used for finding routes between different routing zones. This is useful if the 

destination node does not lie within the routing zone. 

The protocol then broadcasts (i.e. bordercasts) a Route REQuest (RREQ) to all 

border nodes within the routing zone, which in turn forwards the request if the 

destination node is not found within their routing zone. This procedure is 

repeated until the requested node is found and a route reply is sent back to the 

source indicating the route. IERP uses a Bordercast Resolution Protocol (BRP) 

(13) that is included in ZRP. BRP provides bordercasting services, which do not 

exist in IP. Bordercasting is the process of sending IP datagrams from one node 

to all its peripheral nodes. BRP keeps track of the peripheral nodes and resolves a 

border cast address to the individual IP-addresses of the peripheral nodes. The 
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message that was bordercasted is then encapsulated into a BRP packet and sent 

to each peripheral node. 

Properties 

 ZRP is a very interesting protocol and can be adjusted of its operation to the 

current network operational conditions (e.g. change the routing zone diameter).  

However this is not done dynamically, but instead it is suggested that this zone 

radius should be set by the administration of the network or with a default value 

by the manufacturer.  The performance of this protocol depends quite a lot on 

this decision. 

Since this is a hybrid between proactive and reactive schemes, this protocol use 

advantages from both. Routes can be found very fast within the routing zone, 

while routes outside the zone can be found by efficiently querying selected nodes 

in the network. One problem is however that the proactive intrazone routing 

protocol is not specified. The use of different intrazone routing protocols would 

mean that the nodes would have to support several different routing protocols. 

This is not a good idea when dealing with thin clients. It is better to use the same 

intrazone routing protocol in the entire network. 

ZRP also limits propagation of information about topological changes to the 

neighborhood of the change only (as opposed to a fully proactive scheme, which 

would basically flood the entire network when a change in topology occurred). 

However, a change in topology can affect several routing zones. 
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2.3.7 Temporally-Ordered Routing Algorithm - TORA 

Description 

Temporally Ordered Routing Algorithm (TORA) (23) (24) is a distributed routing 

protocol. The basic underlying algorithm is one in a family referred to as link 

reversal algorithms. TORA is designed to minimize reaction to topological 

changes. A key concept in its design is that control messages are typically 

localized to a very small set of nodes. It guarantees that all routes are loop-free 

(temporary loops may form), and typically provides multiple routes for any 

source/destination pair. It provides only the routing mechanism and depends on 

Internet MANET Encapsulation Protocol for other underlying functions. 

 

TORA can be separated into three basic functions: creating routes, maintaining 

routes, and erasing routes. The creation of routes basically assigns directions to 

links in an undirected network or portion of the network, building a directed 

acyclic graph (DAG) rooted at the destination (See Figure 3). 
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Figure 3 Directed acyclic graph rooted at destination. 

TORA associates a height with each node in the network. All messages in the 

network flow downstream, from a node with higher height to a node with lower 

height. Routes are discovered using Query (QRY) and Update (UPD) packets. 

When a node with no downstream links needs a route to a destination, it will 

broadcast a QRY packet. This QRY packet will propagate through the network 

until it reaches a node that has a route or the destination itself. Such a node will 

then broadcast a UPD packet that contains the node height. Every node receiving 

this UPD packet will set its own height to a larger height than specified in the 

UPD message. The node will then broadcast its own UPD packet. This will result 

in a number of directed links from the originator of the QRY packet to the 

destination. This process can result in multiple routes. 

Maintaining routes refers to reacting to topological changes in the network in a 

manner such that routes to the destination are re-established within a finite time, 
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meaning that its directed portions return to a destination-oriented graph within a 

finite time.  Upon detection of a network partition, all links in the portion of the 

network that has become partitioned from the destination are marked as 

undirected to erase invalid routes. The erasing of routes is done using clear (CLR) 

messages. 

Properties 

 The protocols underlying link reversal algorithm will react to link changes 

through a simple localized single pass of the distributed algorithm. This prevents 

CLR packets to propagate too far in the network. A comparison made by the 

CMU Monarch project has however shown that the overhead in TORA is quite 

large because of the use of IMEP. 

The graph is rooted at the destination, which has the lowest height. However, the 

source originating the QRY does not necessarily have the highest height. This can 

lead to the situation, where multiple routes are possible from the source to the 

destination, but only one route will be discovered. The reason for this is that the 

height is initially based on the distance in number of hops from the destination. 

 

 

2.3.7 Optimized Link State Routing Protocol - OLSR 

 

Description 

The Optimized Link State Routing Protocol (OLSR) is developed for mobile ad 

hoc networks.  It operates as a table driven, proactive protocol, i.e., exchanges 
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topology information with other nodes of the network regularly.  Each node 

selects a set of its neighbor nodes as "multipoint relays" (MPR).  In OLSR, only 

nodes, selected as such MPRs, are responsible for forwarding control traffic, 

intended for diffusion into the entire network.  MPRs provide an efficient   

mechanism for flooding control traffic by reducing the number of transmissions 

required. 

Nodes, selected as MPRs, also have a special responsibility when declaring link 

state information in the network.  Indeed, the only requirement for OLSR to 

provide shortest path routes to all destinations is that MPR nodes declare link-

state information for their MPR selectors.  Additional available link-state 

information may be utilized, e.g., for redundancy. 

Nodes which have been selected as multipoint relays by some neighbor node(s) 

announce this information periodically in their control messages.  Thereby a node 

announces to the network, that it has reachability to the nodes which have 

selected it as an MPR.  In route calculation, the MPRs are used to form the route 

from a given node to any destination in the network.  Furthermore, the protocol 

uses the MPRs to facilitate efficient flooding of control messages in the   

network. 

A node selects MPRs from among its one hop neighbors with "symmetric", i.e., 

bi-directional, linkages. Therefore, selecting the route through MPRs 

automatically avoids the problems associated  with data packet transfer over uni-

directional links (such as the problem of not getting link-layer acknowledgments 

for data packets at each hop, for link-layers employing this technique for unicast   

traffic). OLSR is developed to work independently from other protocols. 

Likewise, OLSR makes no assumptions about the underlying link-layer. 
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MRP – Multipoint Relay 

The idea of multipoint relays (25) is to minimize the overhead of flooding 

messages in the network by reducing redundant retransmissions in the same 

region. Each node in the network selects a set of nodes in its symmetric 1-hop 

neighborhood which may retransmit its messages. This set of selected neighbor 

nodes is called the "Multipoint Relay" (MPR) set of that node. The neighbors of 

node N which are not in its MPR set, receive and process broadcast messages but 

do not retransmit broadcast messages received from node N. Each node selects 

its MPR set from among its 1-hop symmetric neighbors. This set is selected such 

that it covers (in terms of radio range) all symmetric strict 2-hop nodes. The MPR 

set of N, denoted as MPR(N), is then an arbitrary subset of the symmetric 1-hop 

neighborhood of N which satisfies the following condition:  

every node in the symmetric strict 2-hop neighborhood of N must have a 

symmetric link towards MPR(N). 

  

Figure 4 MRP Forwarding: Node m is the MRP set of source node 

The smaller a MPR set, the less control traffic overhead results from the routing 

protocol. gives an analysis and example of MPR selection algorithms. Each node 

maintains information about the set of neighbors that have selected it as MPR. 

