Surface Graphics

• Objects are explicitly defined by a surface or boundary representation (explicit inside vs outside)
• This boundary representation can be given by:

 - a mesh of polygons:

 200 polys
 1,000 polys
 15,000 polys

 - a mesh of spline patches:

 an “empty” foot
Polygon Mesh Definitions

v1, v2, v3: vertices (3D coordinates)
e1, e2, e3: edges
e1 = v2 - v1 and e2 = v3 - v2
f1: polygon or face

n1: face normal \(n1 = \frac{e1 \times e2}{|e1 \times e2|} \)

n1 = \(\frac{e11 \times e12}{|e11 \times e12|} \)

n2 = \(\frac{e21 \times e22}{|e21 \times e22|} \), e21 = -e12

Rule: if all edge vectors in a face are ordered counterclockwise, then the face normal vectors will always point towards the outside of the object.

This enables quick removal of back-faces (back-faces are the faces hidden from the viewer):

- back-face condition: \(vp \cdot n > 0 \)
Polygon Mesh Data Structure

- Vertex list (v1, v2, v3, v4, ...):

 (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), (x4, y4, z4),

- Edge list (e1, e2, e3, e4, e5, ...):

 (v1, v2), (v2, v3), (v3, v1), (v1, v4), (v4, v2), ...

- Face list (f1, f2, ...):

 (e1, e2, e3), (e4, e5, -e1), ... or

 (v1, v2, v3), (v1, v4, v2), ...

- Normal list (n1, n2, ...), one per face or per vertex

 (n1x, n1y, n1z), (n2x, n2y, n2z), ...

- Use Pointers or indices into vertex and edge list arrays, when appropriate
A view is specified by:
- eye position (Eye)
- view direction vector (n)
- screen center position (Cop)
- screen orientation (u, v)
- screen width W, height H

u, v, n are orthonormal vectors

After the viewing transform:
- the screen center is at the coordinate system origin
- the screen is aligned with the x, y-axis
- the viewing vector points down the negative z-axis
- the eye is on the positive z-axis

All objects are transformed by the viewing transform
Step 1: Viewing Transform

- The sequence of transformations is:
 - *translate* the screen Center Of Projection (COP) to the coordinate system origin (T_{view})
 - *rotate* the translated screen such that the view direction vector n points down the negative z-axis and the screen vectors u, v are aligned with the x, y-axis (R_{view})

- We get $M_{\text{view}} = R_{\text{view}} \cdot T_{\text{view}}$

- We transform all object (points, vertices) by M_{view}:

$$
\begin{bmatrix}
 x' \\
y' \\
z'
\end{bmatrix} = \begin{bmatrix}
 u_x & u_y & u_z & 0 \\
 v_x & v_y & v_z & 0 \\
 n_x & n_y & n_z & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix} \cdot \begin{bmatrix}
 1 & 0 & 0 & -\text{Cop}_x \\
 0 & 1 & 0 & -\text{Cop}_y \\
 0 & 0 & 1 & -\text{Cop}_z \\
 0 & 0 & 0 & 1
\end{bmatrix} \cdot \begin{bmatrix}
 x \\
y \\
z
\end{bmatrix}
$$

- Now the objects are easy to project since the screen is in a convenient position
 - but first we have to account for perspective distortion...
Step 2: Perspective Projection

- A (view-transformed) vertex with coordinates \((x', y', z')\) projects onto the screen as follows:

\[
\begin{align*}
 y_p &= y' \cdot \frac{\text{eye}}{\text{eye} - z'} \\
 x_p &= x' \cdot \frac{\text{eye}}{\text{eye} - z'}
\end{align*}
\]

- \(x_p\) and \(y_p\) can be used to determine the screen coordinates of the object point (i.e., where to plot the point on the screen)
Step 1 + Step 2 = World-To-Screen Transform

- Perspective projection can also be captured in a matrix M_{proj} with a subsequent *perspective divide* by the homogenous coordinate w:

$$
\begin{bmatrix}
 x_h \\
 y_h \\
 z_h \\
 w
\end{bmatrix} =
\begin{bmatrix}
 \text{eye} & 0 & 0 & 0 \\
 0 & \text{eye} & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & -1 & \text{eye}
\end{bmatrix}
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix}
$$

So the entire *world-to-screen* transform is:

$$M_{trans} = M_{proj} \cdot M_{view} = M_{proj} \cdot R_{\text{view}} \cdot T_{\text{view}}$$

with a subsequent divide by the homogenous coordinate

- M_{trans} is composed only once per view and all object points (vertices) are multiplied by it
Step 3: Window Transform (1)

- Note: our camera screen is still described in world coordinates
- However, our display monitor is described on a pixel raster of size \((Nx, Ny)\)
- The transformation of (perspective) viewing coordinates into pixel coordinates is called **window transform**

Assume:

- we want to display the rendered screen image in a window of size \((Nx, Ny)\) pixels
- the width and height of the camera screen in world coordinates is \((W, H)\)
- the center of the camera is at the center of the screen coordinate system

Then:

- the valid range of object coordinates is \((-W/2 \ldots +W/2, -H/2 \ldots +H/2)\)
- these have to be mapped into \((0 \ldots Nx-1, 0 \ldots Ny-1)\):

\[
x_s = \left(x_p + \frac{W}{2} \right) \cdot \frac{Nx - 1}{W} \quad y_s = \left(y_p + \frac{H}{2} \right) \cdot \frac{Ny - 1}{H}
\]
Step 3: Window Transform (2)

