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Memory Transfer Basics 

Fetch (transaction) size 

• cached access introduced with Fermi 

• in cache lines of 32 or 128 bytes 

• 128 bytes is the default (a warp with one float for each thread) 

• 64-byte fetches are not supported 

Memory requests are fed into a queue 

• individually serviced by the memory subsystem 

To get maximum (peak) bandwidth per thread 

• read 4 floats all at once as opposed to 4 individual reads 

• use float2/int2 or float4/int4 vector types 

• prefer a few large transactions over many small ones 

• recall padding 

 



Source of Limit (1) 

Two types of kernel limitations 

• memory latency/bandwidth 

• instruction latency/bandwidth 

• make sure you optimize for the one that needs it 

How to find what it is: 

• comment out all arithmetic instructions and replace them with straight 
assignments to the result 

• arithmetic instructions are calculations, branches, loops, … 

• simply map input to output 

• make sure to include all input data into the output or the compiler will 
remove the (apparently) extraneous reads  

• re-time and calculate 100 ∙(Tbefore-Tnow)/Tbefore   

• if the percentage is very high then you are compute bound, else 
memory bound 



Source of Limit (2) 

Next 

• with arithmetic still commented out look at the Analysis function and 
profile setting of Parallel Nsight 

• blue bars mean poor coalescing 

• serialization of global memory reads 

 

Memory bound, what now? 

• threads should have a column-based access                                                            
pattern, not row-based 

• access should be orderly and regular 

• if it cannot be achieved consider pre-load into                                         
shared memory 

• read data at begin of kernel and not right when needed 

• this will increase register use – check limitations by monitoring 
number of scheduled warps (look for sudden drop-offs) 

 

 

 



Source of Limit (3) 

Compute bound, what now? 

• check PTX code 

• replace array indexes by pointer-based code 

• replace slow multiples by faster adds 

• replace multiplications/divisions by order of two by faster bit shifts 

• move constant operations in loops outside 

• unroll loops – but optimize for unroll factor 

• replace double-precision with single-precision floats (or even half 
floats) if it can be justified 

• watch out for floating point constants without the F postfix – will be 
doubles  

• try the –use_fast_math compiler switch (faster 24 bit arithmetic) 

• compile into ‘release’ mode – can give to 15% speedup and more   



Memory Alignment 

Another example: 

 

 

 

• 2-byte header produces offset for warp 

• thread 30 and 31 cannot be served in a single fetch 

• will incur a second 128-byte read 

• applies to all subsequent warps 

 

 

 

 

 

 

 

• solution: could move header to the end of the structure 

 

 

 

 



Memory Alignment 

Use padding to align to 32 byte boundaries 

• use cudaMallocPitch when bins are irregularly sized – for 
example for prefix sums 

• fixed size bins can often be handled by the programmer 

Pad with a number that does not affect the result 

• for a min operation use 0xFFFFFFFF 

• for a max operation use 0 

• other operations also always have such a benign value 

 



Memory Access to Compute Ratio 

Ratio of memory operations to arithmetic operations 

• want a ratio 1:10 

• for every (global) memory fetch have 10 or more instructions 

• this can include array index, loop calcs, branches, conditional …  



CUDA Warp Dispatching 

GF 100 (compute 2.0) 

 

 

 

 

 

 

 

• per cycle two (4 in GF 104) instructions are issued (one per dispatcher) 

• so need 2 independent warps to be present at minimum (4 for GF 104) 

• hence we need 64 threads minimum per SM  

• having less leaves one ore more dispatch unit idle 

• also need a multiple of 32 threads to avoid idle state 



Latency Hiding 

Shared resources  

• need to have mix of (independent) instructions that utilize units well 

• both CUDA cores and LSU are pipelined but only 16 units wide 

• so a warp to either unit will need two cycles to complete 

• there are four receivers for a dispatch: LSU, CUDA, SFU, CUDA 

• but we have only two suppliers 

Contingencies 

• only a single warp can use the LSU and it takes two clock cycles  

• only a single warp can use the SFU but it takes 8 clock cycles 
because there are only 4 units 

 



CUDA Warp Dispatching 

GF 104 (compute 2.1) 

 

 

 

 

 

 

 

 

• better bandwidth than GF 100 

• Kepler has 96 CUDA cores, and then puts two of these within an SM 
Thus there are four warp schedulers, eight dispatch units, two LSUs 
and two SFUs per SM. 

 



Resource Utilization 

Code example 

 

 

 

 

 

 

 

 

 

• instructions are dependent – each instruction blocks the following 

• use of resources is essentially serialized  

 

  



Better Resource Utilization 

Loop unrolling 

 

 

 

 

 

 

 

 

• introduces a second independent instruction stream 

• now arithmetic operations overlap with load operations 

• this makes better use of the resources  

• shows the need for more larger instruction stream (arithmetic intensity) 



Better Resource Utilization (2) 

Remove possible dependencies 

• when data and a, b space overlap 

 

 

 

 

 

 

 

 

• ‘vector’ loads and saves two 64-bit operands and is more efficient  

• for vectors use int2, int3, int4, float2, float3, float4 



Instruction Level Parallelism (ILP): Another Example 

Dependencies not permitting ILP (9 clock cycles) 

C = A + B 

E = C + D 

F = A + D 

 

Instruction reordering for better ILP (8 clock cycles) 

C = A + B 

F = A + D 

E = C + D 



Computation and Load/Store: No ILP 



Computation and Load/Store: With ILP 



Computation and Load/Store: With ILP – Results  

See http://continuum.io/blog/cudapy_ilp_opt for ILP=4 and 8   

 

 

 

 

 

 

 

 

 

http://continuum.io/blog/cudapy_ilp_opt for ILP=4
http://continuum.io/blog/cudapy_ilp_opt for ILP=4


Other Considerations 

Already discussed earlier (read more on book): 

Loop fusion  

• reduces redundant arithmetic 

• and others 

Kernel fusion  

• avoids redundant memory transfers 

• data just remains in shared memory (or caches) 

• encourages data reuse 

Shared memory 

• can regularize irregular access patters to global memory 