This set is called the "Multipoint Relay Selector set" (MPR selector set) of a node. 
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A node obtains this information from periodic HELLO messages received from 

the neighbors. A broadcast message, intended to be diffused in the whole 

network, coming from any of the MPR selectors of node N is assumed to be 

retransmitted by node N, if N has not received it yet. This set can change over 

time (i.e., when a node selects another MPR-set) and is indicated by the selector 

nodes in their HELLO messages. 

MRP forwarding gives certain edge over ordinary flooding. That’s where OLSR 

gains over some other flooding based protocols.  Figure 5 shows an example 

comparison between ordinary flooding and MRP flooding. 

 
Figure 5.a Network topology 

 
Figure 5.b Ordinary Flooding 
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Figure 5.c MRP Flooding 

Figure 5 Comparison between flooding and MRP 

 

Applicability  

OLSR is a proactive routing protocol for mobile ad-hoc networks (MANETs) 

(19) (26). It is well suited to large and dense mobile networks, as the optimization 

achieved using the MPRs works well in this context. The larger and more dense a 

network, the more optimization can be achieved as compared to the classic link 

state algorithm. OLSR uses hop-by-hop routing, i.e., each node uses its local 

information to route packets. OLSR is well suited for networks, where the traffic 

is random and sporadic between a larger set of nodes rather than being almost 

exclusively between a small specific set of nodes. As a proactive Clausen & 
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Jacquet Experimental [Page 7]  RFC 3626 Optimized Link State Routing October 

2003 protocol, OLSR is also suitable for scenarios where the communicating 

pairs change over time: no additional control traffic is generated in this situation 

since routes are maintained for all known destinations at all times. 

2.4 SIP: Session Initiation Protocol 

2.4.1 Overview 

Session Initiation Protocol (SIP) (27) is the Internet Engineering Task Force's 

(IETF's) standard for multimedia conferencing over IP. SIP is an ASCII-based, 

application-layer control protocol (defined in RFC 2543) that can be used to 

establish, maintain, and terminate calls between two or more end points.  

Like other VoIP protocols, SIP is designed to address the functions of signaling 

and session management within a packet telephony network. Signaling allows call 

information to be carried across network boundaries. Session management provides 

the ability to control the attributes of an end-to-end call. 

SIP provides the capabilities to: 

• Determine the location of the target end point—SIP supports address 

resolution, name mapping, and call redirection. 

• Determine the media capabilities of the target end point—Via Session 

Description Protocol (SDP), SIP determines the "lowest level" of 

common services between the end points. Conferences are established 

using only the media capabilities that can be supported by all end points. 

• Determine the availability of the target end point—If a call cannot be 

completed because the target end point is unavailable, SIP determines 

whether the called party is already on the phone or did not answer in the 
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allotted number of rings. It then returns a message indicating why the 

target end point was unavailable. 

• Establish a session between the originating and target end point—If the 

call can be completed, SIP establishes a session between the end points. 

SIP also supports mid-call changes, such as the addition of another end 

point to the conference or the changing of a media characteristic or 

codec. 

• Handle the transfer and termination of calls—SIP supports the transfer 

of calls from one end point to another. During a call transfer, SIP simply 

establishes a session between the transferee and a new end point 

(specified by the transferring party) and terminates the session between 

the transferee and the transferring party. At the end of a call, SIP 

terminates the sessions between all parties. 

Conferences can consist of two or more users and can be established using 

multicast or multiple unicast sessions. 

 
2.4.2 Components of  SIP 

SIP is a peer-to-peer protocol. The peers in a session are called User Agents 

(UAs). A user agent can function in one of the following roles:  

• User agent client (UAC)—A client application that initiates the SIP 
request. 

• User agent server (UAS)—A server application that contacts the user 
when a SIP request is received and that returns a response on behalf of 
the user.  

Typically, a SIP end point is capable of functioning as both a UAC and a UAS, 

but functions only as one or the other per transaction. Whether the endpoint 

functions as a UAC or a UAS depends on the UA that initiated the request. 
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From an architecture standpoint, the physical components of a SIP network can 

be grouped into two categories: clients and servers. Figure 6 illustrates the 

architecture of a SIP network. 

 
 

 

 
Figure 6 SIP Architecture 

 

SIP Clients 

SIP clients include: 

• Phones—Can act as either a UAS or UAC. Softphones (PCs that have 
phone capabilities installed) and Cisco SIP IP phones can initiate SIP 
requests and respond to requests.  

• Gateways—Provide call control. Gateways provide many services, the 
most common being a translation function between SIP conferencing 
endpoints and other terminal types. This function includes translation 
between transmission formats and between communications procedures. 
In addition, the gateway translates between audio and video codecs and 
performs call setup and clearing on both the LAN side and the switched-
circuit network side. 
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SIP Servers 

SIP servers include: 

• Proxy server—The proxy server is an intermediate device that receives 
SIP requests from a client and then forwards the requests on the client's 
behalf. Basically, proxy servers receive SIP messages and forward them to 
the next SIP server in the network. Proxy servers can provide functions 
such as authentication, authorization, network access control, routing, 
reliable request retransmission, and security. 

• Redirect server—Provides the client with information about the next hop 
or hops that a message should take and then the client contacts the next 
hop server or UAS directly. 

• Registrar server—Processes requests from UACs for registration of their 
current location. Registrar servers are often co-located with a redirect or 
proxy server. 

2.4.3 How SIP Works 

SIP is a simple, ASCII-based protocol that uses requests and responses to 

establish communication among the various components in the network and to 

ultimately establish a conference between two or more end points. (28) 

Users in a SIP network are identified by unique SIP addresses. A SIP address is 

similar to an e-mail address and is in the format of sip:userID@gateway.com. The 

user ID can be either a user name or an E.164 address.  

Users register with a registrar server using their assigned SIP addresses. The 

registrar server provides this information to the location server upon request. 

When a user initiates a call, a SIP request is sent to a SIP server (either a proxy or 

a redirect server). The request includes the address of the caller (in the From 

header field) and the address of the intended callee (in the To header field). The 
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following sections provide simple examples of successful, point-to-point calls 

established using a proxy and a redirect server. 

Over time, a SIP end user might move between end systems. The location of the 

end user can be dynamically registered with the SIP server. The location server 

can use one or more protocols (including finger, rwhois, and LDAP) to locate the 

end user. Because the end user can be logged in at more than one station and 

because the location server can sometimes have inaccurate information, it might 

return more than one address for the end user. If the request is coming through a 

SIP proxy server, the proxy server will try each of the returned addresses until it 

locates the end user. If the request is coming through a SIP redirect server, the 

redirect server forwards all the addresses to the caller in the Contact header field 

of the invitation response. 

Establishing A SIP Session Within the Same Domain 

The diagram below (Figure 7) illustrates the establishment of a SIP session 

between two users who subscribe to the same IS and, hence, use the same 

domain.  User A relies on a SIP phone.  User B has a PC running a soft client 

that can support voice and video.  Upon powering up, both users register their 

availability and their IP addresses with the SIP Proxy Server in the ISP’s network.  

