
CSE 591: GPU Programming

 Optimizing Your Application

Klaus Mueller

Computer Science Department

Stony Brook University

Code examples from Shane Cook “CUDA Programming”

Code Development Time

Speed-ups of a factor of two:

• may just obtain it by upgrading hardware

• may not need a GPU solution

Before laborious optimization consider

• development time is expensive

• also recall slides on Amdahl’s law from an earlier lecture

Dependencies

Can take two forms:

• one element is dependent on one or more elements around it

• in a multi-pass program, a dependency from one pass to the next

• a and c have a dependency on b

• d has a dependency on a and c

• which can be computed in parallel?

• a and b must complete before d can be computed

• this can cause delays

Latency (and Dependency) Hiding

We heard about warp switching

• are there other ways to do this?

Yes – insert (overlap with) independent instructions

• this hides arithmetic execution latency

Loop Fusion (1)

Non-fused loop vs. fused

• fused example saves 1/3 of the loop iterations (which are empty work)

Loop Fusion (2)

Non-fused loop vs. fused

• completely eliminates the second loop and creates additional
independent work in the loop

Some Words of Caution

In a GPU implementation

• loops would be parallel threads

Adding more work into a thread

• will decrease parallelism

• will expand register use

Also, try to avoid multi-pass algorithms

• they may require reading expensive transfers from and to slower
memory

• a single pass will enable it all to be kept in shared memory

Profiling

Best way to find out where you spend you time optimizing

• find bottlenecks

• find occupancy and memory bandwidth

• find where code spends most of its time

• usually 20% of the code spends 80% of the time

• optimize these 20% (and use the profiler to find them)

• use NVIDIA Parallel Nsight

Parallel Nsight: Memory Overview

Observations

• 54% hit ratio in L1 achieves about 310 GB/s bandwidth to global
memory (double than what is available)

• could lower the number of transactions for better coalescing

Parallel Nsight: Occupancy Rate

Observations:

• limiting factors will be highlighted in red (here: number of blocks/SM=6)

• via the graphs we see that # threads should be cut from 256 to 192

• this way we can get 8 blocks and so improve instruction mix

Parallel Nsight: Occupancy Rate (2)

Increasing # blocks improves occupancy from 98.17% to
98.22%

• just OK

But execution time drops from 14ms to just 10ms

• with 192 threads per block a smaller range of addresses is accessed

• this increases the locality of the accesses and this improves cache
utilization

• the total number of memory transactions needed by each SM drops
by about one-quarter and we see a proportional drop in execution
time