- The window transform can be written as the matrix M_{window}:

$$
\begin{bmatrix}
 x_s \\
 y_s \\
 1
\end{bmatrix} =
\begin{bmatrix}
 \frac{Nx - 1}{W} & 0 & \frac{Nx - 1}{2} \\
 0 & \frac{Ny - 1}{H} & \frac{Ny - 1}{2} \\
 0 & 0 & 1
\end{bmatrix}
\cdot
\begin{bmatrix}
 x_p \\
 y_p \\
 1
\end{bmatrix}
$$

- After the perspective divide, all object points (vertices) are multiplied by M_{window}

- Note: we could figure the window transform into M_{trans}
 - in that case, there is only one matrix multiply per object point (vertex) with a subsequent perspective divide
 - the OpenGL graphics pipeline does this
Orthographic (Parallel) Projection

- Leave out the perspective mapping (step 2) in the viewing pipeline
- In orthographic projection, all object points project along parallel lines onto the screen

Diagram:
- Perspective projection
- Orthographic projection
Polygon Shading Methods - Faceted Shading

• How are the pixel colors determined in z-buffer?

• The simplest method is *flat or faceted shading*:
 - each polygon has a constant color
 - compute color at one point on the polygon (e.g., at center) and use everywhere
 - assumption: lightsource and eye is far away, i.e., $N \cdot L$, $H \cdot E = \text{const.}$

• Problem: discontinuities are likely to appear at face boundaries
Polygon Shading Methods - Gouraud Shading

- Colors are averaged across polygons along common edges → no more discontinuities

- Steps:
 - determine average unit normal at each poly vertex:
 \[
 \mathbf{N}_v = \frac{\sum_{k=1}^{n} \mathbf{N}_k}{\sum_{k=1}^{n} 1}
 \]

 n: number of faces that have vertex v in common
 - apply illumination model at each poly vertex → \(C_v \)
 - linearly interpolate vertex colors across edges
 - linearly interpolate edge colors across scan lines

- Downside: may miss specular highlights at off-vertex positions or distort specular highlights
Polygon Shading Methods - Phong Shading

- Phong shading linearly interpolates normal vectors, not colors
 → more realistic specular highlights
- Steps:
 - determine average normal at each vertex
 - linearly interpolate normals across edges
 - linearly interpolate normals across scanlines
 - apply illumination model at each pixel to calculate pixel color

- Downside: need more calculations since need to do illumination model at each pixel
Rendering the Polygonal Objects - The Hidden Surface Removal Problem

• We have removed all faces that are \textit{definitely} hidden: the back-faces
• But even the surviving faces are only \textit{potentially} visible
 - they may be obscured by faces closer to the viewer

 face \textit{A} of \textbf{object 1} is partially obscured by face \textit{B} of object 2

• Problem of identifying those face portions that are visible is called the \textit{hidden surface problem}
• Solutions:
 - pre-ordering of the faces and subdivision into their visible parts before display (expensive)
 - the \textit{z-buffer} algorithm (cheap, fast, implementable in hardware)
The Z-Buffer (Depth-Buffer) Scan Conversion Algorithm

- Two data structures:
 - z-buffer: holds for each image pixel the z-coordinate of the closest object so far
 - color-buffer: holds for each pixel the closest object’s color

- Basic z-buffer algorithm:

 // initialize buffers
 for all (x, y)
 z-buffer(x, y) = -infinity;
 color-buffer(x, y) = color_{background}

 // scan convert each front-face polygon
 for each front-face poly
 for each scanline y that traverses projected poly
 for each pixel x in scanline y and projected poly
 if \(z_{poly}(x, y) > z\)-buffer(x, y)
 \(z\)-buffer(x, y) = z_{poly}(x, y)
 color-buffer(x, y) = color_{poly}(x, y)
Stencil Buffer

- Allows a screen area to be “stenciled out”
- No write will occur in these areas on rasterization
Rendering With OpenGl (1)

- **glMatrixMode(GL_PROJECTION)**
- Define the viewing window:
 - `glOrtho()` for parallel projection
 - `glFrustum()` for perspective projection
- **glMatrixMode(GL_MODELVIEW)**
- Specify the viewpoint
 - `gluLookat()` /* need to have GLUT */
- Model the scene
 - `glTranslate()`, `glRotate()`, `glScale()`, ...

Modelview Matrix Stack

- `gluLookat(...)`
- `glTranslate(x,y,z)`
- `glRotate(\phi_y,0,1,0)`
- `glRotate(\phi_z,0,0,1)`
- `glRotate(\phi_x,1,0,0)`

Order of execution

- rotate first, then translate, then do viewing...

OpenGL rendering pipeline

- Vertex coordinates
- Modelview Matrix
- Projection Matrix
- Perspective Division
- Viewport Transformation
- Normalized device coordinates
Specify the light sources: glEnable(GL_LIGHT0)
Enable the z-buffer: glEnable(GL_DEPTH_TEST)
Enable lighting: glEnable(GL_LIGHTING)
Enable stencil test (GL_STENCIL_TEST)
Enable light source i: glEnable(GL_LIGHTi) /* GL_LIGHTi is the symbolic name of light i */
Select shading model: glShadeModel() /* GL_FLAT or GL_SMOOTH */

For each object:
/* duplicate the matrix on the stack if want to apply some extra transformations to the object */
 glPushMatrix();
 glTranslate(), glRotate(), glScale() /* any specific transformation on this object */
 for all polygons of the object: /* specify the polygon (assume a triangle here) */
 glBegin(GL_POLYGON);
 glColor3fv(c1); glVertex3fv(v1); glNormal3fv(n1); /* vertex 1 */
 glColor3fv(c2); glVertex3fv(v2); glNormal3fv(n2); /* vertex 2 */
 glColor3fv(c3); glVertex3fv(v3); glNormal3fv(n3); /* vertex 3 */
 glEnd();
 glPopMatrix() /* get rid of the object-specific transformations, pop back the saved matrix */