User A, who is initiating this call, tells the SIP Proxy Server he/she wan to 

contact User B.  The SIP Proxy Server then asks for and receives User B’s IP 

address from the SIP Registrar Server. The SIP Proxy Server relays User A’s 

invitation to communicate with User B, including -- using SDP – the medium or 

media User A wants to use.  User B informs the SIP Proxy Server that User A’s 

invitation is acceptable and that he/she is ready to receive the message.  The SIP 

Proxy Server communicates this to User A, establishing the SIP session.  The 

users then create a point-to-point RTP connection enabling them to interact. 
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Figure 7 SIP Communication within same domain 

 

 

Establishing A SIP Session In Dissimilar Domains 

The difference between this scenario (Figure 8) and the first is that when User A 

invites User B -- who is now using a multimedia handset -- for a SIP session the 

SIP Proxy Server in Domain A recognizes that User B is outside its domain.  The 

SIP Proxy Server then queries the SIP Redirect Server -- which can reside in 

either or both Domain A or B -- for User B’s IP address.  The SIP Redirect 

Server feeds User B’s contact information back to the SIP Proxy Server, which 

forwards the SIP session invitation to the SIP Proxy Server in Domain B.  The 
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Domain B SIP Proxy Server delivers User A’s invitation to User B, who forwards 

his/her acceptance along the same path the invitation traveled.      

 
Figure 8 SIP Communication in different domain 
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As shown in Figure 9, in a simplified user's view, NS is Object-oriented Tcl 

(OTcl) script interpreter that has a simulation event scheduler and network 

component object libraries, and network setup (plumbing) module libraries 

(actually, plumbing modules are implemented as member functions of the base 

simulator object). In other words, to use NS, one has to program in OTcl script 

language. To setup and run a simulation network, a user should write an OTcl 

script that initiates an event scheduler, sets up the network topology using the 

network objects and the plumbing functions in the library, and tells traffic 

sources when to start and stop transmitting packets through the event scheduler. 

The term "plumbing" is used for a network setup, because setting up a network is 

plumbing possible data paths among network objects by setting the "neighbor" 

pointer of an object to the address of an appropriate object. When a user wants 

to make a new network object, he or she can easily make an object either by 

writing a new object or by making a compound object from the object library, 

and plumb the data path through the object. This may sound like complicated 

job, but the plumbing OTcl modules actually make the job very easy. The power 

of NS comes from this plumbing. 

Another major component of NS beside network objects is the event scheduler. 

An event in NS is a packet ID that is unique for a packet with scheduled time and 

the pointer to an object that handles the event. In NS, an event scheduler keeps 

track of simulation time and fires all the events in the event queue scheduled for 

the current time by invoking appropriate network components, which usually are 

the ones who issued the events, and let them do the appropriate action associated 

with packet pointed by the event. Network components communicate with one 

another passing packets, however this does not consume actual simulation time. 

All the network components that need to spend some simulation time handling a 
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packet (i.e. need a delay) use the event scheduler by issuing an event for the 

packet and waiting for the event to be fired to itself before doing further action 

handling the packet. For example, a network switch component that simulates a 

switch with 20 microseconds of switching delay issues an event for a packet to be 

switched to the scheduler as an event 20 microsecond later. The scheduler after 

20 microsecond dequeues the event and fires it to the switch component, which 

then passes the packet to an appropriate output link component. Another use of 

an event scheduler is timer. For example, TCP needs a timer to keep track of a 

packet transmission time out for retransmission (transmission of a packet with 

the same TCP packet number but different NS packet ID). Timers use event 

schedulers in a similar manner that delay does. The only difference is that timer 

measures a time value associated with a packet and does an appropriate action 

related to that packet after a certain time goes by, and does not simulate a delay. 

NS is written not only in OTcl but in C++ also. For efficiency reason, NS 

separates the data path implementation from control path implementations. In 

order to reduce packet and event processing time (not simulation time), the event 

scheduler and the basic network component objects in the data path are written 

and compiled using C++. These compiled objects are made available to the OTcl 

interpreter through an OTcl linkage that creates a matching OTcl object for each 

of the C++ objects and makes the control functions and the configurable 

variables specified by the C++ object act as member functions and member 

variables of the corresponding OTcl object. In this way, the controls of the C++ 

objects are given to OTcl. It is also possible to add member functions and 

variables to a C++ linked OTcl object. The objects in C++ that do not need to 

be controlled in a simulation or internally used by another object do not need to 

be linked to OTcl. Likewise, an object (not in the data path) can be entirely 

implemented in OTcl. Figure 10 shows an object hierarchy example in C++ and 

OTcl. One thing to note in the figure is that for C++ objects that have an OTcl 
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tclcl. The whole thing together makes NS, which is an OO extended Tcl 

interpreter with network simulator libraries. 
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Chap t e r  3  

Pseudo Cellular Architecture 
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3.1 Overview 

Pseudo cellular architecture is a kind of emulation of GSM cellular architecture to 

facilitate SIP registration service and connectivity mechanism to ad-hoc 

environment. To support SIP registration service in ad-hoc environment for 

initiation of voice communication, works done so far either goes for total 

decentralized or total centralized mechanism. Our protocol lies in between. Every 

SIP enable node in our system is also capable of being a SIP registrar. We can 

generate two extreme possible scenarios. In one scenario all the nodes are 

registrar. In the other scenario, only a single node is the registrar. But an optimum 

(considering control overhead generated due to this protocol with respect to 

overall control overhead to maintain the routing protocol) solution may come 

when the whole topology is divided into some virtual “cells”, within which a 

unique registrar server provides the registration service to all the nodes included 

in that cell. Generation of these registrar servers and allocation of nodes into cells 

is totally dynamic, topology independent and without the requirement of any 

special node. 

3.2 Definition of  Protocol Specific parameters 

3.2.1 Cell 

Cell is either a single node that has no neighbors or a maximal set of nodes those 

are currently registered to a common Registrar server. So cell grows around a 

registrar server with each new node registering onto that Registrar server. New 

cell is created with introduction of new Registrar server. In Figure 12 nodes are 

colored to show distinction between two different cells. Striped nodes are 

Registrar server of corresponding cell. 
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Figure 12 Example of Cell 

3.2.2 Distance 

Distance between two nodes under this protocol is the number of hops traversed 

from source node to destination node along the path that the routing algorithm 

provides. Two important aspects about this distance measure are: 

• Distance according to this definition might not the shortest distance 

between the two nodes in the graph of the network. i 

• Distances might not be equal in both directions.ii 

Figure 13 shows distance between two neighboring registrar servers. Here the 
distance is 4. 
 
 
 
  

                                                 
 
 
i Shortest Path Length obviously is the lower limit of Distance. 

ii Due to the directional nature of the wireless links, all routes are unidirectional and hence might differ when 
we switch source and destination. Different routes can easily have different distance value. 



50 
 

 
Figure 13 Example of Distance 

3.2.3 Cell Diameter  

The minimum amount of distance allowed between two neighboring Registrar 

servers denoted by Dcell . It’s a measure of the level of centralization. The greater 

the value of Dcell , the lesser number of cells are generated in the topology,  and 

the more centralized the service becomes. 

 
Figure 14 Illustration of cell diameter 

3.2.4 Registrar Server Advertisement Interval 

Time between two successive Registrar Server advertisement broadcasts, denoted 

by Tadvertise . It also controls the worst case waiting time before a newly joined 

node registers itself onto the network or declares itself as Registrar server. So 
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increasing Tadvertise decreases overall control overhead but causes poor system 

response time. On the contrary, decreasing Tadvertise, gives better network 

response with additional broadcast overhead. 

