CSE 591: GPU Programming

Optimizing Your Application

Klaus Mueller

Computer Science Department

Stony Brook University

Code examples from Shane Cook “CUDA Programming”

Code Development Time

Speed-ups of a factor of two:

* may just obtain it by upgrading hardware
* may not need a GPU solution

Before laborious optimization consider
* development time is expensive

10

i —=

Speadup
A\
L
\

1 3 53 ¥ 89 " 43 15 ¥ 19 21 2 25 XA &8 M I Do v B\
Howrs

¢ also recall slides on Amdahl’s law from an earlier lecture

Can take two forms:

* one element is dependent on one or more elements around it
* in a multi-pass program, a dependency from one pass to the next

extern int a,c,d;
extern const int b;

extern const int e;

vold some func with dependencies (void)

* a and c have a dependency on b
d has a dependency ona and c
* which can be computed in parallel?

* a and b must complete before d can be computed
* this can cause delays

Latency (and Dependency) Hiding

We heard about warp switching
* are there other ways to do this?

Yes — insert (overlap with) independent instructions
* this hides arithmetic execution latency extern int a,c,d,f,9,1,1,3;

extern const int b;

extern const int e;

vold some_func with dependencies (vold]
a = b * 100:

c =b % 1000;

f =b % 101:

g=>b * 1001;

Loop Fusion (1)

Non-fused loop vs. fused

vold loop_fusion_example unfused{void) woid loop_fusion example fused_ 01 (vold)
{ {
unzigned int 1,7; unsigned int 1; j# Notice] is eliminated #/
a = o; a = 0;
for (i=0; i=100; i++) /% 100 iteraticmns #*/ d = 0;
{ for {i=0; 1<100; i++) /f# 100 iterations #/
a+=Db=*qg# i {
} a4 +=hb * cCc #* 1;

d += e * £ * 1;
d=|:'.; :'
for (]=0; J=200; J++} /% 200 1lteraticns */
I for {1=100; 1«<200; 1++} j#% 100 iterations #*/
ds+=e*f=q; {
} d+= e = [* 1;
1
} I

1
I

* fused example saves 1/3 of the loop iterations (which are empty work)

Loop Fusion (2)

Non-fused loop vs. fused

vold loop fusion example unfused {(void) wold loop _fusion example fused 0z (void)

{ {

unsigned int 1,7; unszigned int 1i; /¥ Notice j is eliminated #/
a =0 a =0

for (1=0; 1=100; 1++) J* 100 ilteraticns %/ d = 0;

{ for (i=0; 1=100; L++} /* 100 iteraticns =/
A+ =Db#* o #* i {

1 a +=b ¥ c = i;

d+=e*f =i

d = 0; d += e * £ = [ix2);
for (j=0; j=200; j++} /* 200 iteraticns */ }
{ }
d += e * £]
'
H

* completely eliminates the second loop and creates additional
independent work in the loop

Some Words of Caution

In a GPU implementation
* loops would be parallel threads

Adding more work into a thread

* will decrease parallelism
* will expand register use

Also, try to avoid multi-pass algorithms

* they may require reading expensive transfers from and to slower
memory

* a single pass will enable it all to be kept in shared memory

Profiling

Best way to find out where you spend you time optimizing

* find bottlenecks

* find occupancy and memory bandwidth

* find where code spends most of its time

usually 20% of the code spends 80% of the time

* optimize these 20% (and use the profiler to find them)
use NVIDIA Parallel Nsight

Parallel Nsight: Memory Overview

R N ™ o ». < -
e it - i -
» AR 100 20 el e oo
Al
s b e -
§ o ane VU SO R Py e P
-Ca S
. T
pe—
e ==
el
v —— oA
-5
Clbe AcremaToge — b - L
A N LEVNES o e Yve T Rl T
A Ravwr Wt
% Mgy ‘ SO by Dy Ca Ty O 55 W =
i fene s OGAN = iaA X e - e
D —
; v ol -
A
12"l Fapay Dwrte ~
L L
— o Oe j
et N B 5
} -
T ot om R weon |] 2 W] el
-
ap - S AMm
S
Ll DI

Vres W L LM w000 | A LS LIS = D N)

Observations

* 54% hit ratio in L1 achieves about 310 GB/s bandwidth to global
memory (double than what is available)

* could lower the number of transactions for better coalescing

Parallel Nsight: Occupancy Rate

d 000 _even_tor_goi herssl gvens CUIS Launch
P oexd_mees_port_gpos herwd_gresn CUDA Peared
4 Bpermant Fesits
CUDA Ocoupancy
CUDA Inatruchion Stabztcs
CAUDA Reaseh S
CUDA Issue Cicency
CUDS Achieved Flngs

CUDA Memaey Stabotcs

Observations:

Wrparey D

Kowek: odd_sven_pot_sp_kerd_gmem
Godln: (1702) W22 Moce Plor 2% 1 1) 3%

Devics; Ceforce GTH 470
Coorpurs Capondiey- 0 0

» Ocoupsecy Fer SM

Acive Biccks s ‘
srwe Warpe R 48 13
e Tucod s) o
Socupsecy wuN woe . S QR
Waps
Tveads 'tk 2% w2
cn—

orod Dhock 3 "y

L [

- hagutas
. —

“ng elers (Tradc ' LT
= " ' -3 YIRE -
Tssins e 083 Ay
Sock Uenr 15

« Shired Nemcey

Shared ManoreBesk y (¥2 8

ok Lt]

—coupaacy Graphs

* limiting factors will be highlighted in red (here: number of blocks/SM=6)
* via the graphs we see that # threads should be cut from 256 to 192
* this way we can get 8 blocks and so improve instruction mix

Parallel Nsight: Occupancy Rate (2)

Increasing # blocks improves occupancy from 98.17% to
98.22%

* just OK

But execution time drops from 14ms to just 10ms

* with 192 threads per block a smaller range of addresses is accessed

* this increases the locality of the accesses and this improves cache
utilization

* the total number of memory transactions needed by each SM drops

by about one-quarter and we see a proportional drop in execution
time

