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Code Development Time 

Speed-ups of a factor of two: 

• may just obtain it by upgrading hardware 

• may not need a GPU solution 

Before laborious optimization consider 

• development time is expensive 

 

 

 

 

 

 

 

 

 

• also recall slides on Amdahl’s law from an earlier lecture 

  



Dependencies 

Can take two forms: 

• one element is dependent on one or more elements around it 

• in a multi-pass program, a dependency from one pass to the next 

 

 

 

 

 

 

 

 

• a and c have a dependency on b 

• d has a dependency on a and c 

• which can be computed in parallel? 

 

• a and b must complete before d can be computed 

• this can cause delays 



Latency (and Dependency) Hiding 

We heard about warp switching 

• are there other ways to do this? 

Yes – insert (overlap with) independent instructions 

• this hides arithmetic execution latency 

 



Loop Fusion (1) 

Non-fused loop vs. fused 

 

 

 

 

 

 

 

 

 

• fused example saves 1/3 of the loop iterations (which are empty work) 



Loop Fusion (2) 

Non-fused loop vs. fused 

 

 

 

 

 

 

 

 

• completely eliminates the second loop and creates additional 
independent work in the loop  



Some Words of Caution 

In a GPU implementation 

• loops would be parallel threads 

 

Adding more work into a thread  

• will decrease parallelism 

• will expand register use 

 

Also, try to avoid multi-pass algorithms 

• they may require reading expensive transfers from and to slower 
memory 

• a single pass will enable it all to be kept in shared memory 



Profiling 

Best way to find out where you spend you time optimizing 

• find bottlenecks 

• find occupancy and memory bandwidth 

• find where code spends most of its time 

• usually 20% of the code spends 80% of the time 

• optimize these 20% (and use the profiler to find them) 

• use NVIDIA Parallel Nsight  

 

 



Parallel Nsight: Memory Overview 

 

 

 

 

 

 

 

 

Observations 

• 54% hit ratio in L1 achieves about 310 GB/s bandwidth to global 
memory (double than what is available) 

• could lower the number of transactions for better coalescing 



Parallel Nsight: Occupancy Rate 

 

 

 

 

 

 

 

 

Observations: 

• limiting factors will be highlighted in red (here: number of blocks/SM=6) 

• via the graphs we see that # threads should be cut from 256 to 192  

• this way we can get 8 blocks and so improve instruction mix 



Parallel Nsight: Occupancy Rate (2) 

Increasing # blocks improves occupancy from 98.17% to 
98.22%  

• just OK 

But execution time drops from 14ms to just 10ms 

• with 192 threads per block a smaller range of addresses is accessed 

• this increases the locality of the accesses and this improves cache 
utilization 

• the total number of memory transactions needed by each SM drops 
by about one-quarter and we see a proportional drop in execution 
time 

 