3.2.5 Registration Timeout Interval 

Each registration entry in the registrar server remains valid for a predefined time. 

This is registration timeout interval, denoted as Tregistration. So even if a node 

registers itself to a server it must re-register itself after passing Tregistration time. If 

we increase the value of this parameter, number of REGISTER messages 

generated is decreased but network response becomes worsei. 

3.2.6 Collision 

Two registrar server is said to be in collision if they reside within a distance less 

than Dcell .  

3.2.7 Collision Set  

A Collision Set is a maximalii set of nodes where each node is a Registrar server 

and is in Collision with at least one other member of the same set. 

                                                 
 
 
i  When a registrar server goes down or loses its registration data somehow, all the nodes within that cell is 

barred calling others until registrar server is fed with valid data. So if we feed the server with REIGSTER 
with longer intervals, system down time also becomes larger.  

ii By maximal we mean there is no other set of nodes that is both a collision set and a pure superset of this 
set. 
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Figure 15 Collision Set of size 3 

3.2.8 Intra-Cell Messages 

REGISTER Unicast message. Being sent from a newly joined node to the 

Registrar Server of the cell. Contains SIP URI and IP address of the joining node. 

QUERY Unicast message. Being sent from a SIP enabled node to Registrar 

Server. Contains destination SIP URI. 

RESPONSE Unicast message. Sent from Registrar Server to the node asking 

QUERY. Contains SIP URI and IP address of the concerned node. 

3.2.9 Inter-Cell Messages 

ADERTISEMENT MPR Broadcast message. Sent from each Registrar Server 

periodically. Contains IP Address of the Registrar Server and a measure of strengthi of 

the server. 

QUERYi MPR Broadcast message. Sent from some Registrar servers. Contains 

destination SIP URI.  

                                                 
 
 
i When two registrars become active in a single cell, one must go down to subside ambiguity. So we need 

some sort of pre-agreed resolving scheme depending upon some measurable parameter of each server for 
this kind of situation. We call this measure of strength of a registrar server. 
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RESPONSE Unicast message. Sent from destination Cell registrar server to 

source Cell registrar server. 

3.3 Protocol Details 

3.3.1 Scenarios 

Case 1: Node comes online, finds no neighbor. So it can safely declare itself as a 

registrar server. It then registers itself in its own registrar server. 

Case 2: Node comes online and finds some neighbors. The daemon waits 

Tadvertisement amount of time to hear from some registrar server. 

Case 2.1: Advertisement heard. So there are some registrar servers already on 

the network. Calculate distance (Did) of each Registrar server from the 

advertisements heard. 

Case 2.1.1: If min(Did )< Dcell  , send REGISTER message to the registrar 

server with min(Did ). 

Case 2.1.2 If min(Did )≥ Dcell start Registrar service in this node. 

Case 2.2 No registrar server heard from, start Registrar service in this node. 

Case 3 Node is already online.  

Case3.1 Node was already a registrar server. Periodically (with Tadvertisement  

interval) broadcast ADVERTISEMENT message. Also listen to all 
                                                                                                                             
 
 
i Intra cell QUERY and RESPONSE is required because when we divide network into cells, registrar server 

of a cell only contains Registration information of that cell’s nodes. So when one node of a cell tries to 
connect with a node of a different cell the registrar server of the source cell fails to resolve the SIP URI 
and is forced to “ask” other registrar servers on the network. 
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advertisement messages coming from other registrar servers of the network. If 

one or more such advertisement comes from a node with Distance less than 

Cell diameter, then we are presented with at least one cell that has a diameter 

less than our prescribed parameter. So we need to re arrange Registrar server 

assignmenti.  

Case 3.2 Node was not a registrar server. So it must be included in some cell 

and registered to its Registrar server. Once registered to a Registrar server, a 

node stops looking for a better one (in terms of distance) and continually sends 

REGISTER message with a period Tregistration. If the node doesn’t receive 

ADVERTISEMENT from the registrar server within Tadvertisement time of last 

advertisement arrival, the node reverts back and follows Case 2. 

3.3.2 Registrar Server Rearrangement 

When a collision occurs, we can say distribution of Registrar servers is not 

distributed uniformly in the network. So we need to turn off few of them (and 

may be turn on few others) to make it well distributed. Like any other scenarios 

of the protocol, this is also done voluntarily with every node having equal 

priority. 

When a registrar server detects a collision it tries to build a table of collision set 

sorted by considering measure of strength of the servers. On ideal case, if we have 

such table we can safely say that only the fittest one should survive and others 

should turn themselves off. But each registrar can only detect the subset of the 

collision set which only includes its neighbors. So if we apply the same procedure 

                                                 
 
 
i Registrar server rearrangement is discussed in detail later. 
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onto the subset of collision table on each colliding servers. It takes several 

iterations for the topology to settle down.  

Figure 16 shows a common case of collision generation. Figure 17 and Figure 18 

shows two cases of registrar server reassignment. 
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Figure 16 Creation of Collision: Registrar Server C enters the network due to mobility. 

 
a) Server C goes down voluntarily 

 
b) New node registers itself to Server B 

 

Figure 17 Rearrangement when A>B>C in terms of strength  
  
 



57 
 

 

 
a) C goes down because A>C and B goes down because C>B 

 

 
b) All the nodes outside Dcell decides to become server of the new Cell. Which creates new collision set 

 
c) E is the strongest one of the new set so all others goes down. 

 
d) Free nodes now register onto the new cell. 

 

Figure 18 Rearrangement when A>C>B 
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3.4 State Diagram 

According to this protocol each SIP enabled ad-hoc node can reside in four 

possible states. Transition between states are voluntary, deterministic and 

triggered upon receive of messages or timeouts. 

 
Figure 19 States of Nodes in this protocol 

This chapter provided details on the protocol developed. On the next one we 

focus our attention on evaluating the performance of the protocol. 
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Chap t e r  4  

Performance Evaluation 



60 
 

4.1 Performance Metric 

Here we are trying to transmit voice data over some network. Quality of voice 

depends upon a lot of factors, and performance evaluation can be 

multidimensional. In our case we are trying to build some protocol that creates a 

SIP based architecture onto ad-hoc network, which eventually will support voice 

transmission. The design of SIP architecture doesn’t have any direct influence 

over voice quality but since such protocol has to be maintained through some 

packet transfer between nodes, the more overhead it causes, the lesser the 

bandwidth remains for the user to use it for any actual purpose. So, our 

measurement of performance would be how much control overhead is required 

to actually maintain the protocol up and running. 

Overhead ratio = 
T

P

O
O

 

Where, 

OP = Control overhead due to this protocol 

OT = Control overhead generated due to the routing protocol 

4.2 Qualitative Evaluation 

Here we try to answer the question, why this protocol should perform better than 

the existing ones available? This protocol generates registrar server dynamically 

and divides the whole topology into cells. As such number of broadcasting nodes 

decreases and as a whole total overhead decreases. So in terms of control 

overhead this should perform better than total decentralized broadcast 

mechanism. On the other hand if we let a single registrar server handle the whole 

thing congestion will arise. So we need some load balance between multiple 

registrar servers. Dividing the topology into multiple cells helps this cause but 
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introduces some additional overhead. This protocol provides for some 

parameters to control number and size of cells. By manipulating these numbers 

we can find the optimal balance between broadcast and congestion. 

4.3 Quantitative Evaluation  

We tried to evaluate the performance of the protocol by simulating some real 

world environment. For that first we need to set up the simulation environment. 

4.3.1 Installation 

To simulate and analyze performance of this protocol, following tools are to be 

installed. 

• OLSR Implementation for NS2 (OOLSR-0.99.15)i 

• Network Simulator (NS-2.27)ii 

• Red Hat Linux 9.0iii 

Following the standard procedure on favorable environment should be enough 
to install these tools. 

4.3.2 Simulation Architecture 

We need to simulate activity of a SIP registrar that is created dynamically from an 

ordinary SIP Node (able to run SIP User Agents). In this simulation registrar 

server is implemented as an application, which holds all the logic required for 

                                                 
 
 
i  An object oriented implementation of OLSR protocol, available as a plugin of NS2. OOLSR is available a 

complete package including NS-allinone sources from (26) 

ii  OOLSR was developed for NS-2.27. No other distribution was tried on. 

iii NS-2.27 ran successfully only on this distribution. Other distribution tried on was Fedora Core 3,5,6, 
Ubuntu Dapper Drake LTS. In case of Red Hat 9, the full package compiled only in KDE environment. 
Gnome seemed to have some problem with configuration. 
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running the protocol. This application requires some special packet structures to 

be sent in some special way that is not supported by ordinary UDP agents 

provided by NS2. So, an agent had to be built extending UDP. Which was 

eventually named sipUDPAgent. This agent utilizes underlying OLSR routing 

protocol to transmit packet to remote destinations.  

 
Figure 20 Simulation Architecture of the protocol 

The simulation environment consists of wireless nodes randomly scattered and 

having random motion each with OLSR as routing protocol and SIP Registrar 

Application running. We let the setup run for a while and then parse the output 

trace file to find out how many packets were generated by our application and by 

the routing protocol. Performance can then be easily calculated. Similar 

simulation is done with different topologies and different protocol parameters to 

find out how well the protocol actually performs. 

4.3.3 Component Details 

At the time of report writing the simulation coding was still going on. What is 

presented here is still under construction and will go through a lot of 

modification before producing some result. So rather than focusing on overall 



63 
 

functionality this section gives some insight on problems encountered during 

implementation and solves of the simulation system. 
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Registrar Server 

SIPRegistrarApp.h 

/* 
 Author:    Nafees Ahmed 
 File:      SIPRegistrarApp.h 
 Written:   31/07/07 (for ns-2.27) 
*/ 
  
#include "packet.h" 
#include "app.h" 
#include "sipUDP.h" 
#include "timer-handler.h" 
#include "hash_table.h" 
#include <vector> 
#include "node.h" 
 
 
class TimeOutTimer; 
class SIPRegistrarApp; 
 
/*  
 SIP Registration Information Datastructure 
 timeout is provided for each individual record. 
*/ 
 
typedef struct SIPregInfoType 
{ 
 string  uri; 
 nsaddr_t  nodeAddr; 
 TimeOutTimer* timer; 
 bool  valid; 
 int  hopCount; 
} SIPRegInfo; 
 
 
/* 
 Advertisement timer. 
 Extends TimerHandler that can schedule periodic events. 
 On expiration it broadcasts ADVERTISEMENT message. 
*/ 
 
class AdvTimer : public TimerHandler  
{ 
 public: 
  AdvTimer():TimerHandler(){} 
 AdvTimer(SIPRegistrarApp* app_) : TimerHandler(), app(app_) {} 
 inline virtual void expire(Event*); 
  
 protected: 
 SIPRegistrarApp* app; 
};  
 
/* 
 Probe timer. 
 Extends TimerHandler that can schedule periodic events. 
 On expiration it checks for neighbor on interfaces available. 
*/ 
class ProbeTimer : public TimerHandler  
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{ 
 public: 
  ProbeTimer():TimerHandler(){} 
 ProbeTimer(SIPRegistrarApp* app_) : TimerHandler(), app(app_) {} 
 inline virtual void expire(Event*); 
 
 protected: 
 SIPRegistrarApp* app; 
};  
 
/* 
 Timeout timer. 
 Extends TimerHandler that can schedule periodic events. 
 On expiration it delets the corresponding registration entry from 
registration table. 
*/ 
class TimeOutTimer : public TimerHandler  
{ 
 public: 
  TimeOutTimer():TimerHandler(){} 
 TimeOutTimer(SIPRegInfo* info_) : TimerHandler(), info(info_) {} 
 inline virtual void expire(Event*); 
 protected: 
 SIPRegInfo* info; 
};  
 
// SIP Registration Application 
class SIPRegistrarApp : public Application  
{ 
 public: 
 SIPRegistrarApp(); 
 void advertise();      // called by AdvertiseTimer::expire  
 void updateNeighborCount();  // called by NeighborProbeTimer::expire  
 protected: 
 int command(int argc, const char*const* argv); 
 void start();          // Start application 
 void stop();           // Stop application 
 private: 
 void init(); 
 virtual void recv_msg(int nbytes, const char *msg = 0); // (Sender/Receiver) 
  
 int running_;             // If 1 advertisement is allowed 
 double adv_int_;    // advertisement interval 
 double neighbor_chk_int_;  // probe for neighbor count check interval 
 double item_timeout_int_;  // period for registration information validity 
 int neighbor_count; 
  
 AdvTimer adv_timer_; 
 ProbeTimer probe_timer_; 
 int minDistance_;    // Protocol parameter : Cell diameter 
  
 vector<SIPRegInfo> registrarList; // List of all registrar servers heard 
from 
 CHashTable<SIPRegInfo> regInfo; // Registration information table 
  
 char SIPURI[20];    // SIP URI of this node 
}; 
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sipRegistrarApp.cc 
 
/* 
 Author:    Nafees Ahmed 
 File:      SIPRegistrarApp.cc 
 Written:   31/07/07 (for ns-2.27) 
*/ 
 
#include "sipReg-app.h" 
 
// When advertisement expires call advertisement sending function 
void AdvTimer::expire(Event*) 
{ 
 app->advertise(); 
} 
 
// When probe timer expires probe for neighbor information 
void ProbeTimer::expire(Event*) 
{ 
 app->updateNeighborCount(); 
} 
 
// When information times out, make it invalid 
void TimeOutTimer::expire(Event*) 
{ 
 info->valid = false; 
} 
// SIPRegistrarApp OTcl linkage class 
static class SIPRegistrarAppClass : public TclClass  
{ 
 public: 
  SIPRegistrarAppClass() : TclClass("Application/VoWiFi/SIPRegistrar") {} 
  TclObject* create(int, const char*const*) { 
    return (new SIPRegistrarApp); 
  } 
} class_app_sip; 
 
 
 
//small utility to color a NAM node. Used to identify registrar servers on 
NAM output.Still on test. 
void changeNodeColor(double atTime,const char * newColor,int id_) 
{ 
 Tcl& tcl = Tcl::instance(); 
 int INTERVAL_COLOR_TIME = 5; 
 int INTERVAL_COLOR = 1; 
  
 if(atTime > 0.0 ) 
  atTime += 0.0000000001; 
   
 atTime +=0.1; 
  
// int i; 
// for(i=0;i<INTERVAL_COLOR_TIME;i++) 
// { 
//  tcl.evalf("[Simulator instance] at %.9f {[Simulator instance] puts-nam-
traceall {n -t %.9f -s %d -S COLOR -c %s -o 
%s}}",atTime,atTime,id_,"white","white"); 
//  atTime += INTERVAL_COLOR; 
  tcl.evalf("[Simulator instance] at %.9f {[Simulator instance] puts-nam-
traceall {n -t %.9f -s %d -S COLOR -c %s -o 
%s}}",atTime,atTime,id_,newColor,newColor); 
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//  atTime=atTime+INTERVAL_COLOR*INTERVAL_COLOR_TIME; 
// } 
} 
 
/* 
 Constructor  
 Initializes instances of timers 
 And binds OTcl variables to C++ variables. 
*/ 
SIPRegistrarApp::SIPRegistrarApp() : 
running_(0),adv_timer_(this),probe_timer_(this) 
{ 
  bind("neighbor_chk_int", &neighbor_chk_int_); 
  bind("adv_int", &adv_int_); 
  bind("item_timeout_int",&item_timeout_int_); 
  bind("minDistance",&minDistance_); 
  strcpy(SIPURI,"MOBILE"); 
  bind("SIPURI",$SIPURI); 
  bind("running", &running_); 
} 
 
 
// OTcl command interpreter 
int SIPRegistrarApp::command(int argc, const char*const* argv) 
{ 
  Tcl& tcl = Tcl::instance(); 
 
  if (argc == 3) { 
    if (strcmp(argv[1], "attach-agent") == 0) { 
      agent_ = (Agent*) TclObject::lookup(argv[2]); 
      if (agent_ == 0) { 
 tcl.resultf("no such agent %s", argv[2]); 
 return(TCL_ERROR); 
      } 
 
      // Make sure the underlying agent support MM 
      if(agent_->supportSIP())  
      { 
   agent_->enableSIP(); 
      } 
      else  
   { 
  tcl.resultf("agent \"%s\" does not support SIP Application", argv[2]); 
  return(TCL_ERROR); 
      } 
       
      agent_->attachApp(this); 
      return(TCL_OK); 
    } 
  } 
  return (Application::command(argc, argv)); 
} 
 
 
/* 
 initialize the application 
 For now the URI is set to Node identifier of the node. 
*/ 
 
void SIPRegistrarApp::init() 
{ 
  char buf[30]; 
  sprintf(buf,"%d",agent_->addr()); 
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  strcat(SIPURI,buf); 
} 
 
//starts the application 
void SIPRegistrarApp::start() 
{ 
  init(); 
  running_ = 0; 
   
  probe_timer_.resched(adv_int_); //start probe timer 
  adv_timer_.resched(adv_int_);  //start advertisement timer 
   
  Tcl& tcl = Tcl::instance(); 
  tcl.evalf("puts \"\ndevice %s online\"", SIPURI); 
} 
 
//stop the application 
void SIPRegistrarApp::stop() 
{ 
  running_ = 0; 
} 
 
/* 
 Funtion for counting neighbor. Also holds part of the protocol logic. 
 The neighbor count portion still doesn't work fully. 
*/ 
void SIPRegistrarApp::updateNeighborCount() 
{ 
 //do something to update neighbor count 
 int neighborCount=0; 
 Node* thisNode = Node::get_node_by_address(agent_->addr()); 
 neighbor_list_node* neighbor = thisNode->neighbor_list_; 
  
 while(neighbor) 
 { 
  neighbor = neighbor->next; 
  neighborCount++; 
 } 
 
 //check for proxy list and decide whether advertise for proxy service 
 Tcl& tcl = Tcl::instance(); 
 tcl.evalf("puts \"\n\nnode %d \"",agent_->addr(),neighborCount); 
  
 int minHopCount=99999; 
  
 for(int i=0;i<registrarList.size();i++) 
 {   
   //reschedule the timer 
   SIPRegInfo* info; 
   info = &registrarList[i]; 
   tcl.evalf("puts \"\nentry %s :\"",info->uri.data()); 
   if(info!=0) 
   { 
    if(info->valid == true) 
    { 
     if(info->hopCount <= minHopCount ) 
     { 
      minHopCount = info->hopCount; 
     } 
    } 
   } 
 } 
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 if(minHopCount > minDistance_)  //yes there is need for a new proxy server 
 { 
  running_ = true; 
  changeNodeColor(Scheduler::instance().clock(),"red",agent_->addr()); 
 } 
 else           //no need  
 { 
  running_ = false; 
  changeNodeColor(Scheduler::instance().clock(),"black",agent_->addr()); 
 } 
  
 probe_timer_.resched(neighbor_chk_int_); 
} 
  
/* 
 Receive message from underlying agent 
 Place for writing the whole protocol logic. 
 Partially completed. 
*/ 
void SIPRegistrarApp::recv_msg(int nbytes, const char *msg) 
{ 
  int a; 
  if(msg)  
  { 
    hdr_mm* mh_buf = (hdr_mm*) msg; 
    if(agent_->addr()==0) 
   a=0; 
    switch (mh_buf->msgType) 
    { 
 case 1:  //advertisement broadcast received 
 { 
  bool found = false; 
  if(strcmp("data-packet",mh_buf->SIPuri)==0) 
   found = true; 
   
   
  if(!found) 
  { 
  for(int i=0;i<registrarList.size();i++) 
  {   
   if(strcmp(registrarList[i].uri.data(),mh_buf->SIPuri)==0) //already there 
is some entry 
   { 
    //reschedule the timer 
    SIPRegInfo* info; 
    info = &registrarList[i]; 
    if(info!=0) 
    { 
     info->valid = true; 
     info->timer->resched(item_timeout_int_); 
     info->hopCount = mh_buf->hopCount; 
    } 
    found = true; 
   } 
  } 
  } 
  if(!found) //if new entry is to be made 
  { 
   SIPRegInfo*   proxyInfo; 
   proxyInfo  =  new SIPRegInfo(); 
   proxyInfo->uri  = mh_buf->SIPuri; 
   proxyInfo->nodeAddr = mh_buf->nodeAddr; 
   proxyInfo->valid = true; 
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   proxyInfo->hopCount = mh_buf->hopCount; 
   TimeOutTimer* t = new TimeOutTimer(proxyInfo); 
   t->resched(item_timeout_int_); 
   proxyInfo->timer = t; 
   registrarList.push_back(*proxyInfo); 
  } 
   
  //resolveProxyAssignment(); 
 } 
 break; 
  
 case 2:  //register 
   
 break; 
  
 case 3:   
  
 break; 
    } 
  } 
} 
 
//ADVERTISEMENT broadcast function 
void SIPRegistrarApp::advertise(void) 
{ 
  double local_time = Scheduler::instance().clock(); 
  Tcl& tcl = Tcl::instance(); 
   
  int a; 
  if(agent_->addr()==49) 
   a=0; 
  if(running_) 
  { 
 hdr_mm adv_buf; 
 adv_buf.msgType =1; 
 adv_buf.nodeAddr = agent_->addr(); 
 strcpy(adv_buf.SIPuri,SIPURI); 
 adv_buf.nbytes = 40; 
   
 // send advertise message 
 //agent_->sendmsg(adv_buf.nbytes, (char*) &adv_buf); 
 ((UdpMmAgent*)agent_)->sendToAll(adv_buf.nbytes,(char*) &adv_buf); 
 //tcl.evalf("\nputs \"Message from %d, sent to %d\"",frmAddress,toAddress); 
 //changeNodeColor(Scheduler::instance().clock(),"red",agent_->addr()); 
  } 
  else 
  { 
   //changeNodeColor(Scheduler::instance().clock(),"black",agent_->addr()); 
  } 
  //schedule next ACK time 
  adv_timer_.resched(adv_int_); 
} 
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UDP Agent 

sipUDP.h 

/* 
 Author:    Nafees Ahmed 
 File:      sipUDP.h 
 Written:   31/07/07 (for ns-2.27) 
*/ 
 
 
 
#include "udp.h" 
#include "ip.h" 
#include <string> 
#include "config.h" 
 
#define MAXTTL 65 
// Header Structure 
struct hdr_mm 
{ 
 int   msgType; 
 nsaddr_t nodeAddr; //source node address 
 char  SIPuri[30]; //SIP uri 
 int   hopCount; //# of hops traveled 
   
 // Packet header access functions 
        static int offset_; 
        inline static int& offset() {return offset_;} 
        inline static hdr_mm* access(const Packet* p){ 
                return (hdr_mm*) p->access(offset_); 
        } 
}; 
 
 
// sipUDPAgent Class definition 
class sipUDPAgent : public UdpAgent { 
public: 
 UdpMmAgent(); 
 UdpMmAgent(packet_t); 
 virtual int supportSIP() { return 1; } 
 virtual void enableSIP() { support_mm_ = 1; } 
 virtual void sendmsg(int nbytes, const char *flags = 0); 
 void sendTo(int nbytes,const char *msg,nsaddr_t node); 
 void sendToAll(int nbytes,const char *msg); 
 void recv(Packet*, Handler*); 
 void setPort(nsaddr_t); 
protected: 
 int support_mm_; // set to 1 if above is sipAPP 
}; 
 
#endif 
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sipUDP.cc 

/* 
 Author:    Nafees Ahmed 
 File:      sipUDP.cc 
 Written:   31/07/07 (for ns-2.27) 
*/ 
 
#include "sipUDP.h" 
#include "rtp.h" 
#include "random.h" 
#include <string.h> 
 
 
int hdr_mm::offset_; 
 
// SIP Header Class  
static class SIPHeaderClass : public PacketHeaderClass { 
public: 
 SIPHeaderClass() : PacketHeaderClass("PacketHeader/SIP", 
          sizeof(hdr_mm)) { 
  bind_offset(&hdr_mm::offset_); 
 } 
} class_mmhdr; 
 
 
// sipUDPAgent OTcl linkage class 
static class sipUDPAgentClass : public TclClass { 
public: 
 sipUDPAgentClass() : TclClass("Agent/UDP/sipUDP") {} 
 TclObject* create(int, const char*const*) { 
  return (new sipUDPAgent()); 
 } 
} class_udpmm_agent; 
 
 
// Constructor (with no arg) 
sipUDPAgent::sipUDPAgent() : UdpAgent() 
{ 
 support_mm_ = 0; 
 
} 
 
sipUDPAgent::sipUDPAgent(packet_t type) : UdpAgent(type) 
{ 
 support_mm_ = 0; 
 
} 
 
/* 
 Function so send UDP packet to a specific destination 
 Destination address is of type nsaddr_t which is basically alias of int. 
*/ 
 
void sipUDPAgent::sendTo(int nbytes, const char* msg,nsaddr_t dst) 
{ 
 Tcl& tcl = Tcl::instance(); 
 nsaddr_t frmAddress= this->addr(); 
 nsaddr_t frmPort = this->port(); 
 this->dst_.addr_ = dst; 
 nsaddr_t toAddress= this->daddr();  
 nsaddr_t toPort= this->dport(); 
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 //tcl.evalf("\nputs \"Message from node %d, port %d , to node %d , port 
%d\"",frmAddress,frmPort,toAddress,toPort); 
  
// Packet *p; 
// p = allocpkt(); 
// target_->recv(p); 
 sendmsg(nbytes,msg);  
 idle(); 
} 
 
/* 
 function to implement MPR flooding.  
This function will only work if underlying routing protocol provides for 
MPR. At the time of code writing OOLSR didn't implement MPR or anyother 
broadcast mechanism. 

 So it OOLSR had to be modified to support MPR. 
*/ 
 
void sipUDPAgent::sendToAll(int nbytes, const char* msg) 
{ 
 /* 
 for(int i=0;i<50;i++) 
 { 
  if(this->addr()==i) 
   continue; 
  sendTo(nbytes,msg,i); 
  idle(); 
 }  
 */ 
 //hdr_ip* ih = (hdr_ip*)(msg); 
 this->dst_.addr_ = IP_BROADCAST; 
 Tcl& tcl = Tcl::instance(); 
 tcl.evalf("\nputs \"broadcast  from %d\"",this->addr());  
 sendmsg(nbytes,msg); 
} 
 
// Method for sending message 
void sipUDPAgent::sendmsg(int nbytes, const char* flags) 
{ 
 Tcl& tcl = Tcl::instance(); 
 Packet *p; 
 if (nbytes == -1) { 
  printf("Error:  sendmsg() for UDPmm should not be -1\n"); 
  return; 
 } 
 double local_time = Scheduler::instance().clock(); 
  
  p = allocpkt(); 
  hdr_cmn::access(p)->size() = nbytes; 
  //to eliminate recv to use MM fields for non MM packets 
  hdr_mm* mh = hdr_mm::access(p); 
  mh->ack = 0; 
  mh->seq = 0; 
  mh->nbytes = 0; 
  mh->time = 0; 
  mh->scale = 0; 
  // mm udp packets are distinguished by setting the ip 
  // priority bit to 15 (Max Priority). 
  if(support_mm_)  
  { 
   hdr_ip* ih = hdr_ip::access(p); 
   ih->prio_ = 15; 
   ih->ttl_=MAXTTL; 
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   if(flags)  
    memcpy(mh, flags, sizeof(hdr_mm)); 
  } 
   
  target_->recv(p); 
 idle(); 
} 
 
 
// Receive funtion 
void sipUDPAgent::recv(Packet* p, Handler*) 
{ 
 hdr_ip* ih = hdr_ip::access(p); 
 int bytes_to_deliver = hdr_cmn::access(p)->size(); 
 
  
  
  if(app_) {  // if SIP Application exists 
    
   hdr_mm* mh = hdr_mm::access(p); 
  
   // update hop count 
   mh->hopCount = MAXTTL - ih->ttl_; 
   hdr_mm mh_buf; 
   memcpy(&mh_buf, mh, sizeof(hdr_mm)); 
   app_->recv_msg(mh_buf.nbytes, (char*) &mh_buf); 
 
  Tcl& tcl = Tcl::instance(); 
  nsaddr_t frmAddress= this->addr(); 
  nsaddr_t frmPort = this->port(); 
  //tcl.evalf("\nputs \"Message from node %d, port %d , hop 
%d\"",frmAddress,frmPort,MAXTTL - ih->ttl_); 
  } 
  Packet::free(p); 
} 
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4.3.4 Plugging into NS2 

To use our protocol in NS2 simulation we need following modifications in 

specified files. (30) 

Common/Packet.h 

... 
enum packet_t { 
 PT_TCP, 
 PT_UDP, 
         ...... 
 // insert new packet types here 
 PT_TFRC, 
 PT_TFRC_ACK, 
          PT_SIP,     
 PT_NTYPE // This MUST be the LAST one 
}; 
... 
... 
class p_info { 
public: 
 p_info() { 
  name_[PT_TCP]= "tcp"; 
  name_[PT_UDP]= "udp"; 
                ........... 
   name_[PT_TFRC]= "tcpFriend"; 
  name_[PT_TFRC_ACK]= "tcpFriendCtl"; 
 
                 name_[PT_SIP]="SIPRegistrar"; 
  name_[PT_NTYPE]= "undefined"; 
 } 
        ..... 
 } 
 
 

Tcl/lib/ns-default.tcl 

... 
# defaults for SIPRegistrarApp 
Application/VoWiFi/SIPRegistrar  set adv_int   0.5 
Application/VoWiFi/SIPRegistrar  set neighbor_chk_int 0.1 
Application/VoWiFi/SIPRegistrar  set item_timeout_int 1.0 
Application/VoWiFi/SIPRegistrar  set minDistance  5 
 

Makefile 

... 
OBJ_CC = \ 

tools/random.o tools/rng.o tools/ranvar.o common/misc.o 
common/timer-handler.o \ 
common/scheduler.o common/object.o common/packet.o \ 
... 
VoWiFi/sipReg-app.o \ 
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VoWiFi/sipUDP.o \ 
$(OBJ_STL) 

 

4.3.5 Simulation 

To run simulation on the protocol a basic topology was created.  

#--------------------------------------------------------------------------- 
# Random.tcl 
# Simulation script for SIP on OLSR 
#--------------------------------------------------------------------------- 
 
#--------------------------------------------------------------------------- 
# Initialization 
#--------------------------------------------------------------------------- 
 
# (possibly) Remove and create result directory 
set dirName "test-unicast-result" 
exec sh -c "rm -rf $dirName && mkdir $dirName" 
 
# Default node configuration 
set nodeConfig "no-log 0; log-none ; log-route 1" 
 
# Load the OOLSR as plugin 
load-plugin ./oolsr-plugin --output $dirName/ns2agent.log \ 
              multicast route packet-drop 
 
#--------------------------------------------------------------------------- 
# Create a simulation, with wireless support. This is basic (see ns2 doc) 
#--------------------------------------------------------------------------- 
set ns [new Simulator] 
 
set val(chan) Channel/WirelessChannel 
set val(prop) Propagation/TwoRayGround 
set val(netif) Phy/WirelessPhy 
set val(mac) Mac/802_11 
set val(ifq) Queue/DropTail/PriQueue 
set val(ll) LL 
set val(ant) Antenna/OmniAntenna 
set val(ifqlen) 50 ;# 
set val(nn)     50 ;# nb mobiles 
set val(rp) PLUGINPROTOCOL 
set val(x) [expr $val(nn) *100.0 + 100.0] 
set val(y) 1000 
 
set topo [new Topography] 
$topo load_flatgrid $val(x) $val(y) 
set god [create-god $val(nn)] 
 
#$ns use-newtrace 
set tracefd [open $dirName/unicast.tr w] 
$ns trace-all $tracefd 
 
set namtrace [open $dirName/unicast.nam w] 
$ns namtrace-all-wireless $namtrace $val(x) $val(y) 
 
$ns node-config -adhocRouting $val(rp) \ 
    -llType $val(ll) \ 
    -macType $val(mac) \ 



77 
 

    -ifqType $val(ifq) \ 
    -ifqLen $val(ifqlen) \ 
    -antType $val(ant) \ 
    -propType $val(prop) \ 
    -phyType $val(netif) \ 
    -channel [new $val(chan)] \ 
    -topoInstance $topo \ 
    -agentTrace ON \ 
    -routerTrace ON \ 
    -macTrace OFF \ 
    -movementTrace OFF 
 
#--------------------------------------------------------------------------- 
# Create nodes with OOLSR agent 
#--------------------------------------------------------------------------- 
   
for {set i 0} {$i < $val(nn)} {incr i} { 
    set node($i) [$ns node] 
     
    set agent($i) [new Agent/UDP/sipUDP] 
    set app($i) [new Application/VoWiFi/SIPRegistrar] 
    $ns attach-agent $node($i) $agent($i) 
    $app($i) attach-agent $agent($i)  
          
    $node($i) random-motion 1 
    $node($i) set X_ [expr $i * 100.0] 
    $node($i) set Y_ [expr 500.0 + ((($i * 93) % 21) - 10 ) * 10.0] 
    $node($i) set Z_ 0.0 
    $ns initial_node_pos $node($i) 20 
 
#    [$node($i) set ragent_] set-config \ 
#       "$nodeConfig ; log-file-name $dirName/oolsr-node-$i.log" 
 
} 
for {set i 0} {$i < $val(nn)} {incr i} { 
$ns connect $agent($i) $agent([expr $val(nn) - $i -1]) 
$ns at ($i) "$app($i) start" 
} 
 
#--------------------------------------------------------------------------- 
# Sending traffic 
#--------------------------------------------------------------------------- 
 
#attach and start some CBR application to simulate phone calls. 
#should be filled up at the time of simulation. 
#modify this section to evaluate performance of the protocol in different 
#situations. 
 
#--------------------------------------------------------------------------- 
# Finishing procedure 
#--------------------------------------------------------------------------- 
 
proc finishSimulation { } { 
    global ns node val dirName 
 
    # Log the final state of all the nodes 
    for {set i 0} {$i < $val(nn)} {incr i} { 
 [$node($i) set ragent_] state "$dirName/oolsr-node-$i.final-state" 
    } 
 
    # Exit 
    puts "Finished simulation." 
    $ns halt 
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} 
 
#--------------------------------------------------------------------------- 
# Run the simulation 
#--------------------------------------------------------------------------- 
 
proc runSimulation {duration} { 
    global ns finishSimulation 
    $ns at $duration "finishSimulation" 
    $ns run 
} 
 
# decide how long the simulation will run 
runSimulation 500.0 
 

 

This script is to be simulated by NS and then output trace files (.tr) and animator 

files (.nam) can be analyzed to verify the performance of the protocol.  Since the 

protocol was not completed at the time of report writing, simulation result is 

unavailable. 
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Chap t e r  5  

Conclusion 
Ad-Hoc network is an emerging field in networking arena. Transmission of voice 

over such network makes it more applicable in real world. This research work 

was devoted solely towards betterment of such feature. A protocol is also 

developed in this regard. But simulation test of the protocol is yet to be done. 

This protocol adapts to the dyanamiticity of ad-hoc realm to support service 

discovery of SIP Registrar in a distributed manner. It is dynamic in a sense that 

given value of cell diameter this protocol distributes the registrar servers evenly in 

the whole topology, but static in terms of protocol parameters. Different network 

scenarios are suitable for different protocol parameters. A possible improvement 

of this protocol can be dynamic cell diameter to better adaption to changing 

environment. Improving this protocol is not just the end of it. There are many 

more issues still untouched in voice communication on ad-hoc networks and 

improving those can have great effect on improving voice transmission quality on 

such network.  
